三角形三边关系的典型应用
人教版四年级数学下册典型例题系列之第五单元《三角形三边关系定理的应用》》专项练习(原卷版)
人教版四年级数学下册典型例题系列之第五单元:三角形三边关系定理的应用专项练习(原卷版)1.用三根长为3厘米、5厘米、8分米的小棒,( )围成一个三角形。
2.如果一个三角形两条边的长度分别是7厘米和9厘米,那么它的第三条边(取整厘米数)最长是()厘米,最短是()厘米。
3.一个三角形的三条边长都是整数,如果它的两条边分别是6cm和l0cm,另一条边的长度最短是( ),最长是( )。
(填整厘米数)4.一个等腰三角形的两条边长分别为3和6,另一条边长为()。
5.如果一个三角形长度都是整厘米,其中两边长度分别是1厘米和2厘米,那么第三条边的长度是( )厘米。
6.一个三角形的两条边分别是6厘米和8厘米,则第三边必须比( )厘米长,比( )厘米短。
7.有5根小棒,它们的长度分别是1cm、2cm、5cm、6cm和8cm。
冯伟从这5根小棒中选了3根,首尾相接地摆出一个周长最短的三角形,这个三角形的周长是( )cm。
8.小红用12厘米长的铁丝围成了一个三角形,它的边长可能是( )厘米、( )厘米、( )厘米;还可能是( )厘米、( )厘米、( )厘米。
9.已知三角形的两条边分别长7厘米和12厘米,这个三角形的周长最短是( )厘米,周长最长是( )厘米。
(三角形的每条边的长度都是整厘米数)10.如果一个三角形的周长是60厘米,最短的边是13厘米,最长边最多是( )厘米。
(三边都为整数,三边都不相等)11.从以下5根小棒中选出3根,组成一个三角形。
可以怎样选取?请写出一种方法,并说明理由。
12.星光艺术小组用木条设计一个三角形图案,现有两根木条分别长6分米和8分米,为了节省原料,第三根木条最短是多少分米?(取整分米数)13.以下是4组小棒的长度,都能分别围成三角形吗?你从中发现了什么?(单位:cm)1、2、3 2、3、4 7、8、9 19、20、2114.下面是淘气测量的两块三角形花坛各边的长。
(单位:m)你认为淘气测量的结果正确吗?请说明理由。
中考考点三角形中角度与边长的关系的计算与应用
中考考点三角形中角度与边长的关系的计算与应用中考考点:三角形中角度与边长的关系的计算与应用一、引言三角形是几何学中的重要概念,其角度与边长之间的关系是中考数学题中的常见考点。
掌握三角形中角度与边长的计算与应用,对于解题具有重要意义。
本文将介绍三角形中角度与边长的关系的计算方法和实际应用。
二、角度的计算方法1. 直角三角形的角度关系在直角三角形中,有一个直角(90°)和两个锐角(小于90°)。
根据三角形的内角和为180°,可以计算得出直角三角形中两个锐角之和为90°。
例如,已知一个角度为30°,则另一个角度为90°-30°=60°。
2. 一般三角形的角度关系对于一般三角形,角度的计算可以通过以下方法进行:(1) 已知两个角度,求第三个角度:三角形的内角和为180°,所以可以通过已知的两个角度求得第三个角度。
(2) 已知两边长度及夹角,求第三边的长度:可以利用余弦定理、正弦定理或正切定理进行计算。
三、边长的计算方法1. 直角三角形的边长关系在直角三角形中,有一个直角和两个锐角。
根据勾股定理,直角边的平方等于两个锐角边的平方和。
例如,在一个直角三角形中,已知两个锐角边的长度分别为3和4,可以通过计算得知直角边的长度为√(3^2+4^2)=5。
2. 一般三角形的边长关系对于一般三角形,可以利用余弦定理、正弦定理或正切定理来计算边长:(1) 余弦定理:在一个三角形中,已知两边长度及夹角,可以利用余弦定理计算第三边的长度。
根据余弦定理,第三边的平方等于已知两边的平方和减去两倍已知两边的长度乘以夹角的余弦值。
(2) 正弦定理:在一个三角形中,已知一个角度和该角度对应的边长以及另外两边的长度,可以利用正弦定理计算未知边长。
(3) 正切定理:在一个三角形中,已知一个角度和该角度对应的边长以及另外一条边的长度,可以利用正切定理计算未知边长。
高中数学-解三角形知识点汇总情况及典型例题1.docx
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
高中数学-解三角形知识点汇总情况及典型例题1
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
学习正三角形的性质及应用
学习正三角形的性质及应用正三角形是一种特殊的三角形,它具有独特的性质和广泛的应用。
本文将深入探讨正三角形的性质及其应用领域,并介绍一些相关的实例。
1. 正三角形的性质正三角形的性质如下:1) 三边相等:正三角形的三条边完全相等,这是它的最显著特征。
2) 三个角度相等:正三角形的三个内角都是60度,因此也被称为等边等角三角形。
3) 对称性:正三角形具有三条对称轴,每一条对称轴都能将图形分成两个完全相等的部分。
