工程力学第8章 梁的弯曲应力与强度计算.

合集下载

工程力学第八章 直梁弯曲

工程力学第八章  直梁弯曲
实际加工中,采用在铣刀 对面加顶尖的方式。其力学 原理是:增加铣刀的支座约 束,其受力图如图c所示,使 铣刀根部截面上的弯矩MW 减小。铣刀所受的径向力F, 一部分由顶尖承担,使铣刀 根部截面上的应力也相应减 小,从而保证了铣刀不被折 断,提高了生产效率。
§8-5 提高梁抗弯强度的主要措施
二、选择合理的截面形状
Mw y σ= Iz
Mw——横截面上的弯矩,N·m或N·mm; y——点到中性轴z的距离,m或mm; Iz——截面对中性轴z的惯性矩,m4或mm4。
最大正应力:σ max
M w ymax M w = = Iz Wz
Wz =
Iz ymax
Wz为抗弯截面系数,单位为m3或mm3。
§8-3 弯曲正应力
工程中常见梁截面图形惯性矩和抗弯截面系数计算公式 截面图形 惯性矩 抗弯截面系数
弯曲内力——剪力和弯矩 §8-2 弯曲内力 剪力和弯矩
2.弯矩的正负规定
梁弯曲成凹面向 上时的弯矩为正 梁弯曲成凸面向 上时的弯矩为负
弯矩的计算规律:某一截面上的弯矩,等于该截面 左侧或右侧梁上各外力对截面形心的力矩的代数和。
弯曲内力——剪力和弯矩 §8-2 弯曲内力 剪力和弯矩
三、弯矩图
1.弯矩方程与弯矩图
§8-1 平面弯曲的力学模型
(1)活动铰链支座 (2)固定铰链支座 (3)固定端支座
§8-1 平面弯曲的力学模型
3.载荷的基本类型 (1)集中力
(2)集中力偶 (3)分布载荷
F1
集中力
(分布力)
§8-1 平面弯曲的力学模型
4.静定梁的力学模型
名称
简支 梁




一端为活动铰链支座, 另 一端为固定铰链支座的梁 一端或两端伸出支座外的 简支梁,并在外伸端有载 荷作用 一端为固定端,另一端为 自由端的梁

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式在工程力学中,梁是一种常见的结构元素,用于支撑和承载荷载。

