普通高中数学会考试卷及答案

合集下载

高中会考数学试题及答案

高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。

A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。

A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。

答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。

答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。

答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。

答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。

答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。

答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。

2020年普通高中学业水平合格性考试(会考)数学试卷二(含答案)

2020年普通高中学业水平合格性考试(会考)数学试卷二(含答案)

2020年普通高中学业水平合格性考试数学试卷(考试时间:90分钟满分:100分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷5至6页。

考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上。

考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色字迹签字笔在答题卡上作答。

在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷和答题卡一并收回。

第Ⅰ卷(选择题45分)一、选择题(本大题有15小题,每小题3分,共45分。

每小题只有一个选项符合题目要求)1.设集合A={1,2,3},B=2,3,4},则AUB=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.下列函数中,在区间(0,+∞)上单调递的是()A.y=x12B.y=2−xC.y=log12x D.y=533.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.144.已知向量BA =(BA =(12,32),则∠ABC=()A.30°B.45°C.60°D.120°5.若a>b>0,c<d<0,则一定有()A.a c>b dB.a c<b dC.a d>b cD.a d<b c6.已知互相垂直的平面α,β交于直线l。

若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n7.对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列8.在x轴上与点(3,2,1)的距离为3的点是()A.(-1,0,0)B.(5,0,0)C.(1,0,0)D.(5,0,0)和(1,0,0)9.设 = ,0< <1,2 −1, 1,,若 =2,则a=()A.2B.4C.6D.810.若tanα=13,tanα+β=12,则tanβ=()A.17B.16C.57D.5611.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.2212.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.π2B.π4C.π6D.π813.在△ABC中,a,b,c分別为内角A,B,C所対边的边长,若c2=(a-b)2-+6,C=π3,则ab的值是()A.3B.6C.9D.1214.平行于直线2x+y+1=0,且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0D.2x-y+5=0或2x-y-5=015.在天文学中,天体的明暗程度可以用星等或亮度来描述。

2020年山东普通高中会考数学真题及答案

2020年山东普通高中会考数学真题及答案

2020年山东普通高中会考数学真题及答案一、单选题(共20小题)1.设集合A={1,3,5},B={2,3},则A∪B=( )A.{3} B.{1,5}C.(1,2,5)∩{1,2,5} D.{1,2,3,5}2.函数的最小正周期为( )A.B.πC.2πD.4π3.函数的定义域是( )A.[1,4)B.(1,4] C.(1,+∞)D.(4,+∞)4.下列函数中,既是偶函数又在(0,+∞)上是减函数的是( )A.y=﹣x3B.y=C.y=|x| D.y=5.已知直线l过点P(2,﹣1),且与直线2x+y﹣l=0互相垂直,则直线l的方程为( )A.x﹣2y=0 B.x﹣2y﹣4=0 C.2x+y﹣3=0 D.2x﹣y﹣5=0 6.已知函数f(x)=,则f(﹣1)+f(1)=( )A.0 B.1 C.D.27.已知向量与的夹角为,且||=3,||=4,则•=( )A.B.C.D.68.某工厂抽取100件产品测其重量(单位:kg).其中每件产品的重量范围是[40,42].数据的分组依据依次为[40,40,5),[40,5,41),[41,41,5),[41,5,42),据此绘制出如图所示的频率分布直方图,则重量在[40,41)内的产品件数为( )A.30 B.40 C.60 D.809.sin 110° cos40°﹣cos70°•sin40°=( )A.B.C.﹣D.﹣10.在平行四边形ABCD中,+﹣=( )A.B.C.D.11.某产品的销售额y(单位:万元)与月份x的统计数据如表.用最小二乘法求出y关于x的线性回归方程为=7x+,则实数=( )x 3 4 5 6y25 30 40 45A.3 B.3.5 C.4 D.10.512.下列结论正确的是( )A.若a<b,则a3<b3B.若a>b,则2a<2bC.若a<b,则a2<b2D.若a>b,则lna>lnb13.圆心为M(1,3),且与直线3x﹣4y﹣6=0相切的圆的方程是( )A.(x﹣1)2+(y﹣3)2=9 B.(x﹣1)2+(y﹣3)2=3C.(x+1)2+(y+3)2=9 D.(x+1)2+(y+3)2=314.已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15.若直线(a﹣1)x﹣2y+1=0与直线x﹣ay+1=0垂直,则实数a=( )A.﹣1或2 B.﹣1 C.D.316.将函数y=sin x的图象上所有的点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到的图象对应的函数解析式为( )A.y=sin(3x﹣)B.y=sin(3x﹣)C.y=sin(x﹣)D.y=sin(x﹣)17.3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.B.C.D.18.如图,在正方体ABCD﹣A1B1C1D1中,下列判断正确的是( )A.A1D⊥C1C B.BD1⊥AD C.A1D⊥AC D.BD1 ⊥AC19.已知向量,不共线,若=+2,=﹣3+7,=4﹣5,则( )A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线20.在三棱锥P﹣ABC中,PA,PB,PC两两垂直,且PA=1,PB=PC=2,则该三棱锥的外接球体的体积为( )A.B.C.9πD.36π二、填空题(共5小题)21.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为 .22.已知α为第二象限角,若sinα=,则tanα的值为 ﹣ .23.已知圆锥底面半径为1,高为,则该圆锥的侧面积为 .24.已知函数f(x)=x2+x+a在区间(0,1)内有零点,则实数a的取值范围为 ﹣ .25.若P是圆C1:(x﹣4)2+(y﹣5)2=9上一动点,Q是圆C2:(x+2)2+(y+3)2=4上一动点,则|PQ|的最小值是 .三、解答题(共3小题)26.如图,在四棱锥P﹣ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF∥面PAD.27.在△ABC中,a,b,c分别是角A,B,C的对边,且a=6,cos B=.(1)若sin A=,求b的值;(2)若c=2,求b的值及△ABC的面积S.28.已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0,+∞)时,不等式f(x)﹣b≥0恒成立,求实数b的取值范围.2020年山东普通高中会考数学参考答案一、单选题(共20小题)1.选:D.2.选:D.3.选:A.4.选:D.5.选:B.6.选:C.7.选:D.8.选:B.9.选:A.10.选:B.11.选:D.12.选:A.13.选:A.14.选:C.【知识点】随机事件15.选:C.16.选:A.17.选:D.18.选:D.19.选:B.20.选:A.二、填空题(共5小题)21.答案为:8.22.答案为:.23.答案为:2π.24.答案为:(﹣2,0)25.答案为:5.三、解答题(共3小题)26.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.所以FG∥AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF∥AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF∥平面PAD.27.【解答】解:(1)由cos B=可得sin B=,由正弦定理可得,,所以b===,(2)由余弦定理可得,cos B===,解可得,b=4,S===4.28.【解答】解:(1)根据题意可知f(x)=f(﹣x),即ax+log3(9x+1)=﹣ax+log3(9﹣x+1),整理得=﹣2ax,即﹣2ax==2x,解得a=﹣1;(2)由(1)可得f(x)=x+log3(9x+1),因为f(x)﹣b≥0对x∈[0,+∞)恒成立,即x+log3(9x+1)≥b对x∈[0,+∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0,+∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.。

