高中物理安培力

合集下载

高中物理安培力实验

高中物理安培力实验

高中物理安培力实验是一种用来研究电流在磁场中所受力的实验。

安培力是电流在磁场中受到的力,其大小与电流强度、磁感应强度以及电流与磁场的夹角有关。

在进行安培力实验时,通常会使用导线、电源、磁铁和测力计等器材。

首先,将导线放置在磁场中,并通以电流。

然后,使用测力计测量导线所受的安培力大小,并记录下来。

接下来,可以通过改变电流的大小、磁场的方向和导线的放置位置等方式,来研究安培力大小与这些因素之间的关系。

在实验过程中,需要注意以下几点:
1. 保持电流、磁场和导线方向的稳定,避免外界干扰对实验结果的影响。

2. 在测量安培力时,需要保证测力计的精度和准确性,以避免误差的产生。

3. 在改变实验条件时,需要逐一改变,以便观察每个因素对安培力大小的影响。

通过安培力实验,可以帮助学生更好地理解电流在磁场中所受力的原理,加深对电磁现象的认识和理解。

同时,实验也可以培养学生的动手能力和实验技能,提高他们的科学素养和实验能力。

高二物理磁场中的安培力知识点

高二物理磁场中的安培力知识点

⾼⼆物理磁场中的安培⼒知识点 安培⼒是⾼⼆物理教学中的⼀个重要内容,具体有哪些知识点我们需要了解?下⾯是店铺给⼤家带来的⾼⼆物理磁场中的安培⼒知识点,希望对你有帮助。

⾼⼆物理磁场中的安培⼒知识点 ⼀、安培⼒的⽅向 安培⼒——磁场对电流的作⽤⼒称为安培⼒。

左⼿定则:伸开左⼿,使拇指与四指在同⼀个平⾯内并跟四指垂直,让磁感线垂直穿⼊⼿⼼,使四指指向电流的⽅向,这时拇指所指的就是通电导体所受安培⼒的⽅向。

⼆、安培⼒⽅向的判断 1.安培⼒的⽅向总是垂直于磁场⽅向和电流⽅向所决定的平⾯,在判断安培⼒⽅向时⾸先确定磁场和电流所确定的平⾯,从⽽判断出安培⼒的⽅向在哪⼀条直线上,然后再根据左⼿定则判断出安培⼒的具体⽅向。

2.已知I、B的⽅向,可唯⼀确定F的⽅向;已知F、B的⽅向,且导线的位置确定时,可唯⼀确定I的⽅向;已知F、I的⽅向时,磁感应强度B的⽅向不能唯⼀确定。

3.由于B、I、F的⽅向关系在三维⽴体空间中,所以解决该类问题时,应具有较好的空间想像⼒.如果是在⽴体图中,还要善于把⽴体图转换成平⾯图。

三、安培⼒的⼤⼩ 实验表明:把⼀段通电直导线放在磁场⾥,当导线⽅向与磁场⽅向垂直时,导线所受到的安培⼒最⼤;当导线⽅向与磁场⽅向⼀致时,导线所受到的安培⼒等于零;当导线⽅向与磁场⽅向斜交时,所受到的安培⼒介于最⼤值和零之间。

⾼⼆物理磁场知识点 1.磁感应强度是⽤来表⽰磁场的强弱和⽅向的物理量,是⽮量,单位T),1T=1N/Am 2.安培⼒F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培⼒(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹⼒f=qVB(注V⊥B);质谱仪〔见第⼆册P155〕{f:洛仑兹⼒(N),q:带电粒⼦电量(C),V:带电粒⼦速度(m/s)} 4.在重⼒忽略不计(不考虑重⼒)的情况下,带电粒⼦进⼊磁场的运动情况(掌握两种): (1)带电粒⼦沿平⾏磁场⽅向进⼊磁场:不受洛仑兹⼒的作⽤,做匀速直线运动V=V0 (2)带电粒⼦沿垂直磁场⽅向进⼊磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度⽆关,洛仑兹⼒对带电粒⼦不做功(任何情况下);(c)解题关键 ⾼⼆物理学习⽅法 ⼀、及时完成学习任务,注重基础知识的掌握。