在设计和分析梁的时候,我们需要考虑到梁的弯曲和剪切力。

本文将重点讨论梁的弯曲计算和剪力计算公式,帮助读者更好地理解和应用这些公式。

梁的弯曲计算公式。

在梁的弯曲计算中,我们需要考虑梁的受力情况以及梁的几何形状。

弯曲时梁的受力情况可以用弯矩来描述,弯矩的大小和位置取决于梁的荷载和支撑条件。

在弯曲计算中,我们通常使用以下公式来计算梁的弯矩:M = -EI(d^2y/dx^2)。

其中,M表示弯矩,E表示梁的弹性模量,I表示梁的惯性矩,y表示梁的挠度,x表示梁的位置。

这个公式描述了梁在弯曲时的受力情况,可以帮助我们计算梁的弯曲应力和挠度。

梁的剪力计算公式。

除了弯曲力之外,梁在受荷载时还会产生剪切力。

剪切力是梁上各点间的内力,它的大小和位置取决于梁的荷载和支撑条件。

在剪力计算中,我们通常使用以下公式来计算梁上各点的剪切力:V = dM/dx。

其中,V表示剪切力,M表示弯矩,x表示梁的位置。

这个公式描述了梁上各点的剪切力分布情况,可以帮助我们计算梁的剪切应力和剪切变形。

梁的弯曲和剪力计算实例。

为了更好地理解梁的弯曲和剪力计算,我们可以通过一个实例来说明。

假设有一根长度为L,截面为矩形的梁,受均布荷载w作用。

我们可以根据梁的受力情况和几何形状,计算出梁的弯矩和剪切力分布情况。

首先,我们可以计算出梁的弯矩分布情况。

根据梁的受力情况和几何形状,我们可以得到梁的挠度y(x)的表达式。

然后,我们可以通过弯矩公式M = -EI(d^2y/dx^2)来计算出梁上各点的弯矩分布情况。

接着,我们可以计算出梁上各点的剪切力分布情况。

根据梁的弯矩分布情况,我们可以通过剪切力公式V = dM/dx来计算出梁上各点的剪切力分布情况。

通过以上计算,我们可以得到梁在受均布荷载作用时的弯矩和剪切力分布情况。

这些计算结果可以帮助我们更好地了解梁的受力情况,指导我们设计和分析梁的结构。

工程力学第八章__直梁弯曲

工程力学第八章__直梁弯曲
作用面内的一条曲线。
(3)构件特征:具有一个以上对称面的等截
面直梁。
§8-1 平面弯曲的力学模型
二、梁的力学模型 1.梁的结构形式 工程中梁的轴 线多为直线。无论截 面形状如何,在计算 简图中的梁,一般均 用与梁轴线重合的一 段直线表示
§8-1 平面弯曲的力学模型
2.梁的支座 梁的支撑情况,要通过分析来确定在载 荷作用平面内支座对梁的约束类型以及相 应的约束反力数目。一般情况下,可将梁 的支承简化为以下三种典型支座之一:
§8-2 弯曲内力——剪力和弯矩
管钳的应用分析
在拧、卸管状零件 时,常常要使用管钳给 管件施加转矩,将管件 拧紧或卸下。当拆卸连 接牢固的管子时,常在 钳柄部分加套管,以增 大转矩。那么,在这种 情况下,钳牙是否会损 坏?
1一固定牙 2一可动牙 3-圆螺母 4一齿条 5一弹簧 6-钳柄 7-销轴
§8-2 弯曲内力——剪力和弯矩
2.改变加载方式,在结构允许的条件下,应 尽可能把集中力改变为分散力
集中力改变为分散力
§8-5 提高梁抗弯强度的主要措施
工程应用
吊车与平板车
吊车简图
平板车过桥
§8-5 提高梁抗弯强度的主要措施
3.增加约束 如图a所示,某变速器 换挡杆1需要加工一个R8的 月牙槽,以往是把月牙槽 铣刀悬挂地装在铣床主轴 上,利用工作台的升降进 行铣削加工。
§8-3
弯曲正应力
2.中性轴与中性层
§8-3 弯曲正应力
二、正应力的分布规律
横截面上各点正应力的大小与该点到中性轴 的距离成正比:

y


max
y max
在中性轴处纤维长度不变,此处 不受力,正应力为零。

梁的应力计算公式全部解释

梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。

在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。

梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。

梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。

在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。

下面将分别对这三种类型的应力计算公式进行详细解释。

1. 弯曲应力计算公式。

梁在受到外部力的作用时,会产生弯曲应力。

弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。

其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。

弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。

2. 剪切应力计算公式。

梁在受到外部力的作用时,会产生剪切应力。

剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。

其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。

剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。

3. 轴向应力计算公式。

梁在受到外部力的作用时,会产生轴向应力。

轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。

梁的弯曲(工程力学课件)

梁的弯曲(工程力学课件)

02 弯曲的内力—弯矩与剪力
3-3截面
M 3 q 2a a 2qa 2
4-4截面
qa 2
5qa 2
2
M 4 FB 2a M C
3qa
2
2
5-5截面
qa 2
M 5 FB 2a
2
02 弯曲的内力—弯矩与剪力
由以上计算结果可以看出:
(1)集中力作用处的两侧临近截面的弯矩相同,剪力不同,说明剪力在
后逐段画出梁的剪力图和弯矩图。
04 弯矩、剪力与载荷集度之间的关系
例8 悬臂梁AB只在自由端受集中力F作用,如图(a)所示,
试作梁的剪力图和弯矩图。
解:
1-1截面: Q1=-F M1=0
2-2截面: Q1=-F M1=-Fl
04 弯矩、剪力与载荷集度之间的关系
例9 简支梁AB在C点处受集中力F作用,如图(a)所示,作此梁的剪力
(2)建立剪力方程和弯矩方程;
(3)应用函数作图法画出剪力Q(x),弯矩M(x)的图线,即为剪力
图和弯矩图
03 弯矩图和剪力图
例9.3 悬臂梁AB在自由端B处受集中载荷F作用,如图(a)所示,试作
其剪力图和弯矩图。
解 :(1)建立剪力方程和弯矩方程
() = ( < < )
() = −( − ) ( ≤ ≤ )
方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支反力
(2)建立剪力方程和弯矩方程
03 弯矩图和剪力图
(3)绘制剪力图、弯矩图
计算下列5个截面的弯矩值:
03 弯矩图和剪力图
二、用简便方法画剪力图、弯矩图 (从梁的左端做起)
1.无载荷作用的梁段上 剪力图为水平线。 弯矩图为斜直线(两点式画图)。