2. 正三角形的应用正三角形在数学、几何和工程领域有广泛的应用,下面列举了一些典型的应用领域:2.1 地质勘探在地质勘探中,正三角形被广泛应用于地质测量和地质分析领域。
通过构建正三角形形状的测量装置,可以准确测量山体的高度、井深和地球的倾角等参数,从而帮助地质学家更好地了解地质结构和地球的形态。
2.2 建筑设计正三角形在建筑设计中也有重要的应用。
设计一个正三角形的建筑结构可以提供更好的稳定性和强度。
例如,在大型桥梁或摩天大楼的设计中,正三角形的结构被广泛采用,以确保结构的坚固和稳定。
2.3 导航系统在导航系统中,正三角形经常用于确定位置和测量距离。
通过测量正三角形的边长,结合三角函数的知识,可以准确计算出距离和方向。
这种方法被广泛应用于GPS导航系统、地图制作和航空导航等领域。
2.4 电子工程正三角形在电子工程中也有广泛的应用。
例如,在电路板设计中,正三角形的布局可以提供更好的电子信号传输和抗干扰性能。
此外,正三角形还用于天线设计,以优化信号接收和传输的效果。
2.5 艺术设计正三角形的对称性和美学特点在艺术设计中得到了广泛应用。
例如,在图形设计、建筑装饰和绘画等领域,正三角形常被用作创作的基础形状,以营造和谐、平衡的视觉效果。
3. 实例分析为了更好地理解正三角形的应用,以下是两个具体的实例。
3.1 实例一:建筑设计中的正三角形应用某摩天大楼的结构设计采用了正三角形的布局。
这样的设计不仅提供了更好的结构稳定性,还能在城市地标建筑中营造出独特的美学效果,成为城市的地标之一。
中考数学复习:专题4-4 例说三角形三边关系的几种典型运用
专题04 例说三角形三边关系的几种典型运用【专题综述】三角形的三条边之间主要有这样的关系:三角形的两边的和大于第三边,三角形的两边的差小于第三边.设三角形三边为a,b,c则a+b>c,a>c-bb+c>a,b>a-ca+c>b,c>b-a这个定理及推论在解题中有着较为重要的应用.【方法解读】一、已知两边求第三边的取值范围例1 用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3m和7m,问第三条绳子的长有什么限制.【举一反三】(2017春•吉安月考)已知三角形的三边长分别为a、b、c,且a>b>c,若b=7,c=5,那么a的取值范围是.二、判定三条线段能否围成三角形例2 以下列各组线段为边,能组成三角形的是().A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,5cm【举一反三】(2017秋•宁河县期中)以下列各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.2cm,2cm,5cmC.4cm,6cm,9cm D.2cm,3cm,6cm三、确定组成三角形的个数问题例3 现有长度分别为2cm、3cm、4cm、5cm的木棒,从中任取三根,能组成三角形的个数为()A.1B.2C.3D.4【举一反三】(2017春•闵行区校级期末)在长度分别为4厘米、5厘米、9厘米、12厘米的四条线段中,任选三条线段可以组成三角形的个数为()A.1个B.2个C.3个D.4个四、确定三角形的边长例4 一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为______.【举一反三】(2016秋•长春期末)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9五、化简代数式问题例5 已知三角形三边长为a、b、c,且|a+b-c|+|a-b-c|=10,求b的值.【举一反三】(2016秋•黄冈校级月考)已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.【强化训练】1.已知三角形的三边长为a,b,c,若a≤3,b≤15,则c的取值范围是.2.(2014秋•台安县期中)一个三角形的周长是偶数,其中的两条边长分别是4和7,满足上述条件的三角形(三角形的边长均为整数)的个数为()A.1个B.3个C.5个D.7个3.(2016春•淄博期中)在下列所给的条件中,能组成三角形的是()A .三条线段的比为2:3:4B .三条线段的比为1:2:3C .三条线段的比为4:5:9D .三条线段的比为7:4:34.(2016秋•涞水县期末)满足下列条件的三条线段a 、b 、c ,能组成三角形的有( )①a=2,b=3,c=4;②a=3,b=5,c=2;③a :b :c=1:2:3;④a=m+1,b=m+2,c=2m (m >2)A .①②B .③④C .①④D .①③5.(2017秋•济源期中)有四条线段,长分别是3cm 、5cm 、7cm 、9cm ,如果用这些线段中的三条线段组成三角形,可以组成不同的三角形的个数为( )A .2个B .3个C .4个D .5个6.(2015春•平度市期末)已知:a 、b 、c 是△ABC 三边长,且M=(a+b+c )(a+b ﹣c )(a ﹣b ﹣c ),那么( )A .M >0B .M=0C .M <0D .不能确定7.(2017秋•秀屿区校级月考)三角形的两条边为2cm 和4cm ,第三边长是一个偶数,第三边的长是 .8.(2016秋•杜尔伯特县期中)三角形的两条边长分别是4和9,且第三边长是奇数,则第三边长为 . 9.已知三角形的三边长分别为a ,b ,c ,且满足+|b ﹣5|=0,求c 的取值范围.10.已知三角形的三边长为a ,b ,c ,根据三角形三边的关系化简:=---++22)()(c b a c b a .。