陕西高一高中数学水平会考带答案解析

陕西高一高中数学水平会考带答案解析

陕西高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.已知等差数列中,的值是A.15B.30C. 31D. 642.若全集U=R,集合M=,S=,则=A.B.C.D.3.若1+2+22+……+2n>128,nÎN*,则n的最小值为A. 6B. 7C. 8D. 94.在中,,,则一定是A.等腰三角形B.等边三角形C.锐角三角形D.钝角三角形5.若不等式的解集为,则a-b值是A.-10B.-14C.10D.146.在等比数列{a}中,=1,=3,则的值是nA.14B.16C.18D.207.已知,则的最小值为A.8B.6C.D.8.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是A.B.C.D.9.已知变量满足,目标函数是,则有A.B.无最小值C.无最大值D.既无最大值,也无最小值10.在R上定义运算,若不等式成立,则实数a的取值范围是A.B.C.D.二、填空题1.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.2.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为 .3.在数列中,,且对于任意正整数n,都有,则= ________________.4.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如=8.若=2006,则i、j的值分别为________ ,__________5.△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。

6.已知数列为等差数列,且(1)求数列的通项公式;(2)求数列的前n项和。

2021年福建省普通高中高三学业水平合格性考试(会考)数学试卷及答案

2021年福建省普通高中高三学业水平合格性考试(会考)数学试卷及答案

4 .某校老年、中年和青年教师的人数见下表.采用分层抽样的方法调查教师的身体情况,在
抽取的样本中,青年教师有320人,则该样本的老年教师人数为()
A. 90
B. 100
C. 180
D. 300
类别
人数
老年教师
900
中年教师
1800
青年教师
1600
合计
4300
5 .圆心为(1,1)且过原点的圆的方程是()
设 以)的公比为q,则寸=会=8・从而q=2.
故 2 的前”项和丁・一"三沪=斗三罗=2" 一L(6分)
22 .解:(1)如图.设AB中点为M,则M(2, 2).
由AB的垂直平分线与X轴交于点D,可知A”,・Am — -1.
・・%=用一品・"W=2.
| 4 ^/1
工直线MD的方程为尸一202(*—2)・即y=2j-2.
A. (x-1)2+(y-1)2=1
B. (x+1)2+(y+1)2=1
C. (x+1)2+(y+1)2=2
D. (x- 1)2+ (y-1)2=2
6 .设a=30 7, b= °: c=,,则a, b, c的大小关系为()
A. a<b<c B. b<a<c
C. b<c<a
D. c<a<b
7 .已知 cos x=,则 cos 2x=( )
第I卷(选择题45分)
一、选择题(本大题有15小题,每小题3分,共45分。每小题只有一个选项符合题目要求)
1 .已知集合 A二{0,2} ,B={-2,-1,0,1,2},则 AHB=()

2020年福建普通高中会考数学真题及答案(完整版)

2020年福建普通高中会考数学真题及答案(完整版)

2020年福建普通高中会考数学真题及答案(考试时间:90分钟;满分:100分)参考公式:样本数据x1,x2,…,x. 标准差其中为样本平均数 s =x 锥体体积公式V=Sh ,其中S 为底面面积,h 为高13球 表面积公式S=4πR 2,球 体积公式V=,其中R 为球 半径43πR 3柱体体积公式V=Sh ,其中S 为底面面积,h 为高 台体体积公式,其中S ',S 分别为上、下底面面积,h 为高V =13(S '+S 'S +S )h 第Ⅰ卷 (选择题45)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意) 1.已知集合A={3},B={1,2,3},则A ∩B=A.{1,2,3}B.{1,3}C.{3}D. φ2.右图是某圆锥 三视图,则该圆锥底面圆 半径长是 A.1 B.2 C.3 D.103.若三个数1,3,a 成等比数列,则实数a= A.1 B.3 C.5 D.9 4.一组数据3,4,4,4,5,6 众数为 A.3 B.4 C.5 D.65.如图,在正方形上随机撒一粒黄豆,则它落到阴影部分 概率为A. B. C. D.1 14 12 346.函数y=cosx 最小正周期为 A.B. C. D. π2 π3π22π7.函数y= 定义域为1X -2A.(-∞,2)B.(2,+∞)C.(-∞,2)U(2,+∞)D. R 8.不等式2x+y-4≤0表示 平面区域是9.已知直线l 1:y=x-2,l 2:y=kx ,若l 1∥l 2,则实数k= A.-2 B.-1 C.0 D.1 10.化简+ +=MN MP QP A. B. C. D. MP NQ MQ PM 10.不等式(x+2)(x-3)<0 解集是 A.{x | x <-2,或x >3} B. {x|-2<x<3} C.< x <} {-12 13D. {x|x <,或x > -121312.化简tan(+α)=πA. sin α B.cos α C. –sin α D.tan α 13.下列函数中,在(0,+∞)上单调递减 是 A. y=x-3 B.y= C.y=x 2 D.y=2x2x14.已知a=40.5,b=42,c=log 40.5,则a ,b ,c 大小关系是 Aa < b<c B .c<b<a Cc<a < b D a<c< b 15.函数y=图象大致为 {1, |x |<2,log 2|x |, |x|≥2第Ⅱ卷 (非选择题55分)二、填空题(本大题有5小题,每小题3分,共15分)16.已知向量a=(0,2),则2a= . 17.阅读右边 程序框图,运行相应 程序,若输入 x 值为-4,则输出相应 y 值是 . 18.函数f(x)=x 2 + x 零点个数为 . 19.在△ABC 中,若AB=1,BC=2,B=60°, 则AC= .20.函数f(x)=x + (x >0) 最小值为 .1x三、解答题(本大题有5小题,共40分,解答应写出文字说明,证明过程或演算步骤) 21.(本小题满分6分)已知角α 顶点与坐标原点O 重合,始边与x 轴 非负半轴重合,在α 终边上任取点P(x ,y),它与原点 距离>0,定义:sin α = ,cos α =, tan α = (x ≠0).如r =x 2+y 2y r x r yx图,P(,)为角a 终边上g 点.22(1)求sin α,cos α 值;(2)求sin α = 值. a +π422.(本小题满分8分)如图,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且AD=3,PD=CD=2.(1)求四棱锥P-ABCD 体积;(2)若E,F分别是棱PC,AB 中点,则EF与平面PAD 位置关系是 ,在下面三个选项中选取一个正确序号填写在横线上,并说明理由.①EF平面PAD②EF∥平面PAD③EF与平面PAD相交.23.如图,某报告厅座位是这样排列:第一排有9个座位,从第二排起每一排都比前一排多2个座位,共有10排座位.(1)求第六排座位数;(2)某会议根据疫情防控需要,要求:同排两个人至少要间隔一个座位就坐,且前后排要错位就坐.那么该报告厅里最多可安排多少人同时参加会议?(提示:每一排从左到右都按第一、三、五、……座位就坐,其余座位不能就坐,就可保证安排参会人数最多)24.(本小题满分8分)已知圆C 方程为(x-2)2+(y-1)2=5.(1)写出圆心C 坐标与半径长;(2)若直线l过点P(0,1),试判断与圆C 位置关系,并说明理由.25.(本小题满分10分)某车间为了规定工时定额,需要确定加工零件所花费时间,为此进行了5次试验,得到零件数x i(单位:件)与加工时间y i(单位:小时) 部分数据,整理如下表根据表中数据:(1)求x3和y4值;(2)画出散点图;(3)求回归方程;并预测,加工100件零件所需要 时间是多少? y =bx +a附:①符号“∑”表示“求和”②对于一组数据(x 1,Y 1),(x 2,y 2),……,(x n ,y n ),其回归方程 斜率和截距y =bx +a 最小二乘估计分别为b =n∑i =1xi-nx·yn∑i =1x2i-nx 2,a =y -bx 。

