列方程(组)解应用题
列方程解应用题的四种方法
列方程解应用题的四种方法列方程(组)解应用题就是将已知量与未知量的关系列成等式,通过解方程(组)求出未知量的过程. 其目的是考查学生分析问题和解决问题的能力. 如何解决这类问题,其方法很多,现结合实例给出几种解法,以供参考.一、直译法设元后,把元看作未知数,根据题设条件,把数学语言直译为代数式,即可列出方程组. 例1(2007年南京市)某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率. 分析:若设南瓜亩产量的增长率为x ,则南瓜种植面积的增长率为2x .由此可知今年南瓜的亩产量为2000(1)x +kg ,共种植了10(12)x +亩南瓜,根据总产量是60 000kg 即可列出方程.解:设南瓜亩产量的增长率为x .根据题意列方程,得10(12)2000(1)60000x x ++= .解得10.550%x ==,22x =-(不合题意,舍去). 答:南瓜亩产量的增长率为50%.二、列表法设出未知数后,视元为未知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程组.例2(2007年沈阳市)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 分析:解工程问题的关键是抓住工作总量、工作效率、工作时间三者间的关系,工作总量通常看作单位1. 根据题意,将关键数据分别填入表格即可列出方程.解:设甲队单独完成此项工程需要x 天,则乙队单独完成此项工程需要45x 天. 由题意得1012145x x +=.解得25x =. 经检验,25x =是原方程的解. 当25x =时,4205x =. 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.三、参数法对复杂的应用题,可设参数,则往往起到桥梁的作用.例3 (2007年滨州市)某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为12u u ,表示),请你根据图1,求电车每隔几分钟(用t 表示)从车站开出一部?分析:本题给人数量少,条件不足,好象无从下手的感觉,因此可把需要的量以辅助未知数(参数)的形式表示出来.解决本题的关键是正确求出两部电车的间隔距离,如图1(甲)所示,则从行人身后(人车同向)发来的两辆电车间的距离为:6×(电车行进的速度-行人骑车的速度);如图1(乙)所示,则从行人前方(人车异向)发来的两辆电车间的距离为:2×(电车行进的速度+行人骑车的速度).解:设电车的速度为1u ,行人的速度为2u ,电车每隔t 分钟从车站开出一部.根据题意得1211216()2()u u u t u u u t -=⎧⎨+=⎩,解得122u u =. 再把122u u =代入所列方程组的任意一个方程中,均可解得3t =(分钟).答:电车每隔3分钟从车站开出一部.四、线示法运用图线,把已知和未知条件间的数量关系,用线性图表示出来,再把数量关系写在直线图上,则等量关系可一目了然.例4(2007年梅州市)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.分析:(1)可把单独用一辆小汽车来回接送学生所需要的时间与42分钟做比较即可;(2)若确定去县城的最短时间,可充分考虑“汽车”和“人”这两个运动因素. 显然当汽车到达时,人也同时到达这一情况可使运送学生的总时间最短. 最短时间可利用速度比求得.解:(1)不能在限定时间内使考生到达考场.图1理由如下:如果单独用一辆小汽车来回接送,那么小汽车需要跑3趟,所需要的时间为1533(h)45604⨯==(分钟),由于45分钟42>分钟,所以不能在限定时间内到达考场. (2)方案不惟一,具有开放性. 最短时间的方案设计如下:先让4人乘车,另4人步行,如果恰当的选取第一批学生下车的位置,然后让他们步行到车站,同时第二批4人也步行;小汽车返回后接第二批步行的4人追赶第一批步行的人,使这8人同时到达火车站. 在这个过程中,8个人始终在步行或乘车,没有因为等车而浪费时间,因而应该最节约时间. 其运动过程如图2所示.设先步行的4人的行走路程AB 为km x ,后步行的4人的行走路程CD 为km z ,中间的汽车行走路程BC 为km y . 则汽车在路线A C B →→上所用时间与先步行的4人在路线A B →上所用的时间相等;汽车在路线C B D →→上所用时间与后步行的4人在路线C D →上所用的时间相等. 根据在相等的时间内,路程之比等于速度之比,可以得到::(2)5:60:(2)5:60x x y z z y +=⎧⎨+=⎩ 整理得212212x y x z y z+=⎧⎨+=⎩ 解得2,112.11x y z y ⎧=⎪⎪⎨⎪=⎪⎩ 又因为15x y z ++=,所以可得:2x =,11y =,2z =. 由题知所用最短时间为汽车行走的路程与汽车的速度之比,即3376060x y z ++=(时)37=(分钟). 因为3742<,所以他们能在截止进考场的时刻前到达考场. 图2。
初中数学总复习列方程解应用题
(9)列方程(组)解应用题〖考试内容〗一元一次方程的应用,二元一次方程组的应用,一元二次方程的应用.〖考试要求〗①能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型.②能根据具体问题的实际意义,检验方程的解的合理性.〖考点复习〗[例1]一件商品按成本价提高40%后的标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A、x40%80% = 240B、x(1+40%)×80% = 240C、240×40%×80% = xD、40% x = 240×80%[例2]小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?[例3]某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?[例4]某公司2002,2004年的营业额分别为80万元、180万元,若2003,2004,2005这三年的年增长率都相同,则该公司2005年的营业额应为万元.[例5]农民张大伯为了致富奔小康,大力发展家庭养殖业。
他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈。
(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由。
[例6]某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.〖考题训练〗1.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A、106元B、105元C、118元D、108元2.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了。
10.4列方程组解应用题
10.4列方程组解应用题第一篇:10.4列方程组解应用题10.4列方程组解应用题(3)学习目标:1.培养学生利用现实情境抽象数学模型的能力;2.能够运用三元一次方程组解决实际问题。
重点:利用现实情境找出等量关系,抽象出数学模型.难点:利用现实情境找出等量关系,抽象出数学模型.教学过程:【温故知新】列二元一次方程组解应用题的一般步骤是:(1)申请题意,找出问题中的已知量和未知量,明确问题中的全部关系;(2)选设适当的,确定用以列方程的两个主要的关系;(3)用已知数或含有未知数的代数式,表示主要相等关系的有关数量;(4)根据主要的相等关系列出;(5)解这个,并写出答案。
【探索新知】例6:一个三位数,三位数字之和为12,个位数字是百位数字与十位数字之和的2倍,百位数字是十位数字的3倍,求这个三位数.(1)请小组讨论找出这个题目的等量关系,分别是:;;.(2)若设这个三位数的个位数字是x,十位数字是y,百位数字是z,则根据题意可列方程组为:(3)写出这个题目的解答过程.例7:先欣赏古代数学问题:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。
问上、中、下禾实一秉各几何.”意为:今有上等黍3捆,中等黍2捆,下等黍1捆,共打出黍米39斗;又有上等黍2捆,中等黍3捆,下等黍1捆,共打出黍米34斗;再有上等黍2捆,中等黍2捆,下等黍3捆,共打出黍米26斗.问每捆上、中、下黍各能打出黍米多少斗?此题的等量关系是:;;.此题的解答过程为:【巩固提升】小亮、小莹和大刚每人面前各放有一堆栗子.小亮将自己面前的栗子分出一些给另外二人后,这二人的栗子数各增加1倍.接着小莹又将自己面前的栗子分一些给小亮和大刚,小亮和大刚的栗子数都增加了1倍.然后,大刚又分给另外二人一些栗子,使小亮和小莹面前的栗子数也都增加1倍.这时,他们三人面前的栗子竟然都是24颗.你知道他们三人面前原来有多少颗栗子吗?【课堂小结】尽情谈谈你这节课的收获吧!【达标检测】1.甲、乙、丙三数中,乙数是甲数的2倍,丙数是甲数2.5倍,丙数比甲数多6.甲、乙、丙三数分别是.2.三角形周长为21cm,最长边比其他两边之和少5cm,最短边比其两边之差多5cm.求它的三边长.设最短边为x,最长边为z,另一边为y,可列三元一次方程组.3.(中国古代问题)今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位)。
列方程(组)解应用题
列方程(组)解应用题(三年中考、模拟试题汇编)行程问题1、一列火车从北京出发到广州大约需要15小时,火车出发后按原来的时间匀速行驶8小时后到达武汉,由于2009年12月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州平均时速是原来的2倍还多50公里,所需要时间比原来缩短了4个小时,求从北京到武汉的平均时速和提速后武汉到广州的平均时速。
2、小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间.3、九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.4、京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车。
已知小王家距上班地点18千米。
他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的3/7。
小王用自驾车方式上班平均每小时行驶多少千米?5、.在2011年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修。
供电局距离抢修工地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地。
已知吉普车速度是抢修车速度的1.5倍,求这两种车每小时分别行驶多少千米。