人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案
1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2
解直角三角形应用题
解直角三角形应用题直角三角形是日常生活中常见的一种三角形,因为其特定的角度关系,使得对其进行一系列数学运算以及技术应用都显得方便和便捷。
在学习和应用直角三角形的过程中,解决一些应用题也是非常有必要的。
本文将详细介绍一些解直角三角形应用题的重要方法与技巧。
一、三边比例与角度多少在某些情况下,通过已知直角三角形的三边比例,可以推算出其内部的角度关系。
如下所示,已知直角三角形的三边比例,求其内部所有角度的大小。
根据直角三角形的定义,可以知道斜边上对应的角度是直角,那么只需要求出其余两个角度就可以了。
设三边长度分别为a,b,c,设两个内角为A,B,那么根据三角函数的定义可以得到下列方程组:sin A = a / ccos A = b / ctan A = a / b通过这些公式,可以得到角A和角B的大小。
当然,如果只有两个角度是已知的,也可以借助三角函数式子求得第三个角度。
二、三角形上一点对角度的影响已知直角三角形ABC中,C为直角,AB=c,已知点D在斜边AC上,且满足AD=BC,求角度B和角度C的大小。
这就是典型的直角三角形应用题。
首先,因为AD和BC长度相等,那么可知三角形ACD和三角形BCD的面积相等,根据三角形面积公式得到:AD×CD/2 = BC×CD/2AD = BC×CD/AC将已知数据代入,化简得到:CD=2AC/(1+√5)接着,根据对应角的两点组合定理可得到如下关系式:tan B = BD/AB = AD/ABsin C = BD/BC = AD/AC代入已知的数据,得到:tan B = (2AC / (1+√5)) / csin C = (2AC / (1+√5)) / √(AC^2 + c^2)通过这些方程,可以计算出角B和角C的大小。
三、海伦公式海伦公式(Heron's formula)是解任意形状三角形面积的重要公式之一。
对于任意形状的三角形,海伦公式的表述如下所示:S = √(p(p-a)(p-b)(p-c))其中,S表示三角形的面积,a,b,c表示三角形的三边长度,p则表示三角形半周长,即:p = (a+b+c)/2在求解直角三角形的面积时,可以运用海伦公式。
人教版初二数学上册:直角三角形全等判定(基础)知识讲解
直角三角形全等判定(基础)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL ”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等. 【要点梳理】【高清课堂:379111 直角三角形全等的判定,知识点讲解】 要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”. 【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行. 【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD , ∴∠ABD =∠CDB =90° 在Rt △ABD 和Rt △CDB 中,AD BC BD DB ⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL ) ∴AB =CD (全等三角形对应边相等) (2)由∠ADB =∠CBD ∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法. 举一反三:【高清课堂:379111 直角三角形全等的判定,例3】 【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB , ∴∠DAE =∠CBA =90° 在Rt △DAE 与Rt △CBA 中, ED ACAE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL ) ∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90° 即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( ) (2)一个锐角和斜边对应相等; ( ) (3)两直角边对应相等; ( ) (4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等; (3)两个锐角对应等的两个直角三角形全等; (4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等. A.2个 B.3个 C.4个 D.5个 【答案】C . 