四川普通高中会考数学试卷

四川普通高中会考数学试卷

四川普通高中会考数学试卷(考题时间:120分钟;满分:100分)第I 卷 选择题(共48分)一、选择题(每小题3分,共48分)1、已知集合S ={1,2,3,4,5,6},S C M ={2,4,6},则M 为 A 、Φ B 、{1,2,3,4,5,6} C 、{1,,3,5} D 、{2,4,6}2、500°的角是A 、第一象限角通B 、第二象限角C 、第三象限角D 、第四象限角3、按有关规定,标明重量500g 的袋装食盐,其实际重量与标明重量相差不能超过5g ,设其实际重量为xg ,那么x 应满足A 、| x -500 | > 5B 、| x -500 | < 5C 、| x -500 | ≥ 5D 、| x -500 | ≤ 5 4、函数x ycos 311-=的最大值是A 、32 B 、34 C 、31 D 、-31 5、下列直线中,与623=+y x 垂直的是A 、0632=-+y xB 、0623=--y xC 、0632=--yx D 、0623=++y x6、在(2+x )6的展开式中,2x 的系数是 A 、26C B 、4622C ⋅ C 、2642C ⋅D 、2542C ⋅7、椭圆191622=+y x 的长轴长是 A 、3 B 、4 C 、6 D 、88、为了得到函数4sin xy =,R x ∈的图象,只需把正弦函数x y sin =,R x ∈的图象上的所有点的A 、 横坐标伸长到原来的4倍,纵坐标不变B 、 横坐标缩短到原来的41倍,纵坐标不变C 、 纵坐标伸长到原来的4倍,横坐标不变D 、 纵坐标缩短到原来的41倍,横坐标不变9、点M (8,-10)按a 平移后的对应点M '的坐标为(-7,4),则a 的坐标为A 、(-15,14)B 、(1,-6)C 、(15,-14)D 、(-1,6) 10、已知32-=a,23-=b ,332-=c ,那么A 、c <b <aB 、a <b <cC 、b <a <cD 、b <c <a11、顶点在x 轴上,实轴长为8,e =45的双曲线标准方程是 A 、1682222=-y x B 、1862222=-y x C 、1432222=-y x D 、1342222=-y x12、用0,1,2,3这四个数字能组成没有重复数字的三位数的个数有 A 、24个 B 、18个 C 、16个 D 、12个 13、已知数列{n a },那么52+=n a n是{n a }成等差数列的A 、充分而不必要条件B 、必要而不充分条件C 、充要条件D 、既不充分又不必要条件14、将一颗质地均匀的骰子(六个面分别有1,2,3,4,5,6个点数的正方形)先后投掷两次,至少出现一次6点向上的概率是A 、365 B 、3611 C 、3620 D 、363515、函数x y a log =(0<x <1)的反函数的大致图象是16、球内接长方体的三条棱长分别为1,2,3,那么这个球的表面积为 A 、14π B 、64π C 、214π D 、414π第II 卷 非选择题(共52分)二、填空题(每小题3分,共12分)17、已知a =(4,m ),b =(6,3),且a ∥b ,则m =__________. 18、不等式|432-+x x|<6的解集是________________.19、已知函数y =⎩⎨⎧-∞∈-+∞∈]0,(,1),0(,1x x ,则函数的值域是________________.20、如图,已知在正方体ABCD —A 1B 1C 1D 1中,点E 、F 分别是棱A A 1、AD 的中点,那么直线EF 与平面A 1ABB 1所成角的大小为______________.F ED 1C 1B 1A 1DCB A三、解答题(本大题共6小题,共40分) 21、(本小题满分5分)设=)(x f 123-+x xx ,证明)(x f 为奇函数.22、(本小题满分5分) 化简︒40cos 2︒︒︒+︒︒⋅10cos 10sin 30cos 10cos 30sin .23、(本小题满分5分)小明参加四川省中学生英语电视大赛,要求从两组备选题材中分别抽取1道题回答.已知第一组10个备选题中有2个是听力题,第二组10个备选题中有3个是听力题.小明的特长是听力,那么他在两组备选题中恰好都抽到听力题的概率是多少?24、(本小题满分7分)如图,四棱锥P —ABCD 的底面是正方形,O 是AC 和BD 的交点,PD ⊥底面ABCD ,且BD =6,PB 与底面所成角的正切值为66. (1)求点P 到AC 的距离;(2)求异面直线DB 与PC 所成角的余弦值.25、(本小题满分8分)已知抛物线px y 82=(p >0)和双曲线13622=-y x 有一条公共的准线. (1)求该抛物线的方程及其焦点坐标;(2)若以抛物线焦点为圆心的圆与上述双曲线的渐近线相切,求该圆的方程.26、(本小题满分10分) 已知数列{n a }的通项为322-+=n a n n(*N n ∈). (1)求数列{n a }的前n 项和n S ;(2)如果对于任意的n (*N n ∈),恒有n S >2n a +pn 成立,求实数p 的取值范围.OPDCBA。

高中数学会考试卷

高中数学会考试卷

高中数学会考试卷第一卷(选择题共60 分)一、选择题:本大题共14 小题:第( 1)—( 10)题每小题 4 分,第( 11) - ( 14)题每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={0, 1, 2,3, 4} ,B={0, 2,4, 8} ,那么 A∩ B 子集的个数是:()A、6个B、7个C、8 个D、9个(2)式子 4· 5的值为:()A、 4/5B、5/4C、 20 D 、1/20(3)已知 sin θ =3/5,sin2θ<0,则tg(θ /2)的值是:()A、-1/2 B 、1/2 C 、1/3 D 、3(4)若 log a (a 2 +1)<log a 2a<0,则 a 的取值范围是:()A、( 0,1) B 、 (1/2,1) C、(0,1/2) D、(1,+∞)(5)函数 f(x)= π/2+arcsin2x 的反函数是()A、 f -1 (x)=1/2sinx,x ∈ [0, π] B 、 f -1 (x)=-1/2sinx,x ∈ [0, π ]C 、 f -1 (x)=-1/2cosx,x ∈ [0, π ]D 、 f -1 (x)=1/2cosx,x ∈ [0, π](6)复数 z=(+ i) 4 (-7-7i) 的辐角主值是:()A、π/ 12 B 、 11π/12 C 、19π /12 D 、 23π /12(7)正数等比数列a1 ,a 2 ,a 8的公比 q≠ 1, 则有:()A、 a1+a8 >a4 +a5 B 、 a1 +a8<a4 +a5 C、 a1+a8=a4 +a5 D、 a1+a8与 a4+a5大小不确定2 2(8)已知 a、 b∈R,条件 P: a +b ≥ 2ab、条件 Q:,则条件P 是条件 Q 的()D 、既不充分也不必要条件(9)椭圆的左焦点F1,点 P 在椭圆上,如果线段PF1的中点 M在 Y 轴上,那么 P 点到右焦点F2的距离为:()A、 34/5B、 16/5C、 34/25D、16/25(10)已知直线l 1与平面α成π /6 角,直线l 2与 l 1成π /3 角,则 l 2与平面α所成角的范围是:()A、 [0 ,π /3]B、[π/3,π/2] C[π /6,π /2]、D、[0,π/2](11)已知,b为常数,则a 的取值范围是:()A、 |a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过 3 分钟漏完。