6、为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.解:7、为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少8、为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的4/5还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.工程问题9、某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?10、某铁路有一隧道,由A队单独施工,预计200天贯通.为了公路早日通车,由A,B 两队同时施工,结果120天就贯通了.试问:如果由B队单独施工,需要多少天才能贯通?11、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?12、某服装厂接到加工720件衣服的订单,原计划每天做48件,即可顺利交货.但还没开工,又接到客户提前5天交货的要求,所以,每天必需多加工几件衣服才能按时交货.问每天应比原计划多加工多少件衣服?销售问题13、某服装厂为学校艺术团制作100套演出服,售价每套40元.服装厂向25名家庭贫困学生免费提供.经核算,这25套演出服的成本正好是原定生产这批演出服的利润.问每套演出服的成本是多少元?14、“家电下乡”农民得实惠,根据“家电下乡”的有关政策:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.小明的爷爷2009年5月份购买了一台彩电和一台洗衣机,他从乡政府领到了390元补贴款.若彩电的售价比洗衣机的售价高1000元,问一台彩电和一台洗衣机的售价各是多少元?15、为了防控甲型H1N1流感,某校积极进行校园环境消毒,为此购买了甲、乙两种消毒液。
列方程组解应用题
列方程组解应用题一.解答题(共22小题)1.某市热带植物园的门票价格规定如下表所列、某校七年级(1)、(2)两个班学生共103人去该园参观,其中七(1)班人数不少于30人且不多于50人、经预算,若两班都以班为单位分别购票,则总共付1950元.购票人数1~50人51~100人100人以上每人门票价20元18元15元(1)若两班学生合在一起作为一个团体购票,则最多可以节省门票多少元?(2)求两班各有多少名学生?2.某品牌计算机厂商为了支援受特大雪灾的南方某县的教育事业,在2008年春季开学初特赠送该县计算机若干台,经与物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且还有一辆车差30台计算机才能装满.已知A型汽车每辆装45台,B型汽车每辆比A型汽车多装15台,求共赠送计算机多少台?3.上学期,我们学习了解一元一次方程及用一元一次方程解决实际问题.本学期,我们又学习了解二元一次方程组,试用二元一次方程组及以前解决实际问题的经验解决下列问题:某校初一(1)班45名同学为“支援灾区”共捐款900元,捐款情况如下表:捐款(元) 5 10 20 50人数 6 7表中捐款10元和20元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.4.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?5.甲、乙两个学校盆景园各有若干盆景,为了春节布展要进行交流.如果甲校把自已的盆景送给乙校150盆,那么两校的盆景数相等,如果乙校送给甲校10盆,则甲校的盆景数是乙校的3倍,问甲、乙两校原来各有多少盆景?6.某酒店客房部在五•一黄金周期间,准备推出团体入住五折优惠的政策,在他的接待室中有一住宿原价格表,如下表所示,普通间/间豪华间/间三人间150元300元双人间140元400元现有一50人的旅游团,打算在黄金周期间入住该酒店,组织者一计算,双人普通间和三人普通间各住若干人正好住满,且花的住宿费用比原来节约了1510元,问旅游团住了多少普通三人间和双人间.7.某电视台在黄金时段的120秒钟广告时间,正好插播长度为15秒和30秒的两种广告.15秒广告每播一次收费0.6万元,60秒广告每播一次收费1万元.若电视台从中共得到收费4.4万元,问电视台插播两种广告的次数分别是多少?8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行,甲、乙二人在第一次相遇后3小时36分又再次相遇,则A、B两地的距离是多少?9.某班委会为奖励在学校艺术节上表现突出的同学,购买相册和胶卷.如果买5本相册和4个胶卷需要139元,如果买4本相册和5个胶卷需要140元.问相册和胶卷的单价各是多少元?10.车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?11.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?现在请你设未知数列方程组来解决这个问题.12.甲、乙两同学从A地到B地,甲步行速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米,甲先步行,乙先骑自行车,两人同时出发,走了一段路程后,乙下车步行,甲走到乙放车处骑自行车,以后不断交替行进,两人最后恰好同时到达B地,求甲走完全程的平均速度.13.辽南素以“苹果之乡”著称,某汽车公司计划装运A、B、C三种苹果去外地销售,按规定每辆汽车只能装同一种苹果,且必须装满.下表所示为装运A、B、C三种苹果的重量及利润.苹果品种 A B C每辆汽车运转量(吨) 2 1 1.5每吨苹果可获利润(万元) 5 7 4(1)用10辆汽车装运B、C两种苹果13吨到甲地销售.问装运B、C两种苹果的汽车各多少辆?(2)公司计划用20辆汽车装运A、B两种苹果36吨到乙地销售(每种苹果不少于1车),则利润是多少?14.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等.已知:丙班第一组有2名女生,问:甲、乙两班第一组各有多少女生?15.一个水池,底部装有一个常开的排水管,上部装有若干个粗细相同的进水管,当打开4个进水管时,需要5小时注满水池;当打开2个进水管时,需要15个小时才能注满水池,现需要在2小时将水池注满,那么至少要打开多小个进水管?16.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?17.(2013•)人参是保健佳品.某特产商店销售甲、乙两种保健人参.甲种人参每棵100元,乙种人参每棵70元王叔叔用1200元在此特产商店购买这两种人参共15棵.求王叔叔购买每种人参的棵数.18.(2013•)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?19.(2013•乌鲁木齐)在水果店里,小买了5kg苹果,3kg梨,老板少要2元,收了50元;老王买了11kg苹果,5kg梨,老板按九折收钱,收了90元,该店的苹果和梨的单价各是多少元?20.(2013•)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)21.(2013•)为响应“美丽清洁乡村美化校园”的号召,红水河中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知,安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元.(1)安装1个温馨提示牌和1个垃圾箱各需多少元?(2)安装8个温馨提示牌和15个垃圾箱共需多少元?22.(2012•)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案与试题解析一.解答题(共22小题)1.某市热带植物园的门票价格规定如下表所列、某校七年级(1)、(2)两个班学生共103人去该园参观,其中七(1)班人数不少于30人且不多于50人、经预算,若两班都以班为单位分别购票,则总共付1950元.购票人数1~50人51~100人100人以上每人门票价20元18元15元(1)若两班学生合在一起作为一个团体购票,则最多可以节省门票多少元?(2)求两班各有多少名学生?考点:二元一次方程组的应用.分析:(1)若两班合在一起统一购票,显然票价是每人15元,求得总价,进一步求得节省的票价;(2)设甲、乙班分别有学生x、y名.因为甲班人数不少于30人且不多于50人,所以乙班人数不小于53人,不大于73人,则甲班的票价是每人20元,乙班的票价是每人18元.根据学生共103人和两班都以班为单位分别购票,则共付1950元,列方程组求解.解答:解:(1)最多可以节省:1950﹣103×15=405(元);(2)设七年级(1)班有x名学生,七年级(2)班有y名学生,因为甲班人数不少于30人且不多于50人,所以依题意,得,解这个方程组,得,答:七年级(1)班有48名学生,七年级(2)班有55名学生.点评:本题考查了二元一次方程组的应用,注意理解各段票价的意义,这是解决问题的关键.2.某品牌计算机厂商为了支援受特大雪灾的南方某县的教育事业,在2008年春季开学初特赠送该县计算机若干台,经与物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且还有一辆车差30台计算机才能装满.已知A型汽车每辆装45台,B型汽车每辆比A型汽车多装15台,求共赠送计算机多少台?考点:二元一次方程组的应用.分析:等量关系为:45×A型汽车的辆数=计算机总台数;60×B型汽车的辆数=总台数+30.解答:解:设赠送计算机x台,A型汽车y辆,则B型汽车(y﹣1)辆,根据题意得:解得:答:共赠送计算机270台.点评:本题考查了二元一次方程组的应用,根据题意找到两个等量关系是列方程组的关键.3.上学期,我们学习了解一元一次方程及用一元一次方程解决实际问题.本学期,我们又学习了解二元一次方程组,试用二元一次方程组及以前解决实际问题的经验解决下列问题:某校初一(1)班45名同学为“支援灾区”共捐款900元,捐款情况如下表:捐款(元) 5 10 20 50人数 6 7表中捐款10元和20元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.考点:二元一次方程组的应用.专题:应用题.分析:设捐款10元的x人,捐款20元的y人,根据45人共捐款900元列出二元一次方程组求解即可;解答:解:设捐款10元的x人,捐款20元的y人,根据题意,得:解得:,答;捐款10元的12人,捐款20元的20人.点评:本题考查了二元一次方程组的应用,解题的关键是设出未知数并利用两个等量关系求解.4.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?考点:二元一次方程组的应用.专题:应用题.分析:设人前进的速度为am/min,公共汽车的速度为xm/min,根据每隔4min就遇到迎面开来的一辆公共汽车迎面开来相邻两车的距离是1200m,可列一方程;根据每隔6min就有一辆公共汽车从背后超过他且从背后开来相邻两车的距离是1200m,可列第二个方程,求解可得人前进的速度和公共汽车的速度.最后根据汽车每隔几分钟开出一辆=相邻两车的距离÷汽车的速度列出代数式即可得解.解答:解:设人前进的速度为am/min,公共汽车的速度为xm/min,由题意得:,解得:,则汽车每隔几分钟发车的时间=1200÷250=4.8(min).答:人前进的速度为50m/min,公共汽车的速度为250m/min,公共汽车每隔4.8min发一班.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.5.甲、乙两个学校盆景园各有若干盆景,为了春节布展要进行交流.如果甲校把自已的盆景送给乙校150盆,那么两校的盆景数相等,如果乙校送给甲校10盆,则甲校的盆景数是乙校的3倍,问甲、乙两校原来各有多少盆景?考点:二元一次方程组的应用.专题:调配问题.分析:设甲校原来有盆景x盆,乙校有盆景y盆,甲校拿出150盆后,甲有(x﹣150),乙就有(y+150);若是乙校送给甲校10盆,甲就有(x+10),乙就有(y﹣10),根据题意可得方程组求解.解答:解:设甲校原来有盆景x盆,乙校有盆景y盆,,,故甲原来有盆景40盆,乙有170盆.点评:本题考查的是一个调配问题,关键是看清调配前后的变化以及题目给出的等量关系列方程求解.6.