数学物理方程讲义ppt-课件(PPT)

合集下载

数学物理方程PPT讲义

数学物理方程PPT讲义

解的存在性:是研究在一定的定解条件下,方程是否有解。
从物理意义上来看,对于合理的提出问题,解的存在似乎 不成问题,因为自然现象本身给出了问题的答案。 在数学上对解的存在性进行证明的必要性 从自然现象归结出偏微分方程时,总要经过一些近似的过 程,并提出一些附加的要求。 对于比较复杂的自然现象,有时也很难断定所给的定解条 件是否过多,或者互相矛盾。
(1) (2)
u方向
由于是微小的横振动,所以
cos 2 cos1 1
sin 2 tan2 ux xdx
sin 1 tan1 ux
x
u
1
T1 o x
2 T 2
x+dx
x
那么,有(1)可知张力T只与位置有关,且
1 T ( x) xdx 2 (l 2 x 2 ) x 2
不含初始条件,只含边界条件条件
注意:初始条件必须写完整,也就是要把整个体系所有点的初始态都写出来。
2、边界条件——描述系统在边界上的状况
第一类边界条件:直接规定了所研究的物理量 在边界上的数值,即
三 类 边 界 条 件
u S f (t )
第二类边界条件:规定了所研究的物理量在边 界外法线方向上方向导数的数值,即
如果定解问题的解是稳定的,那么就可断言,只要定 解条件的误差在一定的限制之间,我们所得的解就必然 近似于所需要的解。
2、叠加原理
线性方程的解具有叠加特性
Lui fi
f
i
f
u u
i
Lu f
i
u
Lu 0
Lui 0
u
几种不同的原因的综合所产生的效果等于这些不同原 因单独产生的效果的累加。(物理上)

数学物理方程课件.

数学物理方程课件.

原方程通解为
y C1 cos x C2 sin x cos x ln sec x tan x .
三、小结
x
k
(待定系数法)
(1) f ( x ) e Pm ( x ), (可以是复数)
y x e Qm ( x );
x
( 2) f ( x ) e x [ Pl ( x ) cosx Pn ( x ) sinx ],
r1 j ,
x
r2 j ,
x
y1 e cos x, y2 e sin x,
方程的通解为
y e x (C1 cos x C 2 sin x ).
y py qy 0
特征根的情况
r pr q 0
通解的表达式
2
r2 实根r1 r2 复根r1, 2 i
可设 Q( x ) Qn ( x ),
y* Qn ( x )e x ;
( 2) 若是特征方程的单根,
p q 0,
2
2 p 0,
y* xQn ( x )e x ;
可设 Q( x ) xQn ( x ),
( 3) 若是特征方程的重根,
p q 0,
2.
x y py qy Pn ( x )e
设非齐方程特解为 y* Q( x )e x
代入原方程
Q( x ) (2 p)Q( x ) ( 2 p q )Q( x ) Pn ( x )
2 (1) 若不是特征方程的根, p q 0,
1 A 2 , 代入方程, 得 2 Ax B 2 A x B 1 1 2x

数学物理方程课件

数学物理方程课件

三、方程的化简
步骤:第一步:写出判别式 断方程的类型;
a122 a11a22 ,根据判别式判
第二步:根据方程(1)写如下方程
a11 ( dy 2 dy ) 2a12 a22 0 dx dx (2)
称为方程(1)的特征方
程。方程(2)可分解为两个一次方程
dy a12 dx a11 (3)
第二节一维齐次波动方程的cauchy问题
一、D’Alembert公式 考虑无界弦的自由振动(cauchy问题即初值问题)
utt a 2u xx , x , t 0, u ( x,0) ( x), ut ( x,0) ( x).
解:(1)化标准形,然后求通解
数学物理方程
第一章方程的一般概念
第一节方程的基本概念
Hale Waihona Puke 定义:一个含有多元未知函数及其偏导数的方程,称为
偏微分方程。 一般形式:
F ( x1 , x2 ,, xn , u, ux , ux ,, uxn , ux x , ) 0
1 2 1 1
其中u 为多元未知函数,F是 x1 , x2 ,, xn , u u的有限个偏导数的已知函数。
波动方程
热传导方程
utt a2uxx f ( x, t )
ut a uxx f ( x, t )
2
位势方程
f ( x, y ) 0, Laplace方程 u xx u yy f ( x, y ) f ( x, y ) 0, Poisson方程
第二节二阶线性偏微分方程的分类
2 x at c1 x at dx 2 a 0 x at c x at dt 2

数学物理方程 ppt课件

数学物理方程  ppt课件

由能量守恒定律 c ρdx du=dQ =[q(x,t)-q(x+dx,t)]dt =-qx(x,t)dxdt
于是有 c ρut = -qx 由热传导定律 q(x,t) = -k ux(x,t) 代入前面的式子,得到 c ρut = k uxx ut = a2 uxx
a2 = k/(cρ)
ppt课件
于是有
T2 =T1=T ρuttdx=T[ux(x+dx,t)-ux(x,t)]
化简后得到
ρutt = T uxx utt = a2 uxx
uxxdx
a2 = T/ρ
6
波动方程
推广1
情况:受迫振动(考虑重力或外力)
分析:设单位长度所受到的横向外力 F(x,t),则dx段的受力为Fdx
方程:ρutt = T问题:扩散问题中研究的是浓度u在空间的分布和在时间中的 变化。 分析:扩散现象遵循扩散定律,即q= - D▽ u,q是扩散流强 度,D是扩散系数,▽u是浓度梯度。对于三维扩散问题, 考察单位时间内小体积元dxdydz的净流入量。
z
dz
y
dy
dx
x
o
ppt课件
9
扩散方程
在x,y,z方向上,单位时间内净流入量为
分析:设弦平衡时沿x轴,考虑 弦上从x到x+dx的一段,其质 量为ρdx。设弦的横振动位移 为u(x,t),则
α1
B
A
α2
C
ppt课件
由牛顿第二定律
ρdxutt=T2sinα2- T1sinα1 0 = T2 cosα2- T1 cosα1
微振动条件
cosα1 = cosα2= 1 sinα1 = tanα1 = ux(x,t) sinα2= tanα2 = ux(x+dx,t)

第7讲数学物理方程PPT课件

第7讲数学物理方程PPT课件

X n (x)
Bn
sin
n
10
x
Tn 100n2 2Tn 0 Tn Cn cos10nt Dn sin10nt
(4)求通解
un X nTn
(C ncos10nt
Dn
sin10nt) sin
n
10
x
u
un
n 1
(C n
n 1
cos10nt
Dn
sin10nt) sin
n
10
x
(5)确定常量
X 0
2) 0 X (x) Ax B
AB0
X 0
3) 0 令 2 , 为非零实数 X (x) Acos x B sin x
(8)
A0
B sin l 0
n (n 1, 2,3, )
l
n2
l2
2
n
n2
l2
2
(n 1, 2,3, )
XXnn( x)
sinBnnslin
xn
l
x
u( x, t ) t
t0
Dn
n1
n a sin
l
n
l
x
(x)
l sin2 n xdx
l
1 cos 2n
/l
dx
l
0
l
0
2
2
l n
sin
0
l
x sin m
l
xdx 1 2
l 0
cos
n
l
m
x
cos
n
l
m
x
dx
0
l(x)sin m
0
l
xdx
l 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档