高中物理磁场中的安培力与洛伦兹力

高中物理磁场中的安培力与洛伦兹力

高中物理磁场中的安培力与洛伦兹力在高中物理的学习中,磁场部分的安培力与洛伦兹力是两个非常重要的概念。

理解它们不仅对于应对考试中的难题至关重要,更有助于我们深入理解自然界中电磁相互作用的规律。

首先,咱们来聊聊安培力。

安培力是指通电导线在磁场中受到的力。

当一段通有电流的导线置于磁场中时,导线就会受到安培力的作用。

这个力的大小与电流的大小、导线在磁场中的长度、磁感应强度以及电流方向与磁场方向的夹角有关。

其大小可以用公式 F =BILsinθ 来计算,其中 F 表示安培力,B 表示磁感应强度,I 是电流强度,L 是导线在磁场中的有效长度,θ 是电流方向与磁场方向的夹角。

那这个公式是怎么来的呢?这就得从电流的本质说起。

电流其实是由大量自由电子定向移动形成的。

每个自由电子在磁场中都会受到洛伦兹力的作用,由于电子定向移动,它们所受洛伦兹力的宏观表现就形成了安培力。

比如说,在一个垂直纸面向里的匀强磁场中,有一根水平放置的通有电流的直导线。

如果电流方向向右,那么根据左手定则,导线所受安培力的方向就会竖直向下。

安培力在实际生活中有很多应用。

像电动机就是利用安培力的原理工作的。

在电动机中,通电线圈在磁场中受到安培力的作用而发生转动,从而将电能转化为机械能。

接下来,咱们再看看洛伦兹力。

洛伦兹力是指运动电荷在磁场中所受到的力。

当一个电荷以速度 v 在磁场中运动时,如果磁场的磁感应强度为 B,并且电荷的运动方向与磁场方向夹角为θ,那么这个电荷所受到的洛伦兹力大小为 F =qvBsinθ,其中 q 表示电荷量。

洛伦兹力的方向同样可以用左手定则来判断。

需要注意的是,洛伦兹力始终与电荷的运动方向垂直,所以洛伦兹力永远不会对运动电荷做功。

举个例子,如果一个带正电的粒子以水平向右的速度在垂直纸面向里的磁场中运动,那么根据左手定则,粒子所受洛伦兹力的方向就是竖直向上。

洛伦兹力在现代科技中也有着重要的应用。

比如,在显像管中,电子枪发射出的电子在磁场的作用下发生偏转,从而使电子能够准确地打在屏幕的指定位置上,形成图像。

2024年高中物理安培力课件

2024年高中物理安培力课件

2024年高中物理安培力课件一、教学内容本课件基于2024年高中物理教材,涉及第十二章“电磁感应”中的第三节“安培力”。

详细内容包括:安培力定律的推导,安培力大小的计算,安培力方向判定,以及安培力在实际应用中的案例分析。

二、教学目标1. 让学生掌握安培力定律,理解安培力与电流、磁场之间的关系。

2. 培养学生运用安培力解决实际问题的能力,提高学生的物理思维。

3. 使学生了解安培力在科技发展中的应用,激发学生学习物理的兴趣。

三、教学难点与重点教学难点:安培力方向判定,安培力大小计算。

教学重点:安培力定律的理解与应用。

四、教具与学具准备1. 教具:磁铁、电流表、导线、滑动变阻器、电源等。

2. 学具:笔记本、教材、计算器等。

五、教学过程1. 实践情景引入:通过展示磁铁吸引铁钉的现象,引导学生思考磁场与电流之间的关系。

2. 知识讲解:(1)安培力定律的推导:引导学生回顾磁场对电流的作用,进而推导出安培力定律。

(2)安培力大小的计算:讲解安培力公式,并通过例题讲解如何应用公式计算安培力。

(3)安培力方向判定:通过右手螺旋法则,让学生掌握判定安培力方向的方法。

3. 随堂练习:布置一些有关安培力计算的题目,让学生当堂练习,巩固所学知识。

4. 案例分析:分析安培力在实际应用中的案例,如电动机、发电机等,让学生了解安培力在科技发展中的重要作用。

六、板书设计1. 安培力定律公式:F = BILsinθ2. 安培力方向判定:右手螺旋法则3. 安培力应用案例:七、作业设计1. 作业题目:(1)计算题:已知电流和磁场,求安培力的大小和方向。