某酒店客房部在五•一黄金周期间,准备推出团体入住五折优惠的政策,在他的接待室中有一住宿原价格表,如下表所示,普通间/间豪华间/间三人间150元300元双人间140元400元现有一50人的旅游团,打算在黄金周期间入住该酒店,组织者一计算,双人普通间和三人普通间各住若干人正好住满,且花的住宿费用比原来节约了1510元,问旅游团住了多少普通三人间和双人间.考点:二元一次方程组的应用.分析:题最后的问题是旅游团住了三人普通间和双人普通间客房各多少间,跟表中的豪华间是没有关系的.那么根据人数和钱数就可以得到两个等量关系:三人普通间的人数+双人普通间的人数=50;三人普通间的钱数+双人普通间的钱数=1510.解答:解:设三人普通房和双人普通房各住了x、y间.根据题意,得解得:答:三人间普通客房、双人间普通客房各住了8、13间.点评:本题考查了二元一次方程组的应用,解题关键是弄清题意,摒弃没用的条件,找到有用的条件,最简单的等量关系,列出方程组.7.某电视台在黄金时段的120秒钟广告时间,正好插播长度为15秒和30秒的两种广告.15秒广告每播一次收费0.6万元,30秒广告每播一次收费1万元.若电视台从中共得到收费4.4万元,问电视台插播两种广告的次数分别是多少?考点:二元一次方程组的应用.分析:根据题意可知,总收入4.4万元,播放15秒的广告的时间+播放30秒的广告的时间=2×60.根据以上条件,可列出方程组求解;解答:解:设播放15秒的广告x次,播放30秒的广告y次,根据题意得:解得:答:15秒的4次,60秒的1次.点评:本题考查了二元一次方程组的应用,解题的关键是找到俩个等量关系并列出方程.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行,甲、乙二人在第一次相遇后3小时36分又再次相遇,则A、B两地的距离是多少?考点:二元一次方程的应用.专题:行程问题.分析:从题意可知按原来的速度4小时可走两个来回,都提高速度后个小时可走两个来回,可列出方程求解.解答:解:设甲的速度为x千米/时,乙的速度为y千米/时,由题意可得:可得:x+y=18A、B两地的距离=2(x+y)=2×18=36答:A、B两地的距离是36千米.点评:本题考查理解题意能力,关键是看出提高速度前两个来回所用的时间,和提高速度后两个来回所用的时间,做为等量关系列出方程求解.9.某班委会为奖励在学校艺术节上表现突出的同学,购买相册和胶卷.如果买5本相册和4个胶卷需要139元,如果买4本相册和5个胶卷需要140元.问相册和胶卷的单价各是多少元?考点:二元一次方程组的应用.分析:设相册每本x元,胶卷每本y元,根据买5本相册和4个胶卷需要139元,如果买4本相册和5个胶卷需要140元列出二元一次方程组求解即可.解答:解:设相册每本x元,胶卷每本y元,根据题意得:解得:答:相册每本15元,胶卷每个16元.点评:本题考查了二元一次方程组的应用,解题的关键是根据题目中的两个等量关系列出方程组.10.车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?考点:二元一次方程组的应用.分析:可以设x人生产螺栓,y人生产螺母,根据总人数90人及螺丝和螺母的配套关系可得到两个方程,解方程组即可.解答:解:设应分配x人生产螺栓,y人生产螺母,根据题意得:,解得.答:应分配40人生产螺栓,50人生产螺母才能使螺栓和螺母正好配套.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示11.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?现在请你设未知数列方程组来解决这个问题.考点:二元一次方程组的应用.专题:应用题.分析:设每块地砖的长为xcm,宽为ycm,根据题意可得,解这个方程组即可求得x、y的值,即可解题.解答:解:设每块地砖的长为xcm,宽为ycm,则根据题意,得解这个方程组,得答:每块地砖的长为45cm,宽为15cm.点评:本题考查了二元一次方程组的应用,考查了二元一次方程组的求解,本题中列出关于x、y的关系式并求解是解题的关键.12.甲、乙两同学从A地到B地,甲步行速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米,甲先步行,乙先骑自行车,两人同时出发,走了一段路程后,乙下车步行,甲走到乙放车处骑自行车,以后不断交替行进,两人最后恰好同时到达B地,求甲走完全程的平均速度.考点:二元一次方程的应用.专题:行程问题.分析:根据题意甲、乙从A地到B地,画出如上图所示,即甲步行共走的路程恰好等于乙骑车共走的路程;甲骑车共走的路程恰好等于乙步行共走的路程.故首先假设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.再根据路程=速度×时间,且甲、乙两人行走过程中经过的时间相同,那么可列出方程,解方程可得y用x表示表达式.再根据平均速度=,在求解过程中约去x,即可甲走完全程的平均速度.解答:解:设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.则根据题意,得,解得y=2x.故甲的平均速度为(x+y)÷(+)=(千米/时);答:甲走完全程的平均速度(千米/时).走的路程恰好等于乙步行共走的路程;再就是求解过程中能够约去未知数.13.辽南素以“苹果之乡”著称,某汽车公司计划装运A、B、C三种苹果去外地销售,按规定每辆汽车只能装同一种苹果,且必须装满.下表所示为装运A、B、C三种苹果的重量及利润.苹果品种 A B C每辆汽车运转量(吨) 2 1 1.5每吨苹果可获利润(万元) 5 7 4(1)用10辆汽车装运B、C两种苹果13吨到甲地销售.问装运B、C两种苹果的汽车各多少辆?(2)公司计划用20辆汽车装运A、B两种苹果36吨到乙地销售(每种苹果不少于1车),则利润是多少?考点:二元一次方程组的应用.专题:应用题.分析:(1)设装B苹果的车x辆,装C苹果的车y辆,根据共10辆车和13吨苹果即可求得x、y的值;(2)设装A苹果的车a辆,装B苹果的车b辆,根据共20辆车和36吨即可求得a、b的值.解答:解:(1)设装B苹果的车x辆,装C苹果的车y辆,则x+y=10,x+1.5y=13,解得x=4,y=6,∴装运B苹果的汽车4辆,C苹果的汽车6辆;(2)设装A苹果的车a辆,装B苹果的车b辆,则a+b=20,2a+b=36,解得a=16,b=4,则利润为10×16+7×4=188.故利润为188万元.答:(1)装运B苹果的汽车4辆,C苹果的汽车6辆(2)利润为188万元.点评:本题考查了二元一次不等式的应用,利润的计算,本题中解关于x、y,a、b的方程组是解题的关键.14.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等.已知:丙班第一组有2名女生,问:甲、乙两班第一组各有多少女生?考点:二元一次方程组的应用.分析:可以分设三个班原有的女生数为不同的未知数,根据调整后三个班的女生数相等可得到两个方程,解方程组即可.解答:解:设丙班原有女生x人,则乙班原有女生(x+1)人,甲班原有女生(x+5)人,再设甲班第一组有女生y人,乙班第一组有女生z,依题意有:,解得.答:甲班第一组有女生5人,乙班第一组有女生4人.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.准确的找到等量关系并用方程组表示出来是解题的关键,本题有三个等量关系,但只求两个解即可,第三个做跳板,不需求值.15.一个水池,底部装有一个常开的排水管,上部装有若干个粗细相同的进水管,当打开4个进水管时,需要5小时注满水池;当打开2个进水管时,需要15个小时才能注满水池,现需要在2小时将水池注满,那么至少要打开多小个进水管?考点:二元一次方程组的应用.专题:应用题.分析:由于进水量和出水量没给出,可以设每个进水管1小时的注水量为a,排水管1小时的排水量为b,两小时注满水池需打开x个进水管,根据当打开4个进水管时,需要5小时注满水池;当打开2个进水管时,需要15个小时才能注满水池可以得到两个方程,求方程组的解即可.解答:解:设每个进水管1小时的注水量为a,排水管1小时的排水量为b,若想两小时注满水池需打开x个进水管,,由①得到4a﹣b=6a﹣3b,即a=b ③,把③代入②得:2(ax﹣a)=5(4a﹣a),即2ax=17a,解得:x=8.5,由于水管不可能半个,所以至少要9个进水管才能在两个小时注满水池.答:至少开9个进水管.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.解答本题的关键在于要设进水量和出水量为未知常量.16.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?考点:二元一次方程组的应用.专题:应用题.分析:设甲原先小球数为x、乙原先小球数为y,则根据第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动后,甲、乙两堆小球恰好都是16个列出方程组,并且求x、y的值即可解题.解答:解:设甲原先小球数为x、乙原先小球数为y,则挪动2次后甲剩下的小球数为2x﹣2y=16,乙剩下的小球数为2y﹣(x﹣y)=16,解得x=20、y=12,甲堆最初有20个小球,乙堆最初有12个小球.答:甲堆最初有20个小球,乙堆最初有12个小球.点评:本题考查了二元一次方程组的应用,本题中根据x、y的关系列出方程组并且求解x、y的值是解题的关键.17.(2013•)人参是保健佳品.某特产商店销售甲、乙两种保健人参.甲种人参每棵100元,乙种人参每棵70元王叔叔用1200元在此特产商店购买这两种人参共15棵.求王叔叔购买每种人参的棵数.考点:二元一次方程组的应用.专题:压轴题.分析:设王叔叔购买了甲种人参x棵,购买了乙种人参y棵,根据条件可以建立方程x+y=15和100x+70y=1200,由这两个方程构成方程组求出其解即可.解答:解:设王叔叔购买了甲种人参x棵,购买了乙种人参y棵,由题意,得。
第8讲 列方程解应用题
1.(2012·云南)某企业为严重缺水的甲、乙两所学校捐 赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙 校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿 泉水各多少件.
解:设该企业捐给乙校的矿泉水件数是x,则捐给甲校 的矿泉水件数是2x-400,依题意得方程(2x-400)+x= 2000,解得x=800,2x-400=1200.即该企业捐给甲校的 矿泉水1200件,捐给乙校的矿泉水800件
【点评】 (1)现实生活中存在大量的实际应用 问题,需要用一元二次方程的知识去解决,解决 这类问题的关键是在充分理解题意的基础上,寻 求问题中的等量关系,从而建立方程.(2)解出 方程的根要结合方程和具体实际选择合适的根, 舍去不合题意的根.
4.(2014·新疆)如图,要利用一面墙(墙长为25米)建 羊圈,用100米的围栏围成总面积为400平方米的三 个大小相同的矩形羊圈,求羊圈的边长AB,BC各为 多少米.
A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389
5.(2014·随州)某小区2012年屋顶绿化面积为2000平
方米,计划2014年屋顶绿化面积要达到2880平方米
.如果每年屋顶绿化面积的增长率相同,那么这个
增长率是 20%
(1)若每副乒乓球拍的价格为x元,请你用含x的代数 式表示该校购买这批乒乓球拍和羽毛球拍的总费用;
(2)若购买的两种球拍数一样,求x.