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度


后 答


解:由挠度表查得:
FP al 180° × 3 EI π Wal 180° = ⋅ 3 EI π 20000 × 1 × 2 × 64 180° = ⋅ 3 × 200 × 109 × π d 4 π ≤ 0 .5 ° d ≥ 0.1117 m,取 d = 112mm。
θB =
ww w
6 ( 246 + 48) ×10 × 200 ×10 × π × 32 × 10−12
2
co
m
8—3 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并说明需要分几段 建立微分方程,积分常数有几个,确定积分常数的条件是什么?(不要求详细解答)
习题 8-3 图
后 答


习题 8-4 图

习题 8-4a 解图
解: (a)题 1.
wA = wA1 + wA 2
wA1 =
⎛l⎞ q⎜ ⎟ ⎝2⎠
87图示承受集中力的细长简支梁在弯矩最大截面上沿加载方向开一小孔若不考虑应力集中影响时关于小孔对梁强度和刚度的影响有如下论述试判断哪一种是正确的
eBook
工程力学
(静力学与材料力学)
习题详细解答
(第 8 章) 范钦珊 唐静静

后 答


2006-12-18
ww w
1
.k hd
aw .
co
m
(教师用书)
−3 9 4
(
.k hd
解:由挠度表查得 F ba 2 wC = P l − a 2 − b2 6lEI
(
)
习题 8-9 图
8
aw .
)

清华出版社工程力学答案-第8章弯曲强度问题

清华出版社工程力学答案-第8章弯曲强度问题

eBook工程力学习题详细解答教师用书(第8章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题8-1 习题8-2 习题8-3 习题8-4 习题8-5 习题8-6 习题8-7 习题8-8 习题8-9 习题8-10 习题8-9 习题8-10习题8-11 习题8-12 习题8-13 习题8-14 习题8-15 习题8-16 习题8-17 习题8-18 习题8-19 习题8-20习题8-21工程力学习题详细解答之八第8章 弯曲强度问题8-1 直径为d 的圆截面梁,两端在对称面内承受力偶矩为M 的力偶作用,如图所示。

若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E 。

根据d 、ρ、E 可以求得梁所承受的力偶矩M 。

现在有4种答案,请判断哪一种是正确的。

(A) ρ64π4d E M =(B) 4π64d E M ρ=(C) ρ32π3d E M =(D) 3π32dE M ρ=正确答案是 A 。

8-2 矩形截面梁在截面B 处铅垂对称轴和水平对称轴方向上分别作用有F P1和F P2,且F P1=F P2,如图所示。

关于最大拉应力和最大压应力发生在危险截面A 的哪些点上,有4种答案,请判断哪一种是正确的。

(A) +max σ发生在a 点,−max σ发生在b 点M习题8-1图A Ba b cd P2z固定端习题8-2图(B) +max σ发生在c 点,−max σ发生在d 点 (C) +max σ发生在b 点,−max σ发生在a 点 (D) +max σ发生在d 点,−max σ发生在b 点正确答案是 D 。

8-3 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。

(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。

工程力学-弯曲应力

工程力学-弯曲应力

6 弯曲应力1、平面弯曲梁横截面上的正应力计算。

正应力公式是在梁纯弯曲情况下导出的,并被 推广到横力弯曲的场合。

横截面上正应力公式为j zM y I σ=横截面上最大正应力公式为 max zM W σ=2、横力弯曲梁横截面上的切应力计算,计算公式为*2z QS I bτ= 该公式是从矩形截面梁导出的,原则上也适用于槽形、圆形、工字形、圆环形截面梁横截面切应力的计算。