往年内蒙古普通高中会考数学真题及答案

往年内蒙古普通高中会考数学真题及答案

往年内蒙古普通高中会考数学真题及答案一、选择题(本大题共12小题,每小题5分,共60分,每小题给出的4个选项中,只有1项是符合题要求的) 1.已知集合M={x|3)1(-x x ≥0},集合N={y|y=3x 2+1,x ∈R},则M ∩N= A.Φ B.{x|x ≥1} C.{x|x ﹥1} D.{x|x ≥1或x ﹤0} 2.函数f(x)=3x(0<x ≤2)的反函数的定义域为A.(0,+∞)B.(1,9]C.(0,1)D.[9,+∞) 3.“|x-1|﹤2成立”是“x(x-3)﹤0成立”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 4.下列函数中,在其定义域上既是奇函数又是增函数的是 A. y=-log 2x B.y=x 3+x C.y=3xD.y=-x1 5.已知等差数列{a n }满足a 2+a 4= 4,a 3+a 5=10,则它的前10项和S 10等于 A.138 B.135 C.95 D.23 6.已知sin α=55,sin(βα-)=-1010,α、β均为锐角,则β等于A.125π B.3π C.4π D.6π 7. 设函数y=f(x)定义在R 上,则函数y=f(x-1)与函数y=f(1-x)的图像关于 A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称 8.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N +),设其前n 项和为S n ,则使 S n <-5成立的正整数nA .有最小值63B .有最大值63C .有最小值31D .有最大值319.设数列{a n }是公比为a (a ≠1),首项为b 的等比数列,S n 是前n 项和,对任意的n ∈N + ,点(S n ,S n +1)在A .直线y =ax -b 上B .直线y =bx +a 上C .直线y =bx -a 上D .直线y =ax +b 上 10.锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B,则有A .sin 2A –cosB = 0 B .sin 2A + cos B = 0C .sin 2A – sin B = 0D .sin2A +sinB =011.在△ABC 中,sinA=54,cosB=1312-,则cosC 等于 A .6556 B .6516- C .6556或6516- D 6533-12. 已知f(x)=bx+1为x 的一次函数, b 为不等于1的常数, 且 g(n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n , 设a n = g(n)-g(n-1) (n ∈N ※), 则数列{a n }是A 等差数列B 等比数列C 递增数列D 递减数列 二.填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13 .在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_____.14. 21cos sin =⋅βα,则βαsin cos ⋅范围 。

2020年吉林普通高中会考数学真题及答案(完整版)

2020年吉林普通高中会考数学真题及答案(完整版)

2020年吉林普通高中会考数学真题及答案姓名:________ 班级:________ 成绩:________一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1. ( 3分)已知集合,,且,则()A .B .C .D .2. ( 3分)已知实数,,则大小关系为()A .B .C .D .3. ( 3分)圆( x+2)2+( y+3)2=2 圆心和半径分别是()A . (﹣2,3),1B . ( 2,﹣3),3C . (﹣2,﹣3),D . ( 2,﹣3),4. ( 3分)不等式x2+2x<对任意a,b∈( 0,+∞)恒成立,则实数x 取值范围是()A . (﹣2,0)B . (﹣∞,﹣2)∪( 0,+∞)C . (﹣4,2)D . (﹣∞,﹣4)∪( 2,+∞)5. ( 3分)椭圆+=1 焦点坐标是()A . ( 0,±)B . ( ±, 0)C . ( 0,±)D . ( ±, 0)6. (3分)已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A .B .C .D .7. ( 3分)已知sin(+α)=,则cos2α等于()A .B .C . -D . -8. ( 3分)已知变量、满足,则取值范围是()A .B .C .D .9. ( 3分)如图,平面平面,过平面,外一点引直线分别交平面,平面于、两点,,,引直线分别交平面,平面于、两点,已知,则长等于()A . 9B . 10C . 8D . 710. ( 3分)关于函数f(x)=tan|x|+|tanx|有下述四个结论:①f(x)是偶函数; ②f(x)在区间上单调递减;③f(x)是周期函数; ④f(x)图象关于对称其中所有正确结论编号是()A . ①③B . ②③C . ①②D . ③④11. ( 3分)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1 中点,则下列判断错误是()A . MN与CC1垂直B . MN与AC垂直C . MN与BD平行D . MN与A1B1平行12. ( 3分)已知某几何体三视图,如图所示,则该几何体体积为()A .B .C .D .13. ( 3分)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”()A . 充要条件B . 既不充分也不必要条件C . 充分不必要条件D . 必要不充分条件14. ( 3分)数列通项为,若要使此数列前项和最大,则值为()A . 12B . 12或13C . 13D . 1415. (3分)已知四棱锥底面是正方形,侧棱长均相等,E是线段上点(不含端点),设直线与所成角为,直线与平面所成角为,二面角平面角为,则()A .B .C .D .16. ( 3分)已知ABP 顶点A,B分别为双曲线左右焦点,顶点P在双曲线C上,则值等于()A .B .C .D .17. (3分)已知函数,数列满足,,若要使数列成等差数列,则取值集合为()A .B .C .D .18. ( 3分)一个圆锥和一个半球有公共底面,如果圆锥体积与半球体积恰好相等,则圆锥轴截面顶角余弦值是()A .B .C .D .二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19. ( 6分)设等比数列{an} 前n项和为Sn ,若S10:S5=1:2,则S15:S5=________.20. ( 3分)若向量满足: ,则| |=________.21. ( 3分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB 取值范围是________22. ( 3分)已知函数,若对任意,不等式恒成立,则实数a 取值范围是________.三、解答题(本大题共3小题,共31分.) (共3题;共31分)23. (10分)已知函数,在一个周期内图象如图所示,A为图象最高点,B,C为图象与x轴交点,且△ABC为正三角形.(Ⅰ)求ω值及函数f( x)值域;(Ⅱ)若x∈[0,1],求函数f( x)值域;(Ⅲ)若,且,求f( x0+1)值.24. ( 10分)已知椭圆 + =1( a>b>0)离心率为,且过点(,).( 1)求椭圆方程;( 2)设不过原点O 直线l:y=kx+m( k≠0),与该椭圆交于P、Q两点,直线OP、OQ 斜率依次为k1、k2 ,满足4k=k1+k2 ,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你结论;若不是,请说明理由.25. ( 11分)已知函数 .(Ⅰ)求函数单调递减区间;(Ⅱ)求函数在区间上最大值及最小值.参考答案一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19-1、20-1、21-1、22-1、三、解答题(本大题共3小题,共31分.) (共3题;共31分) 23-124-1、24-2、25-1、全卷完 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。

安徽高一高中数学水平会考带答案解析

安徽高一高中数学水平会考带答案解析

安徽高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.集合M =,N =,则A.M=N B.M N C.M N D.M N=2.(理科)若向量则一定满足A.的夹角等于B.⊥C.∥D.⊥3.(文科)则向量在向量方向上的投影为A.B.C.D.4.tan700+tan500-tan700tan500的等于A.B.C.-D.-5.理科)对任意实数, 若不等式恒成立, 则实数的取值范围是A.k≥1B.k >1C.k≤1D.k <16.(文科)下列函数中,图像的一部分如右图所示的是A.B.C.D.7.函数y=sin x+cos x(0≤x≤)的值域是A.[]B.[]C.[]D.[]8.理科)函数,的零点个数为A.0B.1C.2D.39.(文科)函数的零点所在的一个区间是A.B.C.D.10.若任取x1,x2∈[a,b],且x1≠x2,都有成立,则称f(x)[a,b]上的凸函数。