解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .3、(2016春•深圳校级月考)如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( )OB CDAA .∠A=∠DB .∠ABC=∠DCBC .OB=OD D .OA=OD【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证. 【答案与解析】解:∵AB ⊥AC 于A ,BD ⊥CD 于D ∴∠A=∠D=90°(A 正确) 又∵AC=DB ,BC=BC ∴△ABC ≌△DCB(HL)∴∠ABC=∠DCB (B 正确) ∴AB=CD又∵∠AOB=∠C∴△AOB ≌△DOC(AAS) ∴OA=OD (D 正确)C 中OD 、OB 不是对应边,不相等. 故选C .【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、已知:如图1,在Rt△ABC 和Rt△A′B′C′中,AB=A′B′,AC=A′C′,C=∠C′=90° 求证:Rt△ABC 和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC 和△A′B′C′拼在一起,请你画出两种拼接图形;例如图2:(即使点A 与点A′重合,点C 与点C′重合.)(3)请你选择你拼成的其中一种图形,证明该命题.【答案与解析】解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图②使点A与点A′重合,点B与点B′重合图③使点A与B′重合,B与点A′重合.(3)在图②中,∵A和A′重合,B和B′重合,连接CC′.∵∠ACB=∠A′C′B′=90°,∠ACB﹣∠ACC′=∠A′C′B′﹣∠AC′C,即∠BCC′=∠BCC′,∴BC=B′C′.在直角△ABC和直角△A′B′C′中,,∴△ABC≌△A′B′C′(SSS).【总结升华】本题考查了直角三角形的全等中HL定理的证明,正确利用等腰三角形的性质是关键.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决; (2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。
人教版数学四年级下册5.1《三角形三边关系》教案
人教版数学四年级下册5.1《三角形三边关系》教案一. 教材分析《三角形三边关系》是小学数学四年级下册人教版中的一节课,主要让学生了解和掌握三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边。
教材通过实例和活动,引导学生探究和发现这一规律,培养学生的观察、思考和动手能力。
二. 学情分析四年级的学生已经具备了一定的观察和思考能力,对图形的认识也有了一定的基础。
但是,对于三角形的三边关系,他们可能还比较陌生,需要通过实例和活动来理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要在教学中进行针对性的引导和培养。
三. 教学目标1.让学生了解和掌握三角形的三边关系。
2.培养学生的观察、思考和动手能力。
3.培养学生合作学习的意识和习惯。
四. 教学重难点1.重点:三角形的三边关系。
2.难点:理解和掌握三角形三边关系的规律。
五. 教学方法1.实例教学:通过实例让学生观察和思考,发现三角形的三边关系。
2.活动教学:通过小组活动,让学生动手操作,进一步理解和掌握三角形的三边关系。
3.合作学习:引导学生相互讨论、交流,共同解决问题,培养合作学习的意识和习惯。
六. 教学准备1.教材、PPT等相关教学资料。
2.三角形模型、尺子、剪刀等教学用品。
七. 教学过程1. 导入(5分钟)教师通过PPT展示三角形图片,引导学生观察三角形的特点,引出三角形的三边关系。
2. 呈现(10分钟)教师通过PPT呈现三角形三边关系的规律,引导学生认真观察,思考并回答问题。
3. 操练(10分钟)教师分发三角形模型和工具,让学生分组进行操作,验证三角形三边关系的规律。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师通过PPT展示一些练习题,让学生独立完成,检验学生对三角形三边关系的掌握程度。