(2)应用题:分析安培力在生活中的应用实例,并说明其原理。

2. 答案:八、课后反思及拓展延伸2. 拓展延伸:鼓励学生课后查阅资料,了解安培力在科技发展中的其他应用,提高学生的学习兴趣。

重点和难点解析1. 安培力定律的推导和公式理解。

2. 安培力方向判定方法的掌握。

3. 安培力在实际应用中的案例分析。

2024年高中物理人教版安培力教案

2024年高中物理人教版安培力教案

2024年高中物理人教版安培力教案一、教学内容本节课选自2024年高中物理人教版教材第二章第4节“磁场对电流的作用”,详细内容如下:1. 磁场对电流的作用力——安培力的概念及计算公式;2. 安培力方向的判定——左手定则;3. 安培力在直线电流和圆形电流中的应用;4. 安培力与洛伦兹力的关系。

二、教学目标1. 让学生掌握安培力的概念,理解安培力产生的原理;2. 使学生掌握左手定则,并能熟练运用判定安培力的方向;3. 培养学生运用安培力解决实际问题的能力。

三、教学难点与重点重点:安培力的概念及计算公式,左手定则的应用。

难点:安培力方向的理解和判定,安培力与洛伦兹力的关系。

四、教具与学具准备1. 教具:电流表、磁场演示器、安培力演示器、投影仪;2. 学具:学生分组实验器材(电流表、导线、磁铁、电源等)。

五、教学过程1. 引入:通过展示磁悬浮列车、电动机等实际应用,引导学生思考磁场与电流之间的关系;2. 讲解:讲解安培力的概念、计算公式及左手定则;3. 演示:运用教具演示安培力的产生及方向判定,让学生直观感受安培力的存在;4. 实践:学生分组进行实验,测量不同电流、磁场下安培力的大小,加深对安培力的理解;5. 例题讲解:讲解安培力在实际问题中的应用,如直线电流、圆形电流的安培力计算;6. 随堂练习:布置相关习题,让学生及时巩固所学知识;六、板书设计1. 安培力的概念、计算公式;2. 左手定则的应用;3. 安培力在实际问题中的应用;4. 安培力与洛伦兹力的关系。

七、作业设计1. 作业题目:(1)计算题:求直线电流在磁场中受到的安培力;(2)判断题:判断圆形电流在磁场中的安培力方向;(3)应用题:分析安培力在电动机中的作用。

2. 答案:见附录。

八、课后反思及拓展延伸2. 拓展延伸:引导学生了解安培力的应用领域,如磁悬浮列车、电动机等,激发学生学习兴趣。

重点和难点解析1. 教学难点与重点的确定;2. 教具与学具的准备;3. 教学过程中的实践情景引入、例题讲解和随堂练习;4. 板书设计;5. 作业设计;6. 课后反思及拓展延伸。

高中物理新选修课件安培力的应用

高中物理新选修课件安培力的应用
安培力公式
安培力的大小可以通过公式F=BIL来计算,其中F为安培力,B为磁感应强度,I为电流强 度,L为导线在磁场中的有效长度。
安培力方向
安培力的方向可以用左手定则来判断,即伸开左手,使拇指与其余四个手指垂直,并且都 与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的 方向就是通电导线在磁场中所受安培力的方向。
03
动生和感生电动势的计算方法
根据法拉第电磁感应定律和洛伦兹力公式,可以推导出动生和感生电动
势的计算公式,从而计算出相应的电动势大小。
03
安培力在磁场中运动规律
洛伦兹力与霍尔效应
洛伦兹力
运动电荷在磁场中所受到的力,其方向垂直于磁场方向和电 荷运动方向所构成的平面,遵循左手定则。
霍尔效应
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直 于电流和磁场的方向会产生一附加电场,从而在半导体的两 端产生电势差。
通过测量磁通量的变化率,可以计算出感应电动势的大小,从而了解电磁感应现 象的本质和规律。
动生和感生电动势计算
01 02
动生电动势
当导体在磁场中运动时,会在导体中产生动生电动势。动生电动势的大 小与导体的运动速度、磁场的磁感应强度以及导体与磁场的相对角度有 关。
感生电动势
当磁场发生变化时,会在导体中产生感生电动势。感生电动势的大小与 磁通量的变化率有关。
VS
无线电波接收
通过天线接收空中的电磁波,并将其转换 为高频电流。接收过程中的关键元件包括 接收器、解调器和放大器等。通过解调器 将高频信号还原为原始信号,实现信息的 接收和识别。
05
实验:测量安培力大小和方向
实验目的和器材准备
实验目的