试问:在下列图像中,是凸函数图像的为A B C D11.已知函数在区间上的最小值是,则的最小值等于()A.B.C.2D.312.(理科)已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式的解集是A.B.C.D.13.(文科)函数上的最大值和最小值之和为a,则a的值为A.B.C.2D.414.(理科)已知函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为A.2B.0C.1D.不能确定15.(文科)如果函数的图象与函数的图象关于直线对称,则的单调递减区间是A.B.C.D.二、填空题1.1已知函数,则集合的子集有个。

2.设函数则 .3.已知,cos(α-β)=,sin(α+β)= ,那么sin2α= .4.在三角形ABC中,设,,点在线段上,且,则用表示为。

5.给出下列四个命题:①函数(且)与函数(且)的定义域相同;②函数与的值域相同;③函数与都是奇函数;④函数与在区间上都是增函数,其中正确命题的序号是_____________。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.△ABC中,,则△ABC一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形2.在等比数列{}中,已知,,则A.1B. 3C.±1D.±33.若则下列不等式成立的是A.B.C.D.4.三角形三边长为,且满足等式,则边所对角为A. 150°B. 30°C. 60°D. 120° [5.不等式表示的平面区域是A B C D6.已知数列则是这个数列的A.第6项B.第7项C.第8项D.第9项7.在中,若,则此三角形是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形8..函数()的最大值是A.0B.C. 4D. 169.已知数列满足若,则的值为,A.B.C.D.10.如果,那么的最小值是()A.4B.C.9D.1811.、数列的通项为=,,其前项和为,则使>48成立的的最小值为()A.7B.8C.9D.1012.若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10B.=﹣4 =﹣9C.=﹣1 =9D.=﹣1 =2二、填空题1.在中,已知,则= .2.数列的前项和为,,且,则3.已知则的最小值是 .4.函数的定义域是三、解答题1.已知等差数列成等比数列,求数列的公差.2.已知数列的前项和为,且是与2的等差中项,数列满足,点在直线上,(1)求数列,的通项公式;(2)设,求数列的前项和.3.如图,要测量河对岸两点间的距离,今沿河岸选取相距40米的两点,测得 60°,=45°, 60°, 30°,求两点间的距离.4.①已知不等式的解集是,求的值;②若函数的定义域为,求实数的取值范围.5.建造一个容积为8,深为2的长方体无盖水池,若池底和池壁的造价每平方米分别为120元和80元,则如何设计此池底才能使水池的总造价最低,并求出最低的总造价.山东高二高中数学水平会考答案及解析一、选择题1.△ABC中,,则△ABC一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】略2.在等比数列{}中,已知,,则A.1B. 3C.±1D.±3【答案】A【解析】设等比数列的公比为,则,解得。

安徽普通高中会考数学真题及答案

安徽普通高中会考数学真题及答案

2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。

因此,答案为A。

2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。

3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。

高中数学会考试卷

高中数学会考试卷

高中数学会考试卷第一卷(选择题共60分)一、选择题:本大题共14小题:第(1)—(10)题每小题4分,第(11)-(14)题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是:()A、6个B、7个C、8个D、9个(2)式子4·5的值为:()A、4/5????B、5/4??? C、20?? D、1/20(3)已知sinθ=3/5,sin2θ<0,则tg(θ/2)的值是:()A、-1/2B、1/2C、1/3D、3(4)若log a(a2+1)<log a2a<0,则a的取值范围是:()A、(0,1)B、(1/2,1)C、(0,1/2)D、(1,+∞)(5)函数f(x)=π/2+arcsin2x的反函数是()A、f-1(x)=1/2sinx,x∈[0,π]?B、f-1(x)=-1/2sinx,x∈[0,π]??? C、f-1(x)=-1/2cosx,x∈[0,π] D、f-1(x)=1/2cosx,x∈[0,π](6)复数z=(+i)4(-7-7i)的辐角主值是:()A、π/12B、11π/12C、19π/12D、23π/12(7)正数等比数列a1,a2,a8的公比q≠1,则有:()A、a1+a8>a4+a5B、a1+a8<a4+a5C、a1+a8=a4+a5D、a1+a8与a4+a5大小不确定(8)已知a、b∈R,条件P:a2+b2≥2ab、条件Q:,则条件P是条件Q的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件(9)椭圆的左焦点F1,点P在椭圆上,如果线段PF1的中点M在Y轴上,那么P点到右焦点F2的距离为:()A、34/5B、16/5C、34/25D、16/25(10)已知直线l1与平面α成π/6角,直线l2与l1成π/3角,则l2与平面α所成角的范围是:()A、[0,π/3]B、[π/3,π/2] C[π/6,π/2]、D、[0,π/2](11)已知,b为常数,则a的取值范围是:()A、|a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过3分钟漏完。