3、非对称截面梁的平面弯曲问题,开口薄壁杆的弯曲中心。

4、梁的正应力强度条件和切应力强度条件为[]max σσ≤[]max ττ≤根据上述条件,可以对梁进行强度校核、截面设计和容许荷载的计算,与此相关的还要考虑梁的合理截面问题。

5、梁的极限弯矩6.1图6-6所示简支梁用其56a 号工字钢制成,试求此梁的最大切应力和同一截面腹板部分在与翼板交界处的切应力。

图 6.1[解] 作剪力图如图(c).由图可知,梁的最大剪力出现在AC 段,其值为max 7575000Q kN N ==利用型钢表查得,56a 号工字钢*247.7310z z S I m -=⨯,最大切应力在中性轴上。

由此得以下求该横截面上腹板与翼板交界处C 的切应力。

此时*z S 是翼板面积对中性轴的面积矩,由横截面尺寸可计算得*3435602116621()9395009.401022z S mm m -=⨯⨯-==⨯ 由型钢表查得465866z I cm =,腹板与翼板交界处的切应力为*max max max max23*max7500012600000126.47.731012.510z a z z z Q S Q MP I I dd S τ--=====⨯⨯⨯⨯a MP 6.12解题范例483750009.40108.6658661012.510fc a MP τ---⨯⨯==⨯⨯⨯6.2长为L 的矩形截面悬臂梁,在自由端作用一集中力F ,已知b =120mm ,h =180mm 、L =2m ,F =1.6kN ,试求B 截面上a 、b 、c 各点的正应力。

工程力学第8章梁的弯曲应力与强度计算

工程力学第8章梁的弯曲应力与强度计算
弯曲应力是指由于外力矩作用,使梁 发生弯曲变形时,在梁的横截面上产 生的应力。
弯曲应力的大小与外力矩、截面尺寸 和材料性质等因素有关。
弯曲应力的产生原因
当梁受到外力矩作用时,梁的横截面上的内力分布不均匀, 产生弯曲应力。
弯曲应力的产生与梁的弯曲变形有关,是梁在受到外力矩作 用时,抵抗弯曲变形的能力的表现。
弯曲应力的分类
正弯曲应力
当梁受到外力矩作用时,在横截面上产生的正应 力称为正弯曲应力。
剪切弯曲应力
当梁受到外力矩作用时,在横截面上产生的剪切 应力称为剪切弯曲应力。
扭曲弯曲应力
当梁受到外力矩作用时,在横截面上产生的扭曲 应力称为扭曲弯曲应力。
03
梁的弯曲应力计算
纯弯曲梁的正应力计算
01
公式:$sigma = frac{M}{I}$
方向的力,梁的宽度是截面的几何尺寸。
弯曲正应力和剪切应力的关系源自公式$sigma + tau = frac{M}{I} + frac{V}{b}$
描述
该公式表示弯曲正应力与剪切应力之间的关系,两者共同作用在梁上,决定了梁的强度和刚度。
04
梁的强度计算
强度计算的依据
梁的弯曲应力
01
梁在弯曲时,其内部的应力分布情况是决定其强度的关键因素。
机械零件
在机械零件设计中,如起 重机的吊臂、汽车的车身 等,梁的强度计算是保证 其正常工作的基础。
05
梁的弯曲应力与强度的关系
弯曲应力对强度的影响
弯曲应力是梁在受到垂直于轴线的力时产生的应力,它会 导致梁发生弯曲变形。弯曲应力的大小和分布与梁的跨度 、截面形状和材料等因素有关。
弯曲应力对梁的强度有显著影响。当弯曲应力过大时,梁 可能会发生断裂或过度变形,导致其承载能力下降。因此 ,在进行梁的设计和强度计算时,必须考虑弯曲应力的影 响。