教科版高中物理选择性必修第二册第一章第1节安培力

教科版高中物理选择性必修第二册第一章第1节安培力

问题:如图所示,两条平行的通电直导线之间会通 过磁场发生相互作用。在什么情况下两条导线相互吸引, 什么情况下相互排斥?请你运用学过的知识进行讨论并 做出预测,然后用实验检验你的预测。
?
分析同向电流为什么会相互吸引?
AB
AB
FAB
FAB
安培定则
左手定则
A 的 磁场
B
B 的 磁场
A
同理:
F
I
I
F
电流方向相同
大小与导线长度和电流大小都成正比,即 F IL 比例系
数与导线所在位置的磁场强弱有关,用符号B表示,则磁场
对通电导线作用力---安培力的公式为:
F ILB
4.公式:
安培力
通电导线在磁场中的有效长度
电流
磁感应强度
F ILB (当B与I垂直时适用)
牛(N) 安培(A)
5.安培力的方向
a.与磁场方向有关 b.与电流方向有关
电流方向相反
FI
F
I
6.通电导线之间通过磁场发生相互作用
结论: 电流方向相同时,将会吸引; 电流方向相反时,将会排斥。
例1.判断下图中通电导线受力的方向(左手定则)
N
S
F
B F
例2.画出图中安培力的方向
提示:由左手定则作答
F
F
F
分析:B与I成一定
夹角θ, 请问F=?
【练习】画出图中第三个量的方向。
2.如图所示:在磁感强度为2T的匀强磁场中,一与水平面成 37度角的导电轨道,轨道上放一可ቤተ መጻሕፍቲ ባይዱ移动的金属杆ab,电源 电动势为E=10V,内阻r=1Ω,ab长L=0.5m,质量m为0.2kg,杆 与轨道间的摩擦因数 u=0.1,求接在轨道中的可变电阻R在 什么范围内, 可使ab杆在轨道上保持静止?(杆与轨道的电阻 不计)

高中物理知识点安培力

高中物理知识点安培力

高中物理知识点:安培力在物理学中,「安培力」是学习电磁力学的一个重要概念。

它是以法国物理学家安德烈-玛丽·安培(André-Marie Ampère)的名字命名的,安培力是指通过电流所产生的磁场之间的相互作用力。

安培力是磁场中流经导线的电流所感受到的力。

理解安培力的概念对于理解电磁学和电磁场相互作用的基本原理至关重要。

在高中物理课程中,安培力通常会涉及到磁场、电流以及导线之间的相互关系。

首先,安培力的大小与电流的强弱直接相关。

当电流通过一根直导线时,该导线周围会形成一个磁场。

根据安培定律,当电流和磁场垂直时,安培力的大小可以通过以下公式计算:F = BIL其中,F表示安培力的大小,B表示磁场的强度,I表示电流的强度,L表示导线的长度。