5. 拓展(10分钟)教师引导学生思考:三角形三边关系在实际生活中的应用。
学生分组讨论,分享自己的观点。
6. 小结(5分钟)教师引导学生总结本节课所学内容,强调三角形三边关系的重要性。
九年级数学上册《三条边对应成比例的两个三角形相似》优秀教学案例
本案例中,教师关注学生的个体差异,针对不同层次的学生布置难易适度的习题。这种差异化教学策略使每个学生都能在课堂上找到适合自己的学习节奏,提高学习效果。
5.反思与评价相结合,促进学生的自主学习
本案例强调反思与评价的重要性,教师通过课堂观察、学生自评和互评等多种方式,全面评估学生的学习效果。这种评价方式有助于学生认识到自己的优点和不足,培养自我反思、自主学习的习惯,为学生的终身学习打下坚实基础。
此外,我还会要求学生在课后进行自我反思,总结自己在课堂上的收获和不足,为下一节课的学习做好准备。通过这样的方式,使学生在完成作业的过程中,进一步巩固和深化对相似三角形性质的理解。
五、案例亮点
1.生活化的情景创设
本教学案例的最大亮点之一是紧密联系学生的生活实际,通过展示校园内外的三角形物体,引导学生从生活中发现数学问题。这种情景创设使得学生对相似三角形的概念有了更直观、生动的认识,激发了他们的学习兴趣,提高了课堂的吸引力。
(三)学生小组讨论
在学生小组讨论的环节,我会将学生分成小组,每组挑选一道具有代表性的习题进行讨论。讨论过程中,学生需要共同分析问题,探讨解题思路,并尝试用相似三角形的性质来解决问题。
我会在各组之间巡回指导,提供必要的帮助和提示,鼓励学生发表自己的观点,倾听他人的意见,通过合作交流,共同解决问题。
(四)总结归纳
(二)过程与方法
1.通过观察、发现、讨论等教学活动,培养学生独立思考、合作交流的能力。
2.引导学生运用已学的几何知识和方法,探索相似三角形的性质,培养学生的创新精神和实践能力。
3.通过解答例题、习题,让学生掌握相似三角形性质的应用,提高学生分析问题和解决问题的能力。
4.鼓励学生将所学知识运用到实际生活中,培养学生的数学应用意识和实际操作能力。
九年级 第一章 直角三角形的边角关系
九年级下册第一章 直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(一) 一 知识要点1. 能够用tanA 表示直角三角形中两边的比,表示生 活中物体的倾斜程度、坡度等正切的定义:在Rt △ABC 中,锐角A 的 与 锐角A 的比叫做∠A 的正切,记作tanA,即 tanA=2. 能够用正切进行简单的计算. 二、典型例题与分析例1:如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?跟踪练习1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定 2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.例2:在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.随堂练习(见课本P 6 1、2)3、补充:在等腰△ABC 中,AB=AC=13,BC=10,求tanB.三、拓展训练例3如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)四、中考链接1:若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高_______米2、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.§1.2从梯子的倾斜程度谈起(2)正弦与余弦一.知识要点:1.正弦,余弦的定义(1).在Rt△ABC中,锐角A的与的比叫做∠A的正弦,记作sinA,即sinA=(2).在Rt△ABC中,锐角A的与的比叫做∠A的余弦,记作cosA,即cosA=总结:①锐角三角函数的定义.锐角A的, , 都叫做∠A的三角函数.②定义中应该注意的几个问题(1)sinA,cosA,tanA, 是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).(2)sinA,cosA,tanA, 是一个完整的符号,表示∠A,习惯省去“∠”号;(3)sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位.(4)sinA,cosA,tanA, 的大小只与∠A的大小有关,而与直角三角形的边长无关.(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.练习:如图,分别根据图(1)和图(2)求∠A的三个三角函数值.二.典型例题与分析:例1.如图:在Rt△ABC中,∠B=090,AC=200,sinA=0.6.求:BC的长.跟踪练习:1.如图,已知直角三角形A B C中,斜边A B的长为m,40B∠=,则直角边B C的长是()A.s in40m B.co s40mC.tan40m D.ta n40m2.