第八章 弯曲内力、应力及强度计算

第八章 弯曲内力、应力及强度计算

例8-3 如图所示的悬臂梁上作用有均布载荷q,试画出该梁的 剪力图和弯矩图。
解:(1) 列剪力方程和弯矩方程,
将梁左端A点取作坐标原点。
剪力方程和弯矩方程
FQ (x) qx (0 x l) M (x) 1 qx2 (0 x l)
2
(2) 画剪力图和弯矩图
剪力图是一倾斜直线
弯矩图是一抛物线
解 (1)计算1-1截面上弯矩
M1 P 200 1.5103 200103 300N m
(2) 计算 1-1 截面惯性矩
Ix
bh2 12
1.8 32 12
4.05 10 3 m4
(3) 计算1-1截面上各指定点的正应力
A
M1 yA Ix
300 1.5 102 4.05102
111106 N/m2
拉应力
B
M1 yB Ix
300 1.5 102 4.05102
111106 N/m2
压应力
A
M1 yC Ix
M1 0 0N/m 2 Ix
D
M1 yD Ix
3001.5102 4.05102
74.1106 N/m2
压应力
例8-9 一简支木梁受力如图(a)所示。已知q=2kN/m,l=2m。试比 较梁在竖放(图(b))和平放(图(c))时横截面C处的最大正应力。
3、 画剪力图和弯矩图
FQ FQ
FQ
max
ql 2
ql 2 M max 8
例 4 简支梁AB,在C 点处受集中力P 作用, 如图所示。 试作此梁的弯矩图。
解 (1)求支座反力
M B 0 Pb FAl 0
FY 0 FA FB P 0
(2) 列弯矩方程

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。

本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。

一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。

弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。

例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。

2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。

例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。

3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。

不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。

二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。

其中最常用的方法是梁的弯曲方程和梁的截面应力分析。

1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。

根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。

2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。

该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。

三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。

1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。

例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。

工程力学-第8章组合变形

工程力学-第8章组合变形

斜弯曲也称为双向平面弯曲。 一、强度计算:
外力分解: Py Pcos
内力计算: Pz Psin
MzPyxPcosxMco;s MyPzxPsinxMsin;
应力计算:
返. 回 下一张 上一张 小结
最大应力:
ma x M Izzym ax M Iyyzma x M W zzM Iyy;
强度条件:
m axM Wzz
返. 回 下一张 上一张 小结
二、计算: 以挡土墙为例。
自重作用使任意截面产生轴向
压力N(x);对应各点产生压应力:
N(x);
N
A
土压力作用使截面产生弯矩
M(x);对应点产生正应力:
M(x)y;
M
Iz
X截面任意点应力:
k
N(x)M(x)y;
A
Iz
ma x N(x)M(x);
min
A
W z
挡土墙底部截面轴力和弯矩最大,
返. 回 下一张 上一张 小结
3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合
二、计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影
响,则可依据叠加原理计算。
1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。
设计 W z : M [m ]a x12c0 m 3;
查表 1号 6选工字 W z 钢 14 c, 1 m 3,A2,6 1 cm 2;
校核 m a | xN A : M W m z | a1 x .4 0 M 0 1 P 0 0 0 a [] 5;
因此,可选16号工字钢。

工程力学第8章剪应力分析习题及解析

工程力学第8章剪应力分析习题及解析

第8章弹性杆件横截面上的切应力分析8-1扭转切应力公式r(p)^M x p/I p的应用范圉有以下几种,试判断哪一种是正确的。

(A)等截面圆轴,弹性范囤内加载:(B)等截面圆轴:(C)等截面圆轴与椭恻轴:(D)等截面圆轴与椭恻轴.弹性范鬧内加较。

知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是A cTip) = M x p/l?在推导时利川J'等截面鬪轴受扭后.其横截血保持平血的假设•同时推导过程中还应用了剪切胡克定律.婆求在线弹性范刑加載。