解:(1)(4000+25x)元 (2)购买每副乒乓球拍用去了 x 元,则购买每副羽毛球拍 用去了(x+20)元,由题意得20x00=20x0+0+2205x,解得 x1=40,x2=-40,经检验,x1,x2 都是原方程的根, 但 x>0,∴x=40.即每副乒乓球拍的价格为 40 元
列方程组解应用题的常见题型
、列方程组解应用题的常见题型.(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例;第一个容器有49L水,第二个容器有56L水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器容量的二分之一;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器容量的三分之一,求这两个容器的容量.(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例:某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,一个螺丝装配两个螺母,问应怎样安排生产螺丝和螺母的工人,才能使每天的产品正好配套?(3)速度问题:解这类问题的基本关系式是:路程=速度×时间.路程差=速度差×时间。
路程和=速度和一般又分为相遇问题、追及问题及环形道路问题例:某人从甲地骑车出发,先以12km/h的速度下山坡,后以9km/h的速度过公路到达乙地,共用55min;返回时,按原路先以8km /h的速度过公路,后以4km/h的速度上山坡回到甲地,共用1h30min,问甲地到乙地共多少千米?例:一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min;若两车相向而行,快车从与慢车相遇到离开慢车,只需要12s,问快车和慢车的速度各是多少?例:甲、乙两人在200m的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度.(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例:甲轮从A码头顺流而下,乙轮从B码头逆流而上,两轮同时相向而行,相遇于中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km/h,求两轮在静水中的速度.(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例:一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?例:.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例:某中学校办工厂今年总收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加20%,总支出比今年减少8%,求今年的总收入和总支出.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例:为了迎接新学期开学,某服装厂赶制一批校服,要求必须在规定时间内完成,在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例:一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,所得的新两位数与原两位数相加的和为143,求这个两位数.(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例:有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?1一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?3.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
列二元一次方程组解应用题专项练习50题(有答案)ok
列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。
解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。
2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。
| 2.| 15.5.|乙。
| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。
5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。
中考数学练习试题 列方程(组)解应用题
义务教育基础课程初中教学资料课后强化训练8 列方程(组)解应用题一、选择题1.某商品的标价为200元,打八折销售后仍赚40元,则该商品的进价为(B ) A. 140元 B. 120元 C. 160元 D. 100元【解析】 设该商品的进价为x 元,则200×0.8-x =40,解得x =120.2.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2 kg ,求小亮妈妈两种水果各买了多少千克.设小亮妈妈买了甲种水果x (kg ),乙种水果y (kg ),则可列方程组为(A )A. ⎩⎪⎨⎪⎧4x +6y =28,x =y +2B. ⎩⎪⎨⎪⎧4y +6x =28,x =y +2 C. ⎩⎪⎨⎪⎧4x +6y =28,x =y -2 D. ⎩⎪⎨⎪⎧4y +6x =28,x =y -2 【解析】 由“甲种水果用钱+乙种水果用钱=28元”,得4x +6y =28;由“乙种水果比甲种水果少买了2 kg ”,得x =y +2.故选A.(第3题)3.如图,小李要在一幅长90 cm 、宽40 cm 的风景画四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整幅挂图面积的54%.若设金色纸边的宽度是x (cm ),根据题意所列的方程是(B )A. (90+x )(40+x )×54%=90×40B. (90+2x )(40+2x )×54%=90×40C. (90+x )(40+2x )×54%=90×40D. (90+2x )(40+x )×54%=90×40【解析】 挂图的长为(90+2x ) cm ,宽为(40+2x ) cm ,故可列方程(90+2x )(40+2x )×54%=90×40.4.为保证某高速公路在年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程是(B )A.1x -10+1x -40=1x +14B.1x +10+1x +40=1x -14C.1x +10-1x +40=1x -14D.1x -10+1x +14=1x -40【解析】 由“甲、乙队单独完成的工作效率之和等于两队合作的工作效率”得1x +10+1x +40=1x -14. 5.某校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列方程正确的是(B )A.2401.5x -200x =4B.200x -2401.5x =4C.1.5×200x -240x =4D.1.5×200x +4=240x【解析】 由文学书的数量比科普书多4本, 得200x -2401.5x=4. 6.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数是(C ) A.25 B.36C.25或36D.-25或-36【解析】 设这个两位数的个位数字为x ,则十位数字为x -3.由题意,得10(x -3)+x =x 2,解得x 1=5,x 2=6.∴这个两位数是25或36. 二、填空题7.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x 支球队参赛,根据题意,可列出方程12x (x -1)=28,解这个方程,得x 1=8,x 2=-7W.合乎实际意义的解为x =8W. 8.今年“五一”节,A ,B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组⎩⎪⎨⎪⎧3x +2y =16,5x +3y =25W.(第9题)9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒露出水面的长度是它总长的13,另一根铁棒露出水面的长度是它总长的15.已知两根铁棒的长度之和为55cm ,则此时木桶中水的深度是20cm.【解析】 设两根铁棒的长分别为x (cm )和y (cm ),由题意,得⎩⎪⎨⎪⎧x +y =55,23x =45y ,解得⎩⎪⎨⎪⎧x =30,y =25.∴木桶中水的深度是23x =23×30=20(cm ).10.有甲、乙、丙三种商品,如果购买甲3件、乙2件、丙1件共需315元,购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙三种商品各一件共需 150 元.【解析】 设购买甲、乙、丙1件分别需x 元,y 元,z 元,则⎩⎪⎨⎪⎧3x +2y +z =315,①x +2y +3z =285,② ①+②,得4x +4y +4z =600,∴x +y +z =150. 三、解答题11.有若干只鸡和兔关在同一个笼子里,从上面数,有30个头;从下面数,有84条腿,问:笼中有几只鸡?几只兔?【解析】 设这个笼中有x 只鸡,y 只兔,根据题意,得⎩⎪⎨⎪⎧x +y =30,2x +4y =84,,解得⎩⎪⎨⎪⎧x =18,y =12.答:笼中有18只鸡,12只兔.12.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降50元时,平均每天就能多售出4台.若商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?【解析】 设每台冰箱降价x 元,由题意,得(2900-x -2500)×⎝⎛⎭⎫8+x50×4=5000, 整理,得x 2-300x +22500=0,(x -150)2=0,∴x 1=x 2=150.∴2900-150=2750(元).答:每台冰箱的定价应为2750元.13.某市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24 km.远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6 h ,求学生步行的平均速度.【解析】 设学生步行的平均速度是x (km/h ),则服务人员骑自行车的平均速度是2.5x (km/h ).由题意,得242.5x +3.6=24x,解得x =4. 经检验,x =4是原方程的解,且符合题意. 答:学生步行的平均速度是4 km/h.14.某电器超市销售每台进价分别为200元、170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:销售时段 销售数量 A 型号 B 型号 销售收入 第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号电风扇的销售单价.(2)若超市准备用不多于5400 元的金额再次采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30 台电风扇能否实现利润为1400 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解析】 (1)设A ,B 两种型号电风扇的销售单价分别为x 元,y 元,由题意,得⎩⎪⎨⎪⎧3x +5y =1800,4x +10y =3100,解得⎩⎪⎨⎪⎧x =250,y =210. 答:A ,B 两种型号电风扇的销售单价分别为250元,210元.(2)设最多能采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.由题意,得200a +170(30-a )≤5400,解得a ≤10. 答:A 种型号的电风扇最多能采购10台. (3)不能.理由:由题意,得 (250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下,超市不能实现利润为1400元的目标.15.某新建火车站站前广场需要绿化的面积为46000 m 2,施工队在绿化了22000 m 2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少平方米?(2)该项绿化工程中有一块长为20 m ,宽为8 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56 m 2,两块绿地之间及周边留有宽度相等的人行通道(如图所示).问:人行通道的宽度是多少米?(第15题)【解析】 (1)设该项绿化工程原计划每天完成x (m 2), 根据题意,得46000-22000x -46000-220001.5x =4,解得x =2000.经检验,x =2000是原方程的解且符合题意. 答:该绿化工程原计划每天完成2000 m 2. (2)设人行通道的宽度是x (m ),根据题意,得 (20-3x )(8-2x )=56,解得x 1=2,x 2=263(不合题意,舍去).答:人行通道的宽度是2 m. 16.某市为打造古运河风光带,将一段长为180 m 的河道整治任务交由A ,B 两个工程队先后接力完成.A 工程队每天整治12 m ,B 工程队每天整治8 m ,共用时20天.(1)根据题意,甲、乙两位同学分别列出了尚不完整的方程组如下:甲:⎩⎪⎨⎪⎧x +y = ,12x +8y = ;乙:⎩⎨⎧x +y = ,x 12+y 8= .根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度W. (2)A ,B 两个工程队分别整治河道多少米(写出完整的解答过程)?【解析】 (1)甲:⎩⎪⎨⎪⎧x +y =20,12x +8y =180;乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20.(2)若解甲的方程组⎩⎪⎨⎪⎧x +y =20,12x +8y =180,得⎩⎪⎨⎪⎧x =5,y =15, ∴12x =60,8y =120.∴A ,B 两个工程队分别整治河道60 m 和120 m. 若解乙的方程组⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20,得⎩⎪⎨⎪⎧x =60,y =120,∴A ,B 两个工程队分别整治河道60 m 和120 m.。
二元一次方程组解应用题专项训练(含答案)