如图, ∠C=90°CD⊥AB.(1)SinB=()()=()()=()()(2)若BD=6,CD=12.求cosA的值.3.在等腰△ABC中,AB=AC=13,BC=10,求sinB,cosB.三.基础练习:A BC 1.已知△ABC 中,90=∠C ,3cosB=2, AC=52 ,则AB= . 2.在Rt ABC ∆中,90=∠C ,如果2=AB ,1=BC ,那么Bsin的值是( )A.21B.23C.33D.33.在R t A B C △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A =4.如图,一架梯子斜靠在墙上,若梯子到墙的距离A C =3米,3c o s 4B AC ∠=,则梯子A B 的长度为 米.5.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.12B.2C.1D.2四.知识延伸1.如图,P 是∠α的边OA 上一点,且点 P 的坐标为(3,4), 则sin α= ( ) A .35B .45C .34D .432.如图,A D C D ⊥,13A B =,12B C =,3C D =,4A D =,则sin B =( ) A .513B .1213C .35D .453.直角三角形纸片的两直角边长分别为6,8,现将A B C △如图那样折叠,使点A 与点B 重合,折痕为D E ,则tan C B E ∠的值是( ) A .247B .3C .724D .134.如图所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于 ( ) A. 12223五.中考链接 1.正方形网格中,A O B ∠如图放置,则co s A O B∠的值为() 55C.12D.22.如图,在A B C △中,90A C B ∠=,C D A B ⊥于D ,若A C =A B =tan B C D ∠的值为( )2333.如图,在A B C ∆中,90C ∠=︒,点D 、E 分别在A C 、A B 上,B D 平分A B C ∠,D E A B ⊥,6A E =,3c o s 5A =.求(1)D E 、C D 的长; (2)tan D B C ∠的值.§1.3 300,450,600角的三角函数值(1)D ABCABO第1题一、知识要点(1)直角三角形中的边角关系(2)特殊角300,450,600角的三角函数值. (3)互余两角之间的三角函数关系. (4)同角之间的三角函数关系 二、典型例题例1:(1)sin300﹢cos450(2) sin 2600+cos 2600﹣tan450跟踪练习:(1)sin600﹣cos450; (2)cos600+tan600例2: 如图:一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为600,且两边摆动的角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0.01m).跟踪练习:2.某商场有一自动扶梯,其倾斜角为300,高为7m,扶梯的长度是多少?例3、如图,在Rt △ABC 中,∠C=90°, ∠A,∠B ,∠C 的对边分别是a,b,c.求证:sin 2A+cos 2A=1C跟踪练习:1.tan α×tan300 =1,且α为锐角。
直角三角形三边的关系教案
直角三角形三边的关系教案教案名称:直角三角形三边的关系教学目标:1.了解直角三角形的定义和性质;2.掌握直角三角形的三边关系;3.能够运用三边关系解决相关问题。
教学重点:1.直角三角形的定义和性质;2.直角三角形三边的关系。
教学难点:教学准备:教材、教具、示意图、练习题。
教学过程:Step 1 引入新知1.引导学生回顾直角三角形的定义和性质,包括直角三角形的特点以及勾股定理。
2.提问:“直角三角形的三边之间是否有一定的关系?”请学生思考并举例说明。
Step 2 教学直角三角形三边关系1.展示示意图,说明直角三角形的三边关系。
即在直角三角形ABC中,设直角边为a,另外两条边分别为b和c。
2.介绍直角三角形三边关系:勾股定理成立,即a^2+b^2=c^23.示意图中配合注释,说明为什么勾股定理成立。
4.进一步说明斜边c是直角边a和b的和,即c=a+b。
5.通过课堂演示,用绳子模拟直角三角形的三边关系,加深学生对三边关系的理解。
Step 3 典型例题讲解1.出示典型例题,解决三边关系的应用问题。
例题:已知一个直角三角形的斜边为5 cm,另一直角边为3 cm,求另外一条直角边的长度。
解:根据直角三角形三边关系,可得c^2=a^2+b^2,代入已知数据得5^2=3^2+b^2,化简得b^2=16,再开平方可得b=4因此,这个直角三角形的另一直角边长为4 cm。
2.引导学生总结解决三边关系的应用问题的一般步骤。