其次,安培力的方向由安培左手定则确定。

根据安培左手定则,当你将左手的大拇指指向电流的方向,四指指向磁场的方向时,大拇指的方向就是安培力的方向。

这个定则提供了一个简单的方法来确定安培力的方向。

安培力在实际生活中有许多重要应用。

例如,磁铁可以制造一个磁场,通过将电流导线放置在磁场中,可以产生一个力,使得金属物体被吸附在磁铁上。

这就是电磁铁的工作原理。

另一个应用是电动机。

电动机的核心原理是安培力的运用。

通过在直流电流的电磁线圈中产生安培力,可以使线圈产生旋转运动。

这使得电动机能够将电能转化为机械能,并从而实现工作。

在高中物理教学中,教师通常会进行一系列实验来帮助学生更好地理解安培力的概念。

例如,通过将电流导线放置在磁场中,并观察导线感受到的力的变化情况,可以直观地展示安培力的作用。

总结一下,安培力是高中物理中的重要知识点之一。

它描述了电流在磁场中所感受到的力,并且对于电磁学的核心概念和应用具有重要意义。

了解安培力的大小和方向以及其应用,有助于学生更好地理解电磁学的基本原理,并在实际问题中应用相关知识。

高中物理课件安培力

高中物理课件安培力
当导线与磁场垂直时,安培力最大,为F = BIL;当导线与磁场平行时,安培力 为零。安培力方向垂直于B和I所决定的平面,且符合左手定则。
计算方法与步骤
• 计算方法:根据安培力公式F = BILsinθ,将已知量代入公式进行计算。
计算方法与步骤
计算步骤 01
确定磁感应强度B的大小和方向; 02
确定电流强度I的大小和方向; 03
例题2
一根通电直导线与匀强磁场方向成 60°角放置,导线中电流为I,磁感应 强度为B。若导线受到的安培力大小
为F,则导线的长度为多少?
解析
根据安培力公式F = BILsinθ,由于导 线与磁场垂直,所以θ = 90°,代入 公式得F = BIL。
解析
根据安培力公式F = BILsinθ,将已知 量代入公式得F = BILsin60°,解得导 线的长度L = (2F)/(BI√3)。
电磁炮
电磁炮是一种利用安培力发射炮弹的武器。它通过强大的电流在导轨上产生强大的磁场, 然后将炮弹加速到极高的速度并发射出去。
磁悬浮列车
磁悬浮列车是一种利用安培力实现悬浮和驱动的交通工具。它通过电磁铁产生的磁场与列 车上的超导磁铁相互作用,使列车悬浮于轨道之上并高速运行。
安培力演示仪
安培力演示仪是一种用于演示安培力作用的实验仪器。它通常由线圈、磁铁和指针等部分 组成,当线圈中通入电流时,指针就会发生偏转,从而直观地展示出安培力的作用效果。
混淆磁感应强度和磁通量
磁感应强度B和磁通量Φ是两个不同的物理量,学生容易混淆。磁感应强度B是描述磁场强弱的物理量,而磁通量 Φ是描述穿过某一面积的磁感线条数的物理量。在分析安培力时,需要使用磁感应强度B而不是磁通量Φ。
拓展延伸内容
安培力与洛伦兹力的关系

安培力课件精

安培力课件精

安培力课件精一、教学内容本节课的教学内容选自高中物理教材《选修31》的第十章第一节“安培力”。

本节课主要介绍了安培力的概念、计算公式以及安培力的应用。

具体内容包括:1. 安培力的定义:通过电流的磁场对运动电荷的作用力称为安培力。

2. 安培力的计算公式:F = BILsinθ,其中F为安培力,B为磁场强度,I为电流,L为电流所在导线的长度,θ为电流方向与磁场方向的夹角。

3. 安培力的应用:安培力在现代科技领域和日常生活中有着广泛的应用,如电动机、电磁起重机等。

二、教学目标1. 让学生理解安培力的概念,掌握安培力的计算公式及应用。

2. 培养学生运用物理知识解决实际问题的能力。

3. 提高学生对物理学科的兴趣和热情。

三、教学难点与重点1. 教学难点:安培力的计算公式及其在实际问题中的应用。

2. 教学重点:安培力的概念、计算公式及应用。

四、教具与学具准备1. 教具:投影仪、课件、黑板、粉笔。

2. 学具:教材、笔记本、三角板、直尺。

五、教学过程1. 导入:以电动机的工作原理为实践情景,引导学生思考电动机是如何工作的,从而引出安培力的概念。

2. 新课讲解:讲解安培力的定义、计算公式及应用,通过示例题目让学生理解安培力的计算方法。

3. 例题讲解:分析并解决教材中的典型例题,让学生学会如何运用安培力的计算公式。

4. 随堂练习:让学生独立完成教材中的随堂练习题,巩固所学知识。

6. 作业布置:布置教材中的课后作业,让学生进一步巩固安培力的知识。

六、板书设计1. 安培力的定义2. 安培力的计算公式:F = BILsinθ3. 安培力的应用七、作业设计1. 题目:计算通过一根长为0.5米,电流为2安的导线在磁场强度为0.5特斯拉、电流方向与磁场方向夹角为90度的磁场中受到的安培力。