列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
二元一次方程(组)解应用题(含答案)
第八章二元一次方程(组)解应用题(含答案)1.缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?时才能追上.问走私艇与缉私艇的速度分别是多少?1.解:设走私艇的速度是x海里/时,缉私艇的速度是y海里/时,由题意得:时,由题意得:,解得,答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时2.甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1地.小时乙到达A地.)问甲、乙行驶的速度分别是多少?(1)问甲、乙行驶的速度分别是多少?千米?(2)甲、乙行驶多少小时,两车相距30千米?2.解:(1)设甲、乙行驶的速度分别是每小时x千米、y千米,千米,根据题意,得,解得.所以甲、乙行驶的速度分别是每小时15千米、45千米;千米;(2)由第(1)小题,可得A,B两地相距45×(3+1)=180(千米).千米,设甲、乙行驶x小时,两车相距30千米,)千米,根据题意,得两车行驶的总路程是(180﹣30)千米或(180+30)千米,则:(45+15)x=180﹣30或(45+15)x=180+30.解得:或.千米所以甲、乙行驶或小时,两车相距30千米3.小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32平均速度为3千米/时,时,而在下坡路上的平均速度为分钟.求小明上坡、下坡各用了多长时间?分钟.求小明上坡、下坡各用了多长时间?3.解:32分钟=小时,小时,)小时,由题意,得设小明上坡用了x小时,下坡用了(﹣x)小时,由题意,得3x+5(﹣x)=1.8,解得:x=,则下坡所用时间为:﹣==.答:小明上坡用了小时,下坡用了小时小时4.A 、B 两地相距20千米.甲乙两人同时从A 、B 两地相向而行,经过2小时后两人相遇,相遇时甲比乙多行4千米.根据题意,列出两元一次方程组,求出甲乙两人的速度.千米.根据题意,列出两元一次方程组,求出甲乙两人的速度. 4.解:(1)设甲的速度为x 千米/时,乙的速度为y 千米/小时,由题意得,小时,由题意得,,解得:.答:甲的速度为6千米/时,乙的速度为4千米/小时小时5.长春至吉林现有铁路长为128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米.开通后,城际列车的平均速度将为现有列车平均速度的2.25倍,运行时间将比现有列车运行时间缩短小时.求城际列车的平均速度.列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.小时.,解得.64×2.25=144千米/小时.小时.城际列车的平均速度144千米/小时小时6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留汽车在相遇处停留1小时后原速返回,小时后原速返回,在汽车再次出发在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米? 6.解:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).千米答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两,问两车每秒各行驶多少米?车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?7.解:设客车的速度是每秒x米,货车的速度是每秒x米.米.由题意得(x+x)×16=200+280,解得x=18.答:两车的速度是客车18m/s,货车12m/s8.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人倍.求两人的速度. 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.8.解:设甲的速度是x千米/时,乙的速度是y千米/时.时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时9.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?乙地的全程是多少?9.解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km10.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻.解:设甲的速度为x千米/时,乙的速度为由题意可得:.由题意得,,解得:,则解得答:甲,乙二人的速度是1414、在某条高速公路上依次排列着、在某条高速公路上依次排列着A 、B 、C 三个加油站,三个加油站,A A 到B 的距离为120千米,千米,B B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?1414、解:设巡逻车、犯罪团伙的车的速度分别为、解:设巡逻车、犯罪团伙的车的速度分别为x 、y 千米千米//时,则()3120120x y x y -=ìïí+=ïî,整理,得40120x y x y -=ìí+=î,解得8040x y =ìí=î, 答:巡逻车的速度是80千米千米//时,犯罪团伙的车的速度是40千米千米//时.1515、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟. .归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄? ?1515、解:设悟空飞行速度是每分钟、解:设悟空飞行速度是每分钟x 里,风速是每分钟y 里,依题意得依题意得依题意得 4(x+y)=1000 4(x+y)=10004(x-y)=600 x=200 y=5016.16.某列火车通过某列火车通过450米的铁桥,从车头上桥到车尾下桥,从车头上桥到车尾下桥,共共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少分别是多少? ?16. 16. 解解:设火车长为x 米,火车的速度为y 米/秒,33y=x 33y=x++45022y=760 22y=760--xX=276解方程组得:解方程组得:解方程组得: y=22 y=22答:火车长答:火车长276米,速度为22米/秒.。
小学奥数之列方程组解应用题(完整版)
1、设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量2、用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量3、找准等量关系,构建方程(明显的等量关系与隐含的等量关系)一、列方程解应用题的主要步骤 ⒈ 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系; ⒈ 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;⒈ 找到题目中的等量关系,建立方程;⒈ 解方程;⒈ 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 模块一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。
每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。
【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?教学目标 知识精讲列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩,将两式相加,得9()243x y +=,则27(2)x y +=, ⑴ 4-⨯⒈,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 根据题意,松鼠妈妈采的松子有晴天采的,也有雨天采的,总的采集数可以求得,采集天数也确定,因此可列方程组来求解.设晴天有x 天,雨天有y 天,则可列得方程组:()()20121121112214x y x y +=⎧⎪⎨+=⎪⎩ ()1化简为5328x y += …………()3用加减法消元:()()253⨯-得:5()(53)4028x y x y +-+=-解得6y =.所以其中6天下雨.【答案】其中6天下雨【例 4】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⒈+⒈,得:230x =,于是15x =.将15x =代入⒈或⒈,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【例 5】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩ 该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【巩固】 用62根同样长的木条钉制出正三角形、正方形和正五边形总共有15个.其中正方形的个数是三角形与五边形个数和的一半,三角形、正方形和五边形各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设三角形的个数为x ,五边形的个数为y ,那么正方形的个数为2x y +⎛⎫ ⎪⎝⎭,由此可列得方程组: 152345622x y x y x y x y ⎧+⎛⎫++= ⎪⎪⎪⎝⎭⎨+⎛⎫⎪++= ⎪⎪⎝⎭⎩该方程组解得:46x y =⎧⎨=⎩,所以52x y +⎛⎫= ⎪⎝⎭,因此三角形、正方形、五边形分别有4、5、6个. 【答案】三角形、正方形、五边形分别有4、5、6个【例 6】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 7】 有两辆卡车要将几十筐水果运到另一个城市,由于可能超载,所以要将两辆卡车中的一部分转移到另外一辆车上去,如果第一辆卡车转移出20筐,第二辆卡车转移出30筐,那么第一辆卡车剩下的水果筐数是第二辆的1.2倍,如果第一辆卡车转移出21筐,第二辆卡车转移出25筐,那么第三辆车上的水果筐数是前面两辆车水果筐数和的一半,求原来两辆车上有多少筐水果?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设第一辆卡车上的水果有x 筐,第二辆卡车上的水果有y 筐,则有()()2030 1.2(1)212521252(2)x y x y ⎧-=-⨯⎪⎨-+-=+⨯⎪⎩,由⒈得 1.216x y =-,代入⒈得2.26292y -=,解得70y =,所以 1.21668x y =-=,原来两辆车上分别装有68筐水果和70筐水果.【答案】两辆车上分别装有68筐水果和70筐水果【巩固】 大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设大池中有x 吨水,小池中有y 吨水.则根据题目条件,两池一共有x y +吨水,大池可装5x y +-吨水,小池可装30x y +-吨水,所以可列得方程5(30) 1.5x y x y +-=+-⨯,方程化简为80x y +=,所以两池中共有80吨水.【答案】两池中共有80吨水【例 8】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩⒈式整理得416x y +=,则164x y =-;代入⒈得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【巩固】 某市现有720万人口,计划一年后城镇人口增涨0.4%,农村人口增长0.7%,这样全市人口增加0.6%,求这个城市现在的城镇人口和农村人口.【解析】 假设这个城市现在的城镇人口是x 万人,农村人口是y 万人,得:7200.4%0.7%7200.6%x y x y +=⎧⎨+=⨯⎩,解得240480x y =⎧⎨=⎩, 即这个城市现在的城镇人口有240万,农村人口有480万.【答案】城镇人口有240万,农村人口有480万【例 9】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩ 解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩由()1式知,a 是奇数,且小于17.()2式可化简为()3413c a =-由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【巩固】 下表是某班40名同学参加数学竞赛的分数表,如果全班平均成绩是2.5分,那么得3分和5分的各有多少人?【考点】列方程组解应用题【解析】 根据题意,只要设得3分和5分的各有多少人,即可利用总人数和总分数而列方程组求解,等量关系有两条:一是各分数段人数之和等于总人数,各分数段所有人得分之和等于总分数.设得3分的人数有x 人,得5分的人数有y 人,那么:471084017210348540 2.5x y x y +++++=⎧⎨⨯+⨯++⨯+=⨯⎩,化简为:()()11135412x y x y +=⎧⎪⎨+=⎪⎩ ()()213-⨯,得到28y =,即4y =,再代入()1,最后得到方程组得解47x y =⎧⎨=⎩,所以40名学生当中得3分的有7人,得5分的有4人.【答案】得3分的有7人,得5分的有4人【例 10】 在S 岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为x ,将骗子的数目计为y .于是2130x y +=.又由于在S 岛上居住着100个人,所以100x y +=,联立两条方程,解得30y =.所以岛上有30个人说的是假话.【答案】30个人说的是假话【例 11】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服. 【答案】最多可以生产出408套衣服【例 12】 一片青草,每天长草的速度相等,可供10头牛单独吃20天,供60只羊单独吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么,10头牛与60只羊一起吃草,这片草可以吃________天.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 把1只羊每天的吃草量当作单位“1 ”,则1头牛每天的吃草量为4,设原有草量为x ,每天的长草量为y ,那么:20410201016010x y x y +=⨯⨯⎧⎨+=⨯⨯⎩解得400x =,20y =,如果10头牛与60只羊一起吃草,这片草可以吃400(41016020)5÷⨯+⨯-=(天).