8-2两根长度相等、直径不等的圆轴受扭后.轴表iftlJJU线转过相同的角度。

设直径大的轴和直径小的轴的横截面上的最大切应力分别为耳吨'和r2max,切变模虽分别为Gi和G2O试判断下列结论的正确性。

(A)(B)(C)若G、>G“则有r Inux > r2nux:(D)若G>G“则有右叭沁。

知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是c °因两恻轴等长,轴表面上母线转过相同角度,指切应变相同,即/,=/,=/由剪切胡克定律2“知> °2 时,f lnux > r2max °8-3承受相同扭矩且长度相等的直径为山的实心恻轴与内.外径分别为D2(a = d2/D2)的空心圆轴.二者横截面上的垠大切应力相等。

关于二者重之比(M/WJ有如下结论.试判断哪一种是正确的。

(A)(l-a4严;(B)(l-a4)V2(l-a2):(C)(l-^Xl-a2):(D)(1 一a」)的/(I一小)。

知识点:组合圆轴扭转时横截面上的切应力难度:难解答•\6M X I6M正确答案是D即A-d-a4)7D2匹=如=必W2人D;(l-a2)习题8/图⑴代入(2〉.得8-4由两种不同材料组成的圆轴,里层和外 层材料的切变模址分别为Gi 和Gi.且G = 2G 2. 圆轴尺寸如图所示。

圆轴受扭时.里、外层之间无相对滑动。

梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)

梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)
(2)对于一般的跨度与横截面高度的比值较大的梁, 通常只进行正应力强度计算,切应力强度能自然满足。
(3)几种特殊情况下必须进行梁的切应力强度计算。
短粗梁 自行焊接 木梁
梁的合理截面
max
M max Wz
(1) 将材料配置于离中性轴较远处
(2) 采用不对称于中性轴的截面
脆性材料
(3) 采用变截面梁
弯曲切应力及强度计算
弯曲
(内力图)
外力 —— 内力 —— 应力
弯曲变形 的条件
求约束反力
弯矩M 剪力Fs
My
Iz
Fs
S
* z
bI z
梁横截面上的切应力 矩形截面梁

S
* z
bI z
x
σ 分布规律 τ 分布规律
Fs
S
* z
不同形状截面梁的最大剪应力
bI z
矩形截面梁
B
A
C
A
C
B
max l max h
梁内的主要应力是正应力!
危险截面、危险点
E右到B左
z
y
危险点
危险截面 24
D右 28
24
My
Iz
Fs
S
* z
bI z
危险截面上的危险点
max ≤[ ]
max ≤[ ]
正应力强度条件 切应力强度条件
三类计算:①强度校核、②截面设计、③确定许用荷载
(1)在进行梁的强度计算时,必须同时满足正应力 和切应力两种强度条件。
“等强度梁”
Wz (x)
M ( x)
[ ]
工字形截面梁
max
3 2
Fs A
max

工程力学基础第8章 应力、应变和应力应变关系

工程力学基础第8章 应力、应变和应力应变关系
新编工程力学基础
第8章 应力、应变和应力-应变关系
第一节 第二节 第三节 第四节 第五节
一点处的应力状态 平面应力状态分析 应变状态分析 广义胡克定律 材料失效和失效判据
第一节 一点处的应力状态
一、引言 在本章中,将应用微元体法,从力、变形、力与变形的关系三 方面研究变形固体内一点处的性态。本章的内容覆盖了固体力 学的三大理论基础:应力理论、应变理论和本构关系(主要是对 理想弹性体)。在此基础上建立复杂受载条件下,材料的失效判 据和构件的强度设计准则,从而为解决杆件在复杂受载条件下 的强度、刚度和稳定性问题创造条件。
(1)一点处的应变状态由六个应变分量εx、εy、εz、γxy、γyz、 γzx完全决定,即由它们可以确定该点处任一方向的线应变和任
第三节 应变状态分析
(2)在任一点处都存在三个互相垂直的方向,它们在变形过 程中保持垂直,即切应变为零,这三个方向称为应变主方向, 沿应变主方向的线应变称为主应变,记为ε1≥ε2≥ε3。主应变ε1 和ε3 试验证明,对于各向同性的线弹性材料的小变形问题,应变主 方向与应力主方向重合,即一对切应力为零的正交截面在变形 过程中保持垂直。应变和应力由材料的力学性能相联系。在工 程中除接触应力等少数情形外,直接测量应力是很困难的,而 变形则比较容易测量。通常是从测得的应变来确定应力。应变 分析的实际意义在于:通过测得的应变确定主方向和主应变,
第一节 一点处的应力状态 三、主应力和主方向 如果微元体某对截面上的切应力等于零,该对截面就称为主平 面,主平面的法向称为主方向,主平面上的正应力称为主应力。 按不等于零的主应力的个数分类,可以把一点处的应力状态分
(1)单向(单轴)应力状态,也称为简单应力状态,只有一个主 应力不为零,如受轴向拉压的直杆和纯弯曲直梁中各点处的应