答案:F = BILsinθ = 0.5 × 2 × 0.5 × sin90° = 0.5牛顿。

2. 题目:一辆电动机的线圈匝数为1000,电流为4安,磁场强度为0.6特斯拉,求电动机受到的安培力。

1.1安培力 课件-高中物理粤教版(2019)选择性必修第二册(共26张PPT)

1.1安培力 课件-高中物理粤教版(2019)选择性必修第二册(共26张PPT)

电路实物图
电脑界面图
三、安培力的大小
1.表达式:
F=ILBsin θ
2.适用条件: 匀强磁场
3.理解:
• θ是导线与磁场方向的夹角
• F与B、I、L及θ均有关
• 对于弯曲导线,L是有效长度
L 等于连接两端点直线的长度,
相应的电流沿 L 由始端流向末端。
三、安培力的大小
3、解决问题
在如图所示的实验中,两根固定的金属导轨间距离为 L,处于蹄形磁铁两极中间的磁场可近似看成是
二、安培力的方向
3、判断安培力方向的理论方法
弗莱明的理论方法:
将左手的大拇指、食指和中指
伸直,使其在空间中相互垂直
,食指方向代表磁场方向,中
指代表电流方向,那拇指所指
的方向就是受力方向。
二、安培力的方向
4、左手定则
伸开左手,使拇指与其余四个手指垂直且都与手掌共面;让
磁感线从掌心进入,并使四指指向电流的方向,这时拇指所
根据左手定则,可知金属棒受到
的安培力方向为水平向右。
解决问题
在如图所示的实验中,两根固定的金属导轨间距离为 L,处
于蹄形磁铁两极中间的磁场可近似看成是匀强磁场,磁感应
强度为B且垂直导轨平面,金属棒长度为l(L<l),测得电路中
电流大小为I。金属棒由干受到安培力作用而沿轨道向前滚动,
忽略金属棒与导轨之间的摩擦。
同学丙:适当增大金属棒中的电流。谁的建议可行?为什么?
解决问题
在如图所示的实验中,两根固定的金属导轨间距离为 L,处
于蹄形磁铁两极中间的磁场可近似看成是匀强磁场,磁感应
分析:
导体棒作为研究对象
强度为B且垂直导轨平面,金属棒长度为l(L<l),测得电路中

高中物理磁场中的安培力与电流方向

高中物理磁场中的安培力与电流方向

高中物理磁场中的安培力与电流方向在高中物理的学习中,磁场中的安培力与电流方向是一个至关重要的知识点。

理解这两者之间的关系,对于解决电磁学相关的问题具有重要意义。

我们首先来了解一下什么是安培力。

安培力是指通电导线在磁场中所受到的力。

当电流通过导线时,如果导线处于磁场中,就会受到一种力的作用,这就是安培力。

那么,安培力的大小和方向是由哪些因素决定的呢?安培力的大小与电流的大小、导线在磁场中的长度、磁感应强度以及电流与磁场方向的夹角有关。

其计算公式为:$F = BIL\sin\theta$,其中$F$表示安培力,$B$表示磁感应强度,$I$表示电流,$L$表示导线在磁场中的有效长度,$\theta$则是电流方向与磁场方向的夹角。