【答案】5【例 13】 甲、乙、丙沿着环形操场跑步,乙与甲、丙的方向相反.甲每隔19分钟追上丙一次,乙每隔5分钟与丙相遇一次.如果甲4分钟跑的路程与乙5分钟跑的路程相同,那么甲的速度是丙的速度的多少倍?甲与乙多长时间相遇一次?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 把环形操场的周长看作1,设甲每分钟跑的路程为x ,丙每分钟跑的路程为y .根据题意可知乙每分钟跑的路程为45x .有: 1194155x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得857557x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以甲的速度是丙的速度的85 1.65757÷=倍; 甲与乙相遇一次所用的时间为884231()35757524÷+⨯=分钟. 【答案】甲的速度是丙的速度的1.6倍;甲与乙相遇一次所用的时间为23324分钟【例 14】 甲、乙二人从相距60千米的两地同时出发,沿同一条公路相向而行,6小时后在途中相遇.如果两人每小时所行走的路程各增加1千米,则相遇地点距前一次地点差1千米.求甲、乙两人的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲速为每小时x 千米,乙速为每小时y 千米.根据第一次相遇的条件,可知:()660x y +=,则10x y +=,即甲、乙两人的速度和为10千米/小时,所以第二次相遇两人的速度和为12千米/小时.第二次相遇时,甲走的路程可能比第一次少1千米或多1千米,即(61)x -千米,或(61)x +千米.由此可列第二条方程:5(1)61x x +=-或5(1)61x x +=+.因此可列的方程组有:105(1)61x y x x +=⎧⎨+=-⎩解得64x y =⎧⎨=⎩,或105(1)61x y x x +=⎧⎨+=+⎩解得46x y =⎧⎨=⎩. 所以甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时.【答案】甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时【例 15】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x yy -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米【巩固】 华医生下午2时离开诊所出诊,走了一段平路后爬上一个山坡,给病人看病用了半小时,然后原路返回,下午6时回到诊所.医生走平路的速度是每小时4千米,上山的速度是每小时3千米,下山的速度是每小时6千米,华医生这次出诊一共走了 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【关键词】2004年,南京市,冬令营【解析】 设平路长a 千米,山坡长b 千米,则共走了2()a b +千米,根据题意,列方程3.54346a b a b +++=,1() 3.52a b +=, 2()14a b +=.所以,华医生这次出诊一共走了14千米.【答案】14【例 16】 小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前13时间乘车,后23时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设小明家到奶奶家的路程为x 千米,而小明从奶奶家返回家里所需要的时间是y 小时,那么根据题意有:112225*********x x y x y y ⎧⎪+=+⎪⎨⎪=⨯+⨯⎪⎩,解得: 15018x y =⎧⎨=⎩ 答:小明从自己家到奶奶家的路程是150千米.【答案】小明从自己家到奶奶家的路程是150千米【例 17】 (保良局亚洲区城市小学数学邀请赛)米老鼠从A 到B ,唐老鸭从B 到A ,米老鼠与唐老鸭行走速度之比是65∶,如下图所示.M 是A 、B 的中点,离M 点26千米的C 点有一个魔鬼,谁从它处经过就要减速25%,离M 点4千米的D 点有一个仙人,谁从它处经过就能加速25%.现在米老鼠与唐老鸭同时出发,同时到达,那么A 与B 之间的距离是 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 设AM MB x ==,米老鼠的行走速度为6k ,则唐老鸭的行走速度为5k (0k ≠),如下图,则有米老鼠从A 到B 需要时间 2630466(125%)6(125%)(125%)x x k k k --++⨯-⨯-⨯+ 11614(4)615x x k ⎧⎫=++-⎨⎬⎩⎭, 唐老鸭从B 到A 需要时间4302655(125%)5(125%)(125%)x x k k k --++⨯+⨯-⨯+ 11620(26)515x x k ⎧⎫=++-⎨⎬⎩⎭. 因为米老鼠与唐老鸭用的时间相同,所以列方程11611614(4)20(26)615515x x x x k k ⎧⎫⎧⎫++-=++-⎨⎬⎨⎬⎩⎭⎩⎭, 解得46x =.所以,A 、B 两地相距92千米.【答案】A 、B 两地相距92千米x -430x -26A C M D【例 18】 甲、乙两人分别从A 、B 两地同时出发相向而行,5小时后相遇在C 点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点D 距C 点10千米.如果乙速度不变,甲每小时多行3千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点E 距C 点5千米.问:甲原来的速度是每小时多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 甲速度不变,乙每小时多行4千米,相遇点D 距C 点10千米,出发后5小时,甲到达C ,乙到达F ,因为乙每小时多行4千米,所以4520FC =⨯=千米,那么10FD DC ==千米,也就是说相遇后相同的时间内甲、乙走的路程相同,也就是说原来甲比乙每小时多行4千米. 乙速度不变,甲每小时多行3千米,相遇点E 距C 点5千米,出发后5小时乙到达C ,甲到达G ,因为甲每小时多行3千米,所以3515GC =⨯=千米.那么10GE =千米,5EC =千米.所以2EG EC =,即相遇后在相同的时间甲走的路程是乙的2倍,所以甲每小时多行3千米后,速度是乙的两倍.于是可列得方程组:432v v v v =+⎧⎪⎨+=⎪⎩乙甲乙甲,解得117v v =⎧⎨=⎩甲乙,所以甲原来每小时11千米. 【答案】甲原来每小时11千米【例 19】 甲、乙二人共存款100元,如果甲取出49,乙取出27,那么两人存款还剩60元.问甲、乙二人各有存款多少元?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲存款x 元,乙存款y 元,根据题目条件有两条等量关系,一是两人存款加起来等于100元,二是取钱后两人存款加起来有60元.由此可列得方程组:100421006097x y x y +=⎧⎪⎨+=-⎪⎩ 方程组最终解得7228x y =⎧⎨=⎩,所以甲存款72元,乙存款28元. 【答案】甲存款72元,乙存款28元【巩固】 甲、乙两个容器共有溶液2600克,从甲容器取出14的溶液,从乙容器取出15的溶液,结果两个容器共剩下2000克.问:两个容器原来各有多少溶液?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲容器有溶液x 克,乙容器有溶液y 克,根据题目条件有两条等量关系,一是两容器溶液加起来等于2600克,二是取溶液后两容器加起来有2000克.由此可列得方程组: 26001111200045x y x y +=⎧⎪⎨⎛⎫⎛⎫-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 方程组最终解得16001000x y =⎧⎨=⎩,所以甲容器中有溶液1600克,乙容器中有溶液1000克. 【答案】甲容器中有溶液1600克,乙容器中有溶液1000克【例 20】 某班有45名同学,其中有6名男生和女生的17参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设有x 名男生和y 名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为45人,二是剩下的男女生人数相等,由此可列得方程组:451617x y x y +=⎧⎪⎨⎛⎫-=- ⎪⎪⎝⎭⎩该方程组解得2421x y =⎧⎨=⎩,所以这个班有24名男生.【答案】这个班有24名男生【巩固】 甲、乙两班人数都是44人,两班各有一些同学参加了数学小组的活动,甲班参加的人数恰好是乙班未参加人数的13,乙班参加的人数恰好是甲班未参加人数的14,那么共有多少人未参加数学小组?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设甲、乙两班参加数学小组的人数分别为x 人、y 人,未参加人数分别为()44x -人、()44y -人,由题设已知条件可以得到:1(44)31(44)4x y x y⎧=-⎪⎪⎨⎪-=⎪⎩,解之得128x y =⎧⎨=⎩ 所以未参加兴趣小组的人数()()444468x y =-+-=人.【答案】未参加兴趣小组的人数68人【例 21】 一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设男孩有x 人,女孩有y 人.根据条件可列方程:(1)52(1)x y x y --=⎧⎨=-⎩由第一条方程可以得到6x y =+,代入第二条方程得到62(1)y y +=- .解得8y =,再代入第一条方程.方程解得148x y =⎧⎨=⎩.所以男孩有14人,女孩有8人.【答案】男孩有14人,女孩有8人【巩固】 有大小两盘苹果,如果从大盘中拿出一个苹果放在小盘里,两盘苹果一样多;如果从小盘里拿出一个苹果放在大盘里,大盘苹果的个数是小盘苹果数的3倍.大、小两盘苹果原来各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设原来大盘有苹果x 个,小盘有苹果y 个.那么可列方程组:()11131x y x y -=+⎧⎪⎨+=-⎪⎩,方程组解得53x y =⎧⎨=⎩,所以大盘原来有苹果5个,小盘原来有苹果3个.【答案】大盘原来有苹果5个,小盘原来有苹果3个【巩固】 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。
列方程(组)解应用题的方法及步骤
列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?答:从乙处调3人到甲处.2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?得x =17.∴20-x =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x 立方米木料做桌面,用y 立方米木料做桌子腿,由题意可得:x y x y +=⨯=⎧⎨⎩514503002()() 解之可得:x y ==⎧⎨⎩32 即用3立方米木料做桌面,2立方米木料做桌腿。
二元一次方程(组)应用题专题讲解及练习(附答案)
实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。
列方程(组)、不等式(组)解应用题
列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1、【解析】根据总费用等于水量乘以平均值得出方程,求出水量,然后求出水费。
列一元一次方程或二元一次方程组解应用题
实用标准文案文档列一元一次方程或二元一次方程组解应用题:(二)班级 姓名 座号1、 白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?3、某年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有坐位;如果每辆汽车坐60人,那么空出一辆汽车,问有几辆汽车?有多少个学生?4、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班共用土筐59个,扁担36根,求抬土与挑土的各有多少人?2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车情况如下表:第一次第二次甲种货车辆数(单位:辆) 2 5乙种货车辆数(单位:辆) 3 6累计运货吨数(单位:吨) 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费30元计算,问:货主应付运费多少元?5、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20%)6、保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460g;第二天收集1号电池2节,5号电池3节,总重量为240g。
求1号和5号电池每节分别重多少克?7、一只船的载重量为380t,容积为2000m3,有甲、乙两种货物,甲货物4m3/t,乙货物6m3/t,现要最大限度地利用船的载重量和容积,问两种货物各应装多少吨?8、某市按以下规定收取每月水费;若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水。
《列方程组解应用题》数学教学PPT课件(2篇)
六、感悟延伸
甲乙两人正在谈论他们的年龄. 甲:在我是你今年的岁数时,你那年10岁. 乙:在我是你今年的岁数时,你那年25岁. 想一想,甲乙二人谁的年龄大?今年甲、乙二人 各多岁?
七、总结启迪
本节课学习了列二元一次方程组解应用题, 谈谈你的收获?
作业 课本P.63第1,2题
二、衔接起步
列一元一次方程解应用题的步骤:
1、审 弄清题目中的已知量和未知量,以及它们
之间数量关系, 设出一个未知数.
2、列
3、解 4、验
列出方程 分析题意,找出等量关系 用含未知数的一次式表示有关的量 根据等量关系列出方程
解出方程,求出未知数的值
检验求得的值是否正确和符合实际情形
5、答 写出答案
三、活动探究 例1.小亮和小莹练习赛跑.如果小亮让小莹先跑10 米,那么小亮跑5秒就追上小莹;如果小亮让小莹先 跑2秒,那么小亮跑4秒就追上小莹.问两人每秒各跑 多少米?
与同学交流讨论:
1.题目中的已知量是什么?
2.题目中的未知量是什么?
等量关系1:小亮跑5秒的路程=小莹跑5秒的路程+米.