贵州高一高中数学水平会考带答案解析

贵州高一高中数学水平会考带答案解析

贵州高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.在△ABC中,a=3,b=5,sin A=,则sin B=()A.B.C.D.12.在△ABC中,A=,BC=3,AB=,则C=()A.或B.C.D.3.在△ABC中,a=15,b=20,A=30°,则cos B=()A.±B.C.-D.4.在△ABC中,若∠A=60°,∠B=45°,BC=3,则AC=()A.4B.2C.D.5.在△ABC中,若a=3,b=,A=,则C的大小为()A.B.C.D.6.一个三角形的两边长分别为5和3,它们夹角的余弦值是-,则三角形的另一边长为()A.52B.2C.16D.47.在△ABC中,a cos A+b cos B=c cos C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形8.如图所示,为了在一条河上建一座桥,施工前先要在河两岸打上两个桥位桩A,B,若要测算A,B两点之间的距离,需要测量人员在岸边定出基线BC,现测得BC=50米,∠ABC=105°,∠BCA=45°,则A,B两点之间的距离为()A.50米B.20米C.50米D.50米9.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.B.C.D.2=()10.在△ABC中,已知a=2,b=3,C=120°,则S△ABCA.B.C.D.311.在△ABC 中,已知b 2-bc -2c 2=0,且a =,cos A =,则△ABC 的面积等于( )A .B .C .2D .312.数列0.3,0.33,0.333,0.333 3,…的通项公式是a n =( ) A . (10n-1)B .C . (10n -1)D . (10n-1).13.已知数列{a n }满足a 1=1,a n =2a n -1+1(n ≥2),则a 5=( ) A .7 B .15 C .20D .3114.已知非零数列{a n }的递推公式为a 1=1,a n =·a n -1(n >1),则a 4=( )A .3B .2C .4D .115.已知等差数列{a n }中,首项a 1=4,公差d =-2,则通项公式a n 等于( ) A .4-2n B .2n -4 C .6-2nD .2n -616.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±217.在等差数列{a n }中,若a 5=6,a 8=15,则a 14等于( ) A .32 B .33 C .-33D .2918.在等差数列{a n }中,已知a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=( ) A .90 B .270 C .180D .36019.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .nB .n (n +1)C .n (n -1)D .20.设等差数列{a n }的前n 项和为S n ,若a 1=,S 4=20,则S 6等于( ) A .16B .24C .36D .4821.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16 D .1522.(1)在递减等差数列{a n }中,若a 1+a 100=0,则其前n 项和S n 取最大值时的n 的值为( ) A .49 B .51 C .48 D .5023.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列说法错误的是( ) A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列24.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1C .a n =-2n -1D .a n =2n -125.在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .2526.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12D .1427.等比数列{a n }中,a 2=2,a 5=,则公比q =( ) A .-B .-2C .2D .28.已知{a n },{b n }都是等比数列,那么( ) A .{a n +b n },{a n ·b n }都一定是等比数列 B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列 C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列 D .{a n +b n },{a n ·b n }都不一定是等比数列29.若等比数列的前三项分别为5,-15,45,则第5项是( ) A .405 B .-405 C .135D .-13530.在等比数列{a n }中,a 1=,q =2,则a 4与a 8的等比中项是( ) A .±4B .4C .±D .31.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-932.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是( ) A .11B .12C .13D .1433.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A .16 B .27 C .36D .8134.在等比数列{a n }中,a 1=-16,a 4=8,则a 7=( ) A .-4 B .±4C .-2D .±235.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8C .36D .3236.正项等比数列{a n }中,a 2a 5=10,则lg a 3+lg a 4=( ) A .-1 B .1 C .2D .037.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-738.已知等比数列{a n }满足a 1=3,且4a 1,2a 2,a 3成等差数列,则此数列的公比等于( ) A .1 B .2 C .-2 D .-139.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( ) A .12 B .10 C .8 D .2+log 3540.已知等比数列{a n }的公比为负数,且a 3·a 9=2a ,已知a 2=1,则a 1=( ) A .B .-C .D .241.若b 为a ,c 的等比中项,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) A .0 B .1 C .2 D .不能确定42.在正项等比数列{a n }中,a 1,a 99是方程x 2-10x +16=0的两个根,则a 40a 50a 60的值为( ) A .32 B .256 C .±64 D .6443.在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则等于( )A .B .C .D .644.等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ) A .4 B .-4 C .2D .-245.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则=( ) A .-11B .-8C .5D .1146.已知a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2abB .a +b ≥2C .+>D .+≥247.设0<a <b ,则下列不等式中正确的是( ) A .a <b <<B .a <<<bC .a <<b <D . <a <<b48.已知m =a + (a >2),n =(b ≠0),则m ,n 之间的大小关系是( )A .m >nB .m <nC .m =nD .不确定49.有下列式子:①a 2+1>2a ②≥2③≥2④x 2+≥1,其中正确的个数是( ) A .0B .1C .2D .350.已知a >0,b >0,若不等式+≥恒成立,则m 的最大值等于( )A.10B.9C.8D.7贵州高一高中数学水平会考答案及解析一、选择题1.在△ABC中,a=3,b=5,sin A=,则sin B=()A.B.C.D.1【答案】B【解析】在△ABC中,由正弦定理=,得sin B===.选B.2.在△ABC中,A=,BC=3,AB=,则C=()A.或B.C.D.【答案】C【解析】由=,得sin C=.∵BC=3,AB=,∴A>C,则C为锐角,故C=.选C.3.在△ABC中,a=15,b=20,A=30°,则cos B=()A.±B.C.-D.【答案】A【解析】因为=,所以=,解得sin B=.因为b>a,所以B>A,故B有两解,所以cos B=±.选A.4.在△ABC中,若∠A=60°,∠B=45°,BC=3,则AC=()A.4B.2C.D.【答案】B【解析】由正弦定理得:=,所以AC==2.选B.5.在△ABC中,若a=3,b=,A=,则C的大小为()A.B.C.D.【答案】D【解析】由正弦定理得:=,所以sin B=.又a>b,所以A>B,所以B=,所以C=π-(+)=.选D.6.一个三角形的两边长分别为5和3,它们夹角的余弦值是-,则三角形的另一边长为()A.52B.2C.16D.4【答案】B【解析】设三角形的另一边长为c.由余弦定理得:c===2.选B.7.在△ABC中,a cos A+b cos B=c cos C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【答案】B【解析】∵a cos A+b cos B=c cos C,∴a×+b×=c×,整理得=0,即=0,∴b2=a2+c2或a2=b2+c2,故△ABC 是直角三角形.选B.点睛:(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用这个结论.(2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示;②选择在某个三角形中运用正弦定理或余弦定理.8.如图所示,为了在一条河上建一座桥,施工前先要在河两岸打上两个桥位桩A,B,若要测算A,B两点之间的距离,需要测量人员在岸边定出基线BC,现测得BC=50米,∠ABC=105°,∠BCA=45°,则A,B两点之间的距离为()A.50米B.20米C.50米D.50米【答案】C【解析】在△ABC中,BC=50米,∠ABC=105°,∠BCA=45°,∴∠BAC=180°-∠ABC-∠BCA=180°-105°-45°=30°.由正弦定理得=,∴AB====50 (米).选C.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.9.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.B.C.D.2【答案】B=AB·AC·sin A=.选B.【解析】S△ABC10.在△ABC中,已知a=2,b=3,C=120°,则S=()△ABCA.B.C.D.3【答案】B【解析】S=ab sin C=×2×3×=.选B.△ABC11.在△ABC中,已知b2-bc-2c2=0,且a=,cos A=,则△ABC的面积等于()A .B .C .2D .3【答案】A【解析】因为b 2-bc -2c 2=0,所以(b -2c )(b +c )=0,所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2, b =4,因为cos A =,所以sin A =,所以S △ABC =bc sin A =×4×2×=.选A.12.数列0.3,0.33,0.333,0.333 3,…的通项公式是a n =( ) A . (10n-1)B .C . (10n -1)D . (10n-1).【答案】B 【解析】1-=0.9,1-=0.99,…,故原数列的通项公式为a n =.选B.13.已知数列{a n }满足a 1=1,a n =2a n -1+1(n ≥2),则a 5=( ) A .7 B .15 C .20D .31【答案】D【解析】因为a 1=1,a n =2a n -1+1(n ≥2),所以a 2=3,a 3=7,a 4=15,所以a 5=2a 4+1=31.14.已知非零数列{a n }的递推公式为a 1=1,a n =·a n -1(n >1),则a 4=( ) A .3B .2C .4D .1【答案】C【解析】依次对递推公式中的n 赋值,当n =2时,a 2=2当n =3时,a 3=a 2=3当n =4时, a 4=a 3=4. 