Step 4 练习和巩固1.布置练习题,让学生巩固直角三角形的三边关系的运用。
2.针对练习题答题思路和方法,进行指导和批改。
Step 5 展示应用1.出示三个编制木板的示意图,每个木板有四条不同长度的木材,请学生将三个木板组合成直角三角形。
2.让学生使用勾股定理和三边关系,判断哪个组合的木板是一个直角三角形。
3.引导学生解释木板组合成直角三角形的依据。
Step 6 拓展延伸1.引导学生思考:在直角三角形中,如果已知两条边的长度,能否确定第三边的长度?为什么?2.请学生举例说明:如果已知两条边的长度,能否确定第三边的长度。
人教版四年级下册数学教案:下册第五单元第二课时三角形三边关系
人教版四年级下册数学教案:下册第五单元第二课时三角形三边关系教学内容:本课时为下册第五单元第二课时,主要教学内容为三角形的三边关系。
通过本课时的学习,学生将了解三角形的基本概念,掌握三角形三边之间的关系,并能运用这些知识解决实际问题。
教学目标:1. 让学生理解并掌握三角形的基本概念。
2. 使学生能够运用三角形三边关系解决实际问题。
3. 培养学生的观察能力、分析能力和逻辑思维能力。
教学难点:1. 三角形三边关系的理解和运用。
2. 学生对三角形概念的掌握。
教具学具准备:1. 课件或黑板,用于展示三角形的相关知识和例题。
2. 练习题,用于巩固学生对三角形三边关系的理解。
教学过程:1. 导入:通过复习上一课时的内容,引导学生回顾三角形的定义,为新课的学习做好铺垫。
2. 新课导入:讲解三角形三边关系的基本概念,让学生了解并掌握三角形的三边关系。
3. 例题讲解:通过典型例题,让学生了解三角形三边关系在实际问题中的应用,培养学生的观察能力、分析能力和逻辑思维能力。
4. 练习题讲解:针对学生容易出错的题型进行讲解,帮助学生巩固所学知识。
5. 课堂小结:总结本课时的重点内容,让学生对所学知识有更清晰的认识。
板书设计:1. 三角形的基本概念2. 三角形三边关系3. 三角形三边关系在实际问题中的应用作业设计:1. 基础题:让学生运用三角形三边关系解决实际问题。
2. 提高题:设计一些综合性的题目,让学生运用所学知识解决问题。
课后反思:1. 教学内容是否清晰易懂,学生是否能够掌握三角形三边关系的基本概念。
2. 教学方法是否恰当,是否能够激发学生的学习兴趣和积极性。
3. 教学过程中是否存在不足之处,如何改进和提高。
4. 作业设计是否合理,是否能够达到巩固知识、提高能力的目的。
总结:本课时通过讲解三角形三边关系的基本概念、例题分析和练习题讲解,使学生掌握三角形三边关系,并能运用这些知识解决实际问题。
在教学过程中,要注意激发学生的学习兴趣,培养学生的观察能力、分析能力和逻辑思维能力。
三角型三边的关系
三角型三边的关系三角形是几何学中最基本的形状之一,它由三条线段组成,这三条线段被称为三角形的三边。
三角形的三边之间存在着一些特殊的关系,这些关系在几何学中有着重要的应用。
我们来讨论三角形的边长关系。
对于任意一个三角形来说,它的任意两边之和必须大于第三边。
这个关系被称为三角形边长的三角不等式定理。
换句话说,如果一个线段的长度大于另外两个线段的长度之和,那么这三个线段无法构成一个三角形。
接下来,我们来探讨三角形边长之间的其他关系。
对于一个等边三角形来说,它的三条边的长度是相等的。
而对于一个等腰三角形来说,它的两条边的长度是相等的。
此外,对于一个直角三角形来说,它的两条直角边的平方和等于斜边的平方,这被称为勾股定理。
这些关系在解决几何问题时非常有用。
除了边长关系,三角形的角度关系也是非常重要的。
三角形的内角和等于180度,这是三角形内角和定理。
根据这个定理,我们可以得出等边三角形的内角都是60度,等腰三角形的两个底角相等,直角三角形的一个角是90度。
这些角度关系在解决几何问题时也非常有用。
三角形的边长和角度之间还有一些其他的关系。
例如,对于一个等腰三角形来说,它的底角等于两个顶角的一半。
对于一个直角三角形来说,正弦定理和余弦定理可以用来计算三角形的边长和角度。
这些定理在实际应用中非常重要,例如在测量不规则地形的高度时,可以利用这些定理来计算出角度和边长。
三角形的三边之间存在着多种关系,这些关系在几何学中有着重要的应用。
通过研究三角形的边长和角度关系,我们可以解决各种几何问题,包括测量和计算等。
因此,对于几何学的学习和应用来说,掌握三角形的三边关系是非常重要的。
无论是解决实际问题还是提高几何学知识水平,我们都应该深入研究和理解三角形的三边关系。
高中数学-解三角形知识点汇总及典型例题
解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)知识讲解