等量关系2:小亮跑4秒的路程=小莹跑(4+
答:笼子里有23只鸡、12只兔。
四、归纳概括 列二元一次方程组解应用题的一般步骤:
设 用两个字母表示问题中的两个未知数
列 列出方程组
分析题意,找出两个等量关系 根据等量关系列出方程组
解 解方程组,求出未知数的值
验 检验求得的值是否正确和符合实际情形 答 写出答案
列二元一次方程组解应用题的关键步骤:
等量关系2:小亮跑4秒的路程=小莹跑(4+ 2)秒的路程。
解决问题
解:设小亮每秒跑x米,小莹每秒跑y米, 根据题意,得 5x-5y=10
二元一次方程组经典应用题及答案
实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2。
5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4。
8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱。
第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%。
列方程组解应用题1
典型例题【例1】某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?【例2】根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【例3】某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【例4】某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.求购进甲,乙两种钢笔每支各需多少元?【例5】某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.两种跳绳的单价各是多少元?【例6】某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?【例7】甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程组求解)【例8】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?课堂练习1、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.求“益安”车队载重量为8吨、10吨的卡车各有多少辆?2、为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.购进甲乙两种纪念品每件各需要多少元?3、夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?4、苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?5、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是多少?6、我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?7、2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?家庭作业1、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y xy x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 2、陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有A.4种B.11种C.6种D.9种4、成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是( )5、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐BD元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你根据上文,判断布丁和棒棒糖的单价相差多少元?()A.20 B.30 C.40 D.508、图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A、5B、10C、15D、209、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.。
中考数学 列方程(组)解应用题 含答案
中考数学考点跟踪训练8列方程(组)解应用题一、选择题1.(2010·曲靖)练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下面所列方程正确的是( )A .5(x -2)+3x =14B .5(x +2)+3x =14C .5x +3(x +2)=14D .5x +3(x -2)=14答案 A解析 水性笔的单价为x 元,则练习本的单价为(x -2)元,5本练习本和3支水性笔的总价为5(x -2)+3x 元,故选A.2.(2010·恩施)某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A. 21元B. 19.8元 C .22.4元 D .25.2元答案 A解析 设该商品的进价为x 元,28×0.9-x =20%x,1.2x =28×0.9,x =21.3.(2011·泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧ x +y =30,12x +16y =400B.⎩⎪⎨⎪⎧ x +y =30,16x +12y =400 C.⎩⎪⎨⎪⎧ 16x +12y =30,x +y =400 D.⎩⎪⎨⎪⎧12x +16y =30,x +y =400 答案 B解析 甲种奖品每件16元、x 件需16x 元,乙种奖品每件12元、y 件需12y 元,合计16x +12y =400,故选B.4.(2010·绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .96答案 D解析 设1艘大船一次载客x 人,1艘小船一次载客y 人,⎩⎪⎨⎪⎧ x +4y =46,2x +3y =57,解之,得⎩⎪⎨⎪⎧x =18,y =7,∴3x +6y =3×18+6×7=54+42=96.5.(2011·凉山)某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173()1+x %2=127B .173()1-2x %=127C .173()1-x %2=127D .127()1+x %2=173答案 C解析 该品牌服装降价一次后为173-173×x %=173(1-x %)元,降价两次后为173(1-x %)-173(1-x )×x %=173(1-x %)2元,故选C.二、填空题6.(2011·湘潭)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为________.答案 50-8x =38解析 每个莲蓬的单价为x 元,8个莲蓬合计8x 元,找回(50-8x )元,所以50-8x =38.7.(2011·浙江)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 ________元.答案 440 解析 设一束鲜花的价格为x 元,一个礼盒的价格为y 元,则⎩⎪⎨⎪⎧x +2y =143,①2x +y =121,②由①+②得3x +3y =264.∴x +y =88.∴5x +5y =88×5=440.8.(2011·潼南)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费.某用户在5月份用电100度,共交电费56元,则a =________度.答案 40解析 0.50×100<56,可知该用户超量用电.0.50a +0.50(1+20%)(100-a )=56,0.5a +60-0.6a =56,-0.1a =-4,a =40.9.(2011·上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是________.答案 20%解析 设每年屋顶绿化面积的增长率为x .2000(1+x )2=2880.(1+x )2=1.44.1+x =±1.2.所以x 1=0.2,x 2=-2.2(舍去).故x =0.2=20%.10.(2011·宿迁)如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是______m(可利用的围墙长度超过6m).答案 1解析 设AB 长为x m ,则BC =(6-2x )m.∴x (6-2x )=4,x 2-3x +2=0.x 1=2,x 2=1.当x =2时,AB =2,BC =2,不合题意,舍去,所以x =1.三、解答题11.(2011·安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.解 设粗加工的该种山货质量为x 千克,根据题意,得x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克.12.(2011·扬州)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:⎩⎪⎨⎪⎧ x +y =12x +8y = 乙:⎩⎨⎧ x +y = x 12+y 8=根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示____________________,y 表示 __________________;乙:x 表示 ____________________,y 表示 __________________;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)解 (1) 甲:⎩⎪⎨⎪⎧ x +y =20,12x +8y =180; 乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20. 甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度;(2)若解甲的方程组 ⎩⎪⎨⎪⎧ x +y =20, ①12x +8y =180, ② ①×8,得:8x +8y =160, ③③-②,得:4x =20,∴x =5.把x =5代入①得:y =15,∴ 12x =60,8y =120.若解乙的方程组⎩⎪⎨⎪⎧x +y =180, ①x 12+y 8=20, ② ②×12,得:x +1.5y =240, ③③-①,得:0.5y =60.∴y =120.把y =120代入①,得,x =60.答:A 、B 两工程队分别整治河道60米和120米.13.(2011·益阳)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?解 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元.⎩⎨⎧ 14x +()20-14y =29,14x +()18-14y =24,解得:⎩⎪⎨⎪⎧x =1,y =2.5.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当0≤x ≤14时,y =x ;当x >14时,y =14×1+()x -14×2.5=2.5x -21,所求函数关系式为:y =⎩⎨⎧x ()0≤x ≤14,2.5x -21()x >14. (3)∵x =24>14,∴把x =24代入y =2.5x -21,得:y =2.5×24-21=39.答:小英家3月份应交水费39元.14.(2011·烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井的作业任务.部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?解 设原计划每天打x 口井,由题意可列方程30x -30x +3=5, 去分母得,30(x +3)-30x =5x (x +3),整理得,x 2+3x -18=0,解得x 1=3,x 2=-6(不合题意,舍去).经检验,x 2=3是方程的根,∴x =3.答:原计划每天打3口井.15.(2011·衢州)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:解 设每盆花苗增加x 株,则每盆花苗有()x +3株,平均单株盈利为()3-0.5x 元,由题意,得()x +3()3-0.5x =10.化简,整理得x 2-3x +2=0.解这个方程,得x 1=1,x 2=2,∴x +3=4或5.答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:________________________________________________.请用一种与小明不相同的方法求解上述问题.解 (1)平均单株盈利×株数=每盆盈利;平均单株盈利=3-0.5×每盆增加的株数;每盆的株数=3+每盆增加的株数.(2)解法1(解法2(图象法):如图,纵轴表示平均单株盈利,横坐标表示株数,则相应长方形面积表示每一盆盈利.从图象可知,每盆植入4株或5株时,相应长方形面积都是10.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.解法3(列分式方程):设每盆花苗增加x株时,每盆盈利10元,根据题意,得10=3-0.5x.x+3解这个方程,得x1=1,x2=2.经验证,x1=1,x2=2是所列方程的解.∴x+3=4或5.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.四、选做题16.(2011·义乌)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?解(1)2x,50-x.(2)由题意得:(50-x)(30+2x)=2100,化简得:x2-35x+300=0,解得:x1=15, x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去. ∴x=20.答:每件商品降价20元,商场日盈利可达2100元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.7(1)列方程(组)解应用题一.知识梳理1.