选C.15.已知等差数列{a n }中,首项a 1=4,公差d =-2,则通项公式a n 等于( ) A .4-2n B .2n -4 C .6-2nD .2n -6【答案】C【解析】∵a 1=4,d =-2,∴a n =4+(n -1)×(-2)=6-2n . 选C.16.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2【答案】C【解析】由已知得,,解得d =±1. 选C.17.在等差数列{a n }中,若a 5=6,a 8=15,则a 14等于( ) A .32 B .33 C .-33D .29【答案】B【解析】∵数列{a n }是等差数列,∴a 5,a 8,a 11,a 14也成等差数列且公差为9,∴a 14=6+9×3=33.18.在等差数列{a n }中,已知a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=( ) A .90 B .270 C .180 D .360【答案】C【解析】因为a 3+a 4+a 5+a 6+a 7=5a 5=450,所以a 5=90,a 2+a 8=2a 5=2×90=180. 选B.19.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .nB .n (n +1)C .n (n -1)D .【答案】D【解析】因为a 1=1,d =1,所以S n =n +×1===选D.20.设等差数列{a n }的前n 项和为S n ,若a 1=,S 4=20,则S 6等于( ) A .16B .24C .36D .48【答案】D【解析】设等差数列{a n }的公差为d ,由已知得4a 1+×d =20,即4×+d =20,解得d =3,∴S 6=6×+×3=3+45=48. 选D.21.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16 D .15【答案】A【解析】设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =,a 11+a 12+a 13+a 14=S 4+40d =18. 选A.22.(1)在递减等差数列{a n }中,若a 1+a 100=0,则其前n 项和S n 取最大值时的n 的值为( ) A .49 B .51 C .48 D .50【答案】D【解析】因为a 1+a 100=a 50+a 51=0,且d <0,所以a 50>0,a 51<0,所以当n =50时,S n 取最大值.选D.23.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列说法错误的是( ) A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列【答案】C【解析】特殊值验证排除.选项C 显然是错的,举出反例:-1,0,1,2,…,满足数列{S n }是递增数列,但是S n >0不恒成立选C.24.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1 D .a n =2n -1【答案】B【解析】当n =1时,a 1=S 1=-1n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1. 选B.25.在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20 D .25【答案】B 【解析】S 5====15选B.26.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14【答案】C【解析】由题意知a 1=2,由S 3=3a 1+×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12. 选C.27.等比数列{a n }中,a 2=2,a 5=,则公比q =( ) A .-B .-2C .2D .【答案】D【解析】a 2=a 1q =2,a 5=a 1q 4=,所以q 3=,∴q =.选D.28.已知{a n },{b n }都是等比数列,那么( ) A .{a n +b n },{a n ·b n }都一定是等比数列 B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列 C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列 D .{a n +b n },{a n ·b n }都不一定是等比数列【答案】C【解析】{a n +b n }不一定是等比数列,如a n =1,b n =-1,因为a n +b n =0,所以{a n +b n }不是等比数列.设{a n },{b n }的公比分别为p ,q ,因为=·=pq ≠0,所以{a n ·b n }一定是等比数列.选C.29.若等比数列的前三项分别为5,-15,45,则第5项是( ) A .405 B .-405 C .135D .-135【答案】A【解析】∵a 5=a 1q 4,而a 1=5,q ==-3,∴a 5=405. 选A.30.在等比数列{a n }中,a 1=,q =2,则a 4与a 8的等比中项是( ) A .±4B .4C .±D .【答案】A【解析】由a n =×2n -1=2n -4知,a 4=1,a 8=24,所以a 4与a 8的等比中项为±4. 选A.31.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-9【答案】B【解析】因为b 2=(-1)×(-9)=9,且b 与首项-1同号,所以b =-3,且a ,c 必同号. 所以ac =b 2=9. 选B.32.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是( ) A .11B .12C .13D .14【答案】A【解析】设这两个正数为x ,y ,由题意可得:解得(舍去)或所以x +y ==11.选A.33.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A .16 B .27 C .36D .81【答案】B【解析】由a 3+a 4=q 2(a 1+a 2)=9,所以q 2=9,又a n >0,所以q =3.a 4+a 5=q (a 3+a 4)=3×9=27. 选B.34.在等比数列{a n }中,a 1=-16,a 4=8,则a 7=( ) A .-4 B .±4 C .-2 D .±2【答案】A【解析】因为数列{a n }为等比数列,所以a =a 1·a 7,所以a 7=-4. 选A.35.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8 C .36D .32【答案】C【解析】∵{a n }是等比数列,∴a 2a 6=a =36.选C.36.正项等比数列{a n }中,a 2a 5=10,则lg a 3+lg a 4=( ) A .-1 B .1 C .2D .0【答案】B【解析】lg a 3+lg a 4=lg(a 3a 4)=lg(a 2a 5)=lg 10=1. 选B.37.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7【答案】D【解析】因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立,解得或所以q 3=-或q 3=-2,故a 1+a 10=+a 7·q 3=-7. 选D.38.已知等比数列{a n }满足a 1=3,且4a 1,2a 2,a 3成等差数列,则此数列的公比等于( ) A .1 B .2 C .-2 D .-1【答案】B【解析】设等比数列{a n }的公比为q ,因为4a 1,2a 2,a 3成等差数列,所以4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,解得q =2. 选B.39.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( ) A .12 B .10 C .8 D .2+log 35【答案】B【解析】由等比数列的性质可知:a 5a 6=a 4a 7=a 3a 8=a 2a 9=a 1a 10,∴a 5a 6+a 4a 7=2a 1a 10=18,∴a 1a 10=9.∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·a 3·…·a 10)=log 3(a 1a 10)5=10. 选B .点睛:1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.40.已知等比数列{a n }的公比为负数,且a 3·a 9=2a ,已知a 2=1,则a 1=( )A .B .-C .D .2【答案】B【解析】结合等比数列的性质可知a 3·a 9=a ,即有a =2a ,所以=q 2=2,又公比为负数,所以q =-,a 1==-=-.选B.41.若b 为a ,c 的等比中项,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( )A .0B .1C .2D .不能确定【答案】A【解析】因为b 为a ,c 的等比中项,所以b 2=ac ,所以Δ=b 2-4ac =-3b 2<0,所以函数y =ax 2+bx +c 的图象与x 轴的交点个数为0,选A.42.在正项等比数列{a n }中,a 1,a 99是方程x 2-10x +16=0的两个根,则a 40a 50a 60的值为( )A .32B .256C .±64D .64【答案】D【解析】因为a 1,a 99是方程x 2-10x +16=0的两个根,所以a 1a 99=16,又a 40a 60=a 1a 99=a ,{a n }是正项等比数列,所以a 50=4,所以a 40a 50a 60=a =64. 选D.43.在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则等于( )A .B .C .D .6【答案】A【解析】因为解得或又因为a n >a n +1,所以a 4=3,a 14=2.所以==.选A.44.等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( )A .4B .-4C .2D .-2【答案】A【解析】由S 5==44,得a 1=4. 选A.45.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则=( )A .-11B .-8C .5D .11【答案】A【解析】由8a 2+a 5=0,得q 3==-8,所以q =-2.===-11. 选A.46.已知a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2C .+>D .+≥2【答案】D【解析】因为a 2+b 2≥2ab ,当且仅当a =b 时,等号成立,所以A 错误对于D ,因为ab >0,所以+≥2=2.对于B ,C ,当a <0,b <0时,明显错误.选D.47.设0<a<b,则下列不等式中正确的是()A.a<b<<B.a<<<b C.a<<b<D. <a<<b【答案】B【解析】因为0<a<b,所以由基本不等式得<,且<=b,又a=<,故a<<<b,故选B.48.已知m=a+ (a>2),n= (b≠0),则m,n之间的大小关系是()A.m>n B.m<n C.m=n D.不确定【答案】A【解析】因为a>2,所以a-2>0,又因为m=a+=(a-2)++2,所以m≥2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=<4,综上可知m>n.49.有下列式子:①a2+1>2a②≥2③≥2④x2+≥1,其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】∵a2-2a+1=(a-1)2≥0,∴a2+1≥2a,故①不正确对于②,当x>0时,=x+≥2(当且仅当x=1时取“=”)当x<0时,=-x-≥2(当且仅当x=-1时取“=”),∴②正确对于③,若a=b=-1,则=-2<2,故③不正确对于④,x2+=x2+1+-1≥1(当且仅当x=0时取“=”),故④正确.选C.50.已知a>0,b>0,若不等式+≥恒成立,则m的最大值等于()A.10B.9C.8D.7【答案】B【解析】∵a>0,b>0,∴2a+b>0,∴要使+≥恒成立,只需m≤(2a+b)恒成立,而(2a+b)=4+++1≥5+4=9,当且仅当a=b时,等号成立.∴m≤9. 选B.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.。