全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】 要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】证明:∵M 为PQ 的中点(已知), ∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°, ∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE , ∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量. 举一反三: 【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD , ∴∠ACD=∠ECD ,∠BCE=∠ECD , ∴∠ACD=∠BCE , 在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD 证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形 ∴AB =BC ,BD =BE 在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等)∴ OP平分∠AOB.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°. ∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。
90 30 60 的三角形三边关系
90 30 60 的三角形三边关系摘要:一、引言二、三角形三边关系的基本概念三、90-30-60三角形的特殊性质四、90-30-60三角形在实际生活中的应用五、结论正文:一、引言在几何学中,三角形是由三条边和三个顶点组成的平面图形。
在解决与三角形相关的问题时,了解其边长关系是至关重要的。
本文将详细介绍90-30-60三角形三边关系的特点及其在实际生活中的应用。
二、三角形三边关系的基本概念根据三角形的性质,任意两边之和大于第三边,任意两边之差小于第三边。
当三边满足特定比例时,三角形具有特殊的性质。
90-30-60三角形是指三边长度分别为90、30和60的三角形,其中90度角所对的边为最长边,30度角所对的边为次长边,60度角所对的边为最短边。
三、90-30-60三角形的特殊性质90-30-60三角形具有以下特殊性质:1.它是一个直角三角形,其中90度角所对的边为斜边,满足勾股定理。
2.根据正切函数,它的三个角分别对应于正切函数的三个周期性解,即π/2、π/3和π/6。
3.它具有一个特殊的比例关系:最短边与次长边的比值等于次长边与最长边的比值,即1:2:3。
四、90-30-60三角形在实际生活中的应用90-30-60三角形在实际生活中有许多应用,如:1.建筑设计:在建筑中,90-30-60三角形可以帮助确定直角三角形的边长关系,从而实现精确的测量和绘图。
2.工程测量:在工程测量中,了解90-30-60三角形的三边关系有助于进行精确的角度测量和距离测量。
3.数学教育:在数学教育中,90-30-60三角形是一个典型的勾股数,可以帮助学生理解和掌握勾股定理。
五、结论90-30-60三角形作为一种特殊的直角三角形,其三边关系具有独特的性质和实际应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形三边关系的典型应用
三角形三边的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.
知识点一:三角形成立的条件
例1.下列各组线段能组成一个三角形的是()
A.3cm,3cm,6cm B.2cm,3cm,6cm
C.5cm,8cm,12cm D.4cm,7cm,11cm
例2.现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取()
A.0.85m长的木条B.0.15m长的木条C.1m长的木条D.0.5m长的木条
知识点二:三角形成立的条件
例4.若三角形的两边长分别为3和5,则其周长l的取值范围是()
A.6<l<15B.6<l<16C.11<l<13D.10<l<16
例5.若三角形三条边的长分别是7,10,x,求x的范围.
知识点三:三角形三边关系与等腰三角形结合
例8.已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.
例9.有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.
知识点四:利用三边关系证明不等关系
例12.已知:如图,P 是△ABC 内一点,请想一个办法说明AB +AC >PB +PC .
例13.如图,D 、E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC
知识点五:三边关系的实际应用
例15.现在有3、4、7、9cm 长的四根木棒,任取其中三根组成一个三角形,那怕么可以组成的三角形的个数是_______.
B
M
N P A。