列方程解应用题的一般步骤是:(1)审题;(2)设元;(3)列方程(组);(4)解方程(组);(5)检验;(6)解答.2.列整式方程(一元二次方程或高次方程等)解决简单实际问题.二.达标训练1.填空题(1)某商品的原价为120元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是_________元(结果用含m 的代数式表示). (2)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.(3)据统计,2005年全球其他国家学汉语的人数已达3千万,而2000年仅1.2千万,若每五年的平均增长率相同,则2015年学汉语人数有望接近_________亿. 2.选择题(4)上海为了申办2010年世博会,决心改善城市容貌,绿化环境.计划经过两年时间,绿地面积增加为44%,这两年平均每年绿地面积的增长率为-------------------------------( )A .19%B .20%C .21%D .22% (5)某商品原价200元,连续两次降价a %后售价为120元,下列方程正确的是--( )A .200(1+ a %)2=120B .200(1- a %)2=120 C .200(1- 2a %)=120 D .200(1-a 2%)=120 3.解答题(6)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,每件衬衫应降价多少元?(7)上海博物馆收到一幅珍贵的油画作品,长2米,宽1米,为了保护这幅名画,工作人员准备给它四周镶上一样宽的金框,画框的面积正好是油画面积的51,求画框的宽是多少?(8)浦东新区举办中学生足球比赛,采用主客场制,规定每两支球队都要在本校和对方学校个进行一场比赛,如果总共赛了240场,问有几只足球队参加比赛?(9)某公司再统计第一季度的营业额时候,发现二月份比一月份增加90万元.三月份比二月份又增加135万元.这样.该公司第一季度的营业额中,二,三月份平均增长率相同.求一月份的营业额是多少?平均增长率是多少?(10)用一桶钢水浇铸100个同样大小的正方形模块,已知钢水桶的半径1米,高2米,问:浇铸的模块的棱长是多少?(结果取一位小数)(11)某件商品连续四天下跌,9月1日每件商品售价为5元,4日下降到3元,问:这件商品日降价率约是多少?(精确到1%)三.拓展提高(12)容器里盛满60升酒精,倒出若干升后用水倒满,然后倒出比上一次多14升的溶液,再用水加满,如果这时容器里纯酒精和水各占一半,问第一次倒出的纯酒精是多少升?四.点击中考(13)(2011上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.(14)(2001上海)某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%.该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元?21.7(2)列方程(组)解应用题一.知识梳理列分式方程解决简单实际问题.二.达标训练1.填空题(1)某施工单位准备对运河一段长2240米的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x米,则得方程为____________.(2)某市在旧城改造过程中,需要整修一段全长2400米的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x米,则根据题意可得方程_________ _________.(3)轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是_________ 千米/时.2.选择题(4)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是---------------------------------------------------------()A.66602x x=-B.66602x x=-C.66602x x=+D.66602x x=+(5)有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜x千克,根据题意,可得方程------------------------------------()A.9001500300x x=+B.9001500300x x=-C.9001500300x x=+D.9001500300x x=-3.解答题(6)某地区计划若干年内开发土地360平方千米,实际施工中,第一年比原计划每年开发的土地面积多2平方千米,如果按此进度继续开发,预计可提前6年完成任务,实际施工中每年开发土地多少平方千米?(7)某中学八年级学生到离学校30千米的电影院看电影,先谴队与大部队同时出发,已知先遣队的速度是大队部行进速度的1.5倍,预计比大部队早1小时到达目的地,求先遣队与大部队的行进速度.(8)某校组织学生步行到科技馆参观.学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时.求学生返回时步行的速度.(9)甲、乙两车同时从A地出发,经过C地去B地,已知C、B相距180千米,出发时,甲每小时比乙多行5千米,因此,乙经过C地比甲晚半小时,为赶上甲,乙从C 地将车速每小时增加10千米,结果两车同时到达B,求两车出发时速度?(10)实验学校初二学生参加慈善活动,一班捐款1260元,二班有35人共捐款1050元,如果一班人均捐款数与年级(共两个班级)人均捐款数相等,求一班人数.三.拓展提高(11)有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?(12)自来水厂要将一个水槽注满水,当水槽漏水时,甲管单独开放需要3小时,乙管单独开放需要2小时,甲、乙两管同时开放注满水需要1小时,求当水槽不漏水时,甲、乙两管同时开放注满水槽需要多少时间?四.点击中考(13)(2004上海)为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固.由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?21.7(3)列方程(组)解应用题一.知识梳理列无理方程解决简单实际问题.二.达标训练1.填空题(1)已知点B在y轴正半轴上,且与点P(4,4)的距离等于6,则点B的坐标为.(2)已知点C在y轴上,且与点P(4,4)的距离等于41,则点C的坐标为.(3)已知点E在x轴上,且与点P(4,4)的距离等于4,则点E的坐标为.(4)已知点G在坐标轴上,且与点P(4,4)的距离等于8,则点G的坐标为.2.解答题(5)一个数的正的平方根比它增加72后的正的平方根小4,求这个数.(6)两个自然数相差24,且它们的正的平方根之和为6,求其中较小的自然数.(7)如图,一把梯子AB靠墙角,CB’=5.1米,梯子下滑斜靠在A’B’位置,AA’=0.7米,BB’=1.1米,求梯子AB的长.l1l2北O书店小李(8)如图,l 1是一条东西方向的道路,l 2是一条南北方向的道路,这两条道路相交于点O ,小李沿着l 2走,寻找书店,已知书店离l 1道路3米,离l 2道路9米,问小李在沿着l 2走的过程中,他几次到达离书店15米的地方,这两个地方在哪儿?(9)若点P 在直线y=2x+1上,点P 到点(2,3)的距离等于6,且点P 在第二象限,问是否存在这样的点P ?若存在,求出点P 的坐标,若不存在,请说明理由.三.拓展提高(10)一个牧羊人赶着羊群从离河3千米的A 草场到河边的P 地饮水,再从P 地到离河1千米的B 草场,图中C 、D 两点的距离是4千米.假设羊群共走了d 千米,问:当d 等于(1)6,(2)42,(3)5时,图中C 、P 的距离是多少?21.7(4)列方程(组)解应用题一.知识梳理列分式方程组解决简单实际问题.二.达标训练(1)甲乙两个工程队合作一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.问:两队单独工作各需多少天完成?(2)甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次乙车提速30千米/时,结果比甲车早到20分钟,求第一次甲、乙两车的速度各是多少?(3)A、B两地相距64千米,甲乙两人骑自行车分别从A、B两地相向而行,乙比甲每小时多行4千米,如果甲比乙先行40分钟,那么两人相遇时所行路程恰好相等,甲、乙两人骑车的速度各是多少?(4)甲乙两水管同时向一水池注水,16小时可以注满.若甲乙两管同时开始注水,4小时后关闭甲管,乙管继续注水至注满水池,则所需时间比单独开启甲管注满水池所需要时间还多12小时.单独开启甲管或乙管,注满水池各需要多少小时?(5)某种汽水有大、小瓶两种规格,现用48元购大瓶装汽水,80元购小瓶装汽水,总共26瓶;若用80元购大瓶装汽水,48元购小瓶装汽水,可购22瓶.求大、小瓶汽水每瓶各多少元?(6)一辆玩具车走12米璐,前轮比后轮多转6圈,如果前轮周长增加41,后轮周长增加51,那么走12米路前轮比后轮要多4圈,求原先前轮和后轮的周长.三.拓展提高(7)某商场在一楼和二楼之间安装了一部自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部.问:扶梯露在外面的部分有多少级?21.7(5)列方程(组)解应用题一.知识梳理列二元二次方程组解决简单实际问题.二.达标训练(1)一个两位数,十位上的数字比个位上的数字小5,将十位上的数字加上3后,再平方,恰好等于这个两位数,求这个两位数.(2)已知,直角三角形的周长为30cm,斜边上的中线长为6.5cm,求这个直角三角形的边长.(3)有这样两个数,它们乘积是12,和为7,求这两个数.(4)农民张三想建造栅栏,他考虑靠墙围个长方形,3条边总长为10米,面积是12平方米,请问各边长为多少米?(5)有两个等腰直角三角形,它们的面积和等于一个边长为26cm 的正方形面积,它们的面积差等于一个长和宽分别为5cm 和2cm 的长方形的面积.求其中面积较大的直角三角形的斜边长.(6)有一项工程,由甲乙两队承包,522天完成,由乙丙两队承包,433天完成;由甲丙两队承包762天完成,问选择哪个队单独承包完成时间最短?三.拓展提高(7)有一个两位数,将它个位和十位上的数字分别平方后(仍为1位数),交换位置,得到一个新的二位数,且比原来大了29,请问原来的数是多少?(8)男孩女孩共12人,老师发了46颗糖果给他们.所有男孩那的糖果数目相同,且女孩每人比男孩多一颗,男孩各女孩多少人?单元测试一、填空题1.当b 时,方程x bx -=-11的解为12+=b x .2.方程02323=-x x 的解为 . 3.方程01122=-+x 的解为 .4.方程x x -=+2的解为 . 5.方程组⎩⎨⎧==+65xy y x 的解为 .6. 二元二次方程034422=-+y xy x 可分解成两个二元一次方程为 .二、选择题1.下列方程中有实数解的是……………………………………………………( ) (A )25225--=--x x x ; (B )538=---x x ; (C )1732=+x ; (D )055=---x x2.在解分式方程122122=+-+x xxx 时,用换元法把它化为关于y 的方程121=-y y ,那么下列换元正确的是……………………………………………………………( ) (A )01522=+-y y ; (B )0252=+-y y ; (C )02522=++y y ; (D )02522=+-y y .3.某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成,原计划每天挖多少米?若设原计划每天挖x 米,则根据题意列出正确的方程为……………………………………………………………………………………( ) (A )496296=--xx ; (B )429696=--x x ;(C )429696=+-x x ; (D )496296=-+xx三、解下列方程(组)1. 0212312=+-+-x x xx 2.1412=+-+x x3.⎩⎨⎧=+--=+-011260122y x x y x四、应用题1、一飞机速度为每小时250千米,在飞行495千米的航程中,逆飞比顺飞多用24分钟,求风速.2、在抗击“SARS ”的过程中,某厂甲、乙两人按上级指示同时做一批等数量的防护服,开始时乙比甲每天少做3件,到甲、乙两人都剩下80件时,乙比甲多做了2天,这时,甲保持工作效率不变,乙提高了工作效率后比原来每天多做5件,这样甲、乙两人同时完成任务,求甲、乙两人原来每天各做多少件防护服?答案:21.7(1)1、120(1-m )22、20%3、1.875亿4、B5、B6、20元7、2015265-8、16支 9、180万元;50% 10、≈0.4米 11、≈16% 12、设倒出x 升,则 0212312=+-+-x x xx 解得,x 1=10;x 2=96>60,舍去,所以倒出10升 13、20%14、1800万元 21.7(2) 1、22022402240=+-x x2、82.124002400=-xx3、20千米/小时4、D5、C6、12平方千米7、先遣部队速度为15千米/小时,大部队速度为10千米/小时8、3千米/小时9、甲速度为40千米/小时,乙的速度为35千米/小时 10、42人 11、6天 12、设漏水时注满水槽需要x 小时,则112131=++x,所以x=6; 所以甲、乙两管同时开放注满水槽需要76小时21.7(3)1、(0,524+)2、(0,-1);(0,9)3、(4,0)4、(344+,0);(0,344+); (344-,0);(0,344+)5、496、17、8.5米8、点O 南面9米处和点O 北面15米处9、不存在P 点 10、设CP =x ,则d x x =+--+1)4(922(1)当d=6时,x 1=4;x 2=58 (2)当d =24时,x 1=x 2=3 (3)当d =5时,无解21.7(4)1、甲10天;乙15天2、甲80千米/小时;乙60千米/小时3、甲12千米/小时;乙16千米/小时4、24小时和48小时5、大瓶4瓶,小瓶8瓶6、前轮的周长为52,后轮的周长为21 7、设女孩上梯的速度为x 级/分,自动扶梯的速度为y 级/分,露在外面的部分有s 级,则男孩的上梯的速度为2x 级/分.则可列方程组⎪⎪⎩⎪⎪⎨⎧-=-=y s xys x 181827227,两式相除,得s =54 21.7(5)1、16或492、5,12和133、3和44、3米和4米或2米和6米5、26cm6、乙最早完成7、128、设男生x 人,每人拿y 颗糖果,则46)1)(12(=+-+y x xy 所以1234x y +=因为x ≤12且y 是整数,所以x =2;y =3,所以男孩2人,女孩10人.。