2025届北京市春季普通高中会考高考临考冲刺数学试卷含解析

2025届北京市春季普通高中会考高考临考冲刺数学试卷含解析

2025届北京市春季普通高中会考高考临考冲刺数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()32z i i =-,则z z ⋅=( ) A .5B .5C .13D .132.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A .12B .13C .14D .153.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164814.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C .1623D .1635.下列图形中,不是三棱柱展开图的是( )A .B .C .D .6.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( ) A .方差B .中位数C .众数D .平均数7.已知函数()()3sin f x x ωϕ=+,()0,0πωϕ><<,若03f π⎛⎫-= ⎪⎝⎭,对任意x ∈R 恒有()3f x f π⎛⎫≤ ⎪⎝⎭,在区间ππ,155⎛⎫⎪⎝⎭上有且只有一个1x 使()13f x =,则ω的最大值为( ) A .1234 B .1114C .1054D .11748.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()sin 3cos f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 10.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A .5B .6C .7D .811.过双曲线()222210,0x y a b a b-=>>的左焦点作倾斜角为30的直线l ,若l 与y 轴的交点坐标为()0,b ,则该双曲线的标准方程可能为( )A .2212x y -=B .2213x y -=C .2214x y -=D .22132x y -=12.设α,β是方程210x x --=的两个不等实数根,记n nn a αβ=+(n *∈N ).下列两个命题( )①数列{}n a 的任意一项都是正整数; ②数列{}n a 存在某一项是5的倍数. A .①正确,②错误 B .①错误,②正确 C .①②都正确D .①②都错误二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中数学会考试卷及答案
一、选择题
下面每题有且仅有一个选项是正确的,请把你认为正确的选项的字母填入题前的括号中。

(每题4分,共40分)
1. 在直角三角形ABC中,已知∠B=90°,BC=3,AC=4,则AB=()。

A. 5
B. 8
C. 12
D. 25
2. 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B=()。

A. {2,4,6,8}
B. {1,2,3,4,6,8}
C. {1,3,5,7}
D. {6,8}
3. 若函数f(x)是偶函数,则在它的对称轴上肯定存在对称点,反之()。

A. 对称点可推出函数是偶函数,对称点不存在不一定是偶函数
B. 对称点可推出函数是奇函数,对称点不存在不一定是偶函数
C. 对称点不一定存在,不存在不一定是奇函数
D. 对称点可推出函数是奇函数,对称点不存在不一定是奇函数
4. 设函数f(x)=ax^2+bx+c在区间[-1,1]上是增减性相同的,则a、b、c的大小关系为()。

A. a≤0, b≤0, c≥0
B. a≥0, b≤0, c≥0
C. a≤0, b≥0, c≥0
D. a≥0, b≥0, c≥0
5. 设事件A与事件B相互独立,且P(A)=0.6,P(B) =0.8,则P(AB)
的值是()。

A. 0.12
B. 0.2
C. 0.24
D. 0.48
6. 以双色球为例,双色球1-33个红色号码中取6个,1-16个蓝色号码中取1个,设购买一张双色球彩票的费用是2元,若要中得一等奖,则需要全中红色号码和蓝色号码,其概率为()。

A. 1/201
B. 1/2922
C. 1/3507
D. 1/4756
7. 已知曲线y=x^2-2在点(1, -1)处的切线方程为y=2x-3,则曲线上与切线平行且纵坐标大于-1的点的横坐标为()。

A. -1
B. 0
C. 1
D. 2
8. 某商品原价P为120元,商家为促销将商品的原价打9折出售。

再根据购买的数量给予一定优惠。

若购买数量在1-5件之间,仍然保持9折优惠,购买数量在6-10件之间,优惠力度加大,可以打8折。

小明一次购买10件该商品,小明需要支付的金额为()。

A. 864元
B. 960元
C. 972元
D. 1080元
9. 有一个函数f(x),满足f(x+2)-f(x)+2=3x,且当x∈[0,2]时,
f(x)=x^2,则当x∈[2,4]时,f(x)的表达式为()。

A. x^2+4
B. x^2+2
C. x^2+6
D. x^2+8
10. 已知集合A={x|2<x<6},集合B={x|x^2≤25},则A∩B=
()。

A. (2,6)
B. [2,6]
C. (2,5]
D. [2,5]
二、解答题
下面每题都是解答题,请你详细写出解题过程。

(每题20分,共
40分)
11. 求方程x^2+3x-10=0的解。

(解答步骤及答案)
12. 设A是一个集合,A={x|x-1>2},求集合A的元素个数。

(解答
步骤及答案)
三、应用题
下面每题都是一道应用题,请你详细解答,并写出最后的结果。

(每题20分,共40分)
13. 某手机品牌推出新款手机,原价为3000元,商家进行了多重优
惠策略。

第一重优惠是在原价的基础上打8折,第二重优惠是购买2
部手机可以再打9折,第三重优惠是通过刮刮卡进行抽奖,可能获得
直减100元的优惠。

小明购买了3部手机,并刮到了直减100元的优惠。

最终小明需要支付的金额为多少?
14. 某商场为了尽快卖出一批电视机,进行促销活动,原价为6000元,商场宣称全场8折,且气氛火热,想要购买的顾客排成了长队。

某天,小张走进了商场,他发现原价6000元的电视机前排满了人,而原价3000元的电视机前只有一人。

小张斩钉截铁地说:“我要3000元的电视机。

”小张买到2台电视机后,发现两台电视机的总价格高于他所预期的价格。

请问小张此时的心情如何?
答案:
1. A
2. B
3. A
4. D
5. A
6. B
7. D
8. C
9. D
10. D
11. 解:根据二次函数求解公式,对于方程ax^2+bx+c=0,其解为x=(-b±√(b^2-4ac))/(2a)。

对于方程x^2+3x-10=0,a=1,b=3,c=-10。

代入公式,得到: x=(-3±√(3^2-4×1×(-10)))/(2×1)
=(-3±√(9+40))/2
=(-3±√49)/2
=(-3±7)/2
x1=(-3+7)/2=2/2=1
x2=(-3-7)/2=-10/2=-5
所以方程x^2+3x-10=0的解为x=1和x=-5。

12. 解:
x-1>2
x>3
所以集合A的元素个数为无穷大。

13. 解:首先计算第一重优惠后的价格:3000元×0.8=2400元
然后再计算第二重优惠后的价格:2400元×0.9=2160元
最后减去刮刮卡直减100元的优惠:2160元-100元=2060元
所以小明最终需要支付的金额为2060元。

14. 解:小张购买了原价3000元的电视机,按照商场的促销活动,应该是3000元×0.8=2400元。

但是小张购买了两台电视机,总价为3000元×2=6000元,明显高于他所预期的价格。

因此,小张此时可能会感到失望或不满意。

相关文档
最新文档