梁的弯曲应力

梁的弯曲应力

第8章梁的弯曲应力梁在荷载作用下,横截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。

弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。

所以,弯矩只与横截面上的正应力σ相关,而剪力只与剪应力τ相关。

本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。

并简要介绍一点的应力状态和强度理论。

8.1梁的弯曲正应力平面弯曲情况下,一般梁横截面上既有弯矩又有剪力,如图8.1所示梁的AC、DB段。

而在CD段内,梁横截面上剪力等于零,而只有弯矩,这种情况称为纯弯曲。

下面推导梁纯弯曲时横截面上的正应力公式。

应综合考虑变形几何关系、物理关系和静力学关系等三个方面。

8.1.1 弯曲正应力一般公式1、变形几何关系为研究梁弯曲时的变形规律,可通过试验,观察弯曲变形的现象。

取一具有对称截面的矩形截面梁,在其中段的侧面上,画两条垂直于梁轴线的横线mm和nn,再在两横线间靠近上、下边缘处画两条纵线ab和cd,如图8.2(a)所示。

然后按图8.1(a)所示施加荷载,使梁的中段处于纯弯曲状态。

从试验中可以观察到图8 .2(b)情况:(1)梁表面的横线仍为直线,仍与纵线正交,只是横线间作相对转动。

(2)纵线变为曲线,而且靠近梁顶面的纵线缩短,靠近梁底面的纵线伸长。

(3)在纵线伸长区,梁的宽度减小,而在纵线缩短区,梁的宽度则增加,情况与轴向拉、压时的变形相似。

根据上述现象,对梁内变形与受力作如下假设:变形后,横截面仍保持平面,且仍与纵线正交;同时,梁内各纵向纤维仅承受轴向拉应力或压应力。

前者称为弯曲平面假设;后者称为单向受力假设。

根据平面假设,横截面上各点处均无剪切变形,因此,纯弯时梁的横截面上不存在剪应力。

根据平面假设,梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变的过渡层,称为中性层,如图8.2(c)所示。

中性层与横截面的交线称为中性轴。

对于具有对称截面的梁,在平面弯曲的情况下,由于荷载及梁的变形都对称于纵向对称面,因而中性轴必与截面的对称轴垂直。

梁的弯曲应力与强度计算

梁的弯曲应力与强度计算
M
max

1 2
ql
2
3000 N m
(2)由型钢表查得,10号槽钢
I z 25 . 6 cm
4
b 4 . 8 cm
y 1 1 . 52 cm
(3)求最大应力
t , max
c , max
M
M
max
y1

( 3000 N m )( 1 . 52 10 25.6 10
28 . 8 MPa t
y2

( 2 . 5 10 N m )( 88 10 763 10
8
3
m)
Iz
m
4
故该梁满足强度条件。
8 梁的弯曲应力与强度计算 8.3.1 梁的弯曲剪应力
8.3 梁的剪应力及其强度条件
1. 矩形截面梁的弯曲剪应力
关于横截面上剪应力的分布
FA FB
F B 10 . 5 kN
2.绘弯矩图
M
B
4 kN m
M C 2 . 5 kN m
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
4 kN m
M
B
M C 2 . 5 kN m
3.强度校核 B截面:
t , max
c , max
M B y1 Iz
工 程 力 学
8 梁的弯曲应力与强度计算
8 梁的弯曲应力与强度计算
8
梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档