接下来,重点探讨一下安培力的方向。

安培力的方向可以用左手定则来判断。

伸出左手,让磁感线垂直穿过掌心,四指指向电流的方向,那么大拇指所指的方向就是安培力的方向。

为了更深入地理解安培力的方向与电流方向的关系,我们来看几个具体的例子。

假设一根水平放置的直导线,电流从左向右流动,而磁场方向是竖直向下的。

根据左手定则,此时安培力的方向应该是向前。

再比如,一根竖直放置的导线,电流从上往下流动,磁场方向是水平向右的,那么安培力的方向就是向下。

在实际的应用中,安培力与电流方向的关系有着广泛的用途。

比如在电动机中,通过导线中的电流在磁场中受到安培力的作用,从而使电动机的转子转动起来,实现电能向机械能的转化。

了解了安培力和电流方向的基本概念以及判断方法后,我们来思考一下如何在解题中运用这些知识。

在解决涉及安培力的问题时,首先要明确磁场的方向、电流的方向以及导线的长度等相关信息。

然后,根据左手定则准确判断出安培力的方向。

在计算安培力的大小时,要注意正确运用公式,特别要注意夹角的处理。

在一些复杂的问题中,可能会涉及到多个导线或者磁场的叠加。

这时候就需要我们仔细分析每根导线所受的安培力,再根据物体的受力平衡或者运动状态来求解问题。

高中物理知识点安培力

高中物理知识点安培力

高中物理知识点——安培力在学习物理的过程中,我们会接触到许多重要的概念和定律。

其中,安培力是一个非常重要的概念,它被广泛应用于电磁学和电路中。

本文将带您深入了解高中物理中的安培力,包括定义、公式及其应用。

一、安培力的定义:安培力是由电荷在磁场中受到的力,它是由法国科学家安培发现的,被命名为安培力。

安培力的方向垂直于电荷的速度和磁场的方向。

二、安培力的公式:安培力的表达式由以下公式给出:F = q * v * B * sinθ其中,F表示安培力,q是电荷的大小,v是电荷的速度,B是磁场的大小,θ是电荷速度与磁场之间的夹角。

三、安培力的应用:1. 电磁感应:根据法拉第电磁感应定律,当一个导体在磁场中运动时,会感受到安培力的作用。

这个现象在发电机和电动机中得到广泛应用。

2. 电子运动:在电子运动过程中,如果电子在磁场中运动,会受到安培力的作用,这被称为霍尔效应。

霍尔效应可以用于测量磁场的强度和方向。

3. 轨道运动:当一个带电粒子在磁场中做轨道运动时,安培力可以改变粒子的轨道半径,这就是电子在磁场中的轨道运动。

它被应用于电子加速器和质谱仪等领域。

4. 电子束偏转:在电视和显示器中,电子通过被聚焦和偏转来形成图像。

安培力被用来控制电子束的偏转,以实现图像的显示。

5. 磁浮列车:磁浮列车是一种利用磁悬浮技术运行的交通工具。

在磁浮列车中,由于磁场的作用力,车厢将悬浮在轨道上,减小了与轨道的摩擦力,使得列车能够以较高的速度运行。

总结:安培力是在电荷运动中受到的力,它在物理学的许多领域中得到了广泛应用。

了解安培力的定义、公式和应用可以帮助我们更好地理解电磁学和电路的原理,并能够应用于实际问题的计算和解决。

它为我们探索电子运动、电磁感应等现象提供了基础。

更深入地研究和理解安培力的原理将使我们在物理学和电子学的学习和实践中更加熟练和灵活。

高中物理课件安培力

高中物理课件安培力

高中物理课件安培力一、教学内容本节课教学内容选自高中物理教材《电磁学》第四章第三节,主要详细讲解安培力的计算及其应用。

内容包括安培力定律的表述、安培力大小的计算、安培力方向的判定以及安培力在电流载流子中的应用。

二、教学目标1. 理解安培力定律,掌握安培力大小的计算公式及方向的判定方法。

2. 能够运用安培力知识解决实际问题,如电流表、电动机等。

3. 培养学生的逻辑思维能力和动手操作能力,提高学生对物理现象的观察能力。

三、教学难点与重点教学难点:安培力方向的判定,安培力在复杂电路中的应用。

教学重点:安培力定律的理解,安培力大小的计算。

四、教具与学具准备1. 教具:电流表、电动机、磁铁、导线、电池等。

2. 学具:纸、笔、计算器、尺子等。

五、教学过程1. 实践情景引入:通过展示电流表和电动机,引导学生思考这些设备是如何工作的,引出安培力的概念。

2. 理论讲解:(1)安培力定律的表述。

(2)安培力大小的计算公式。

(3)安培力方向的判定方法。

3. 例题讲解:讲解安培力在简单电路和复杂电路中的应用,以及安培力方向的判定。

4. 随堂练习:让学生动手计算给定电路中的安培力大小及方向。

5. 实践操作:分组进行实验,测量电流表和电动机中的安培力。

六、板书设计1. 安培力定律的表述。

2. 安培力大小的计算公式。

3. 安培力方向的判定方法。

4. 例题解答及注意事项。

七、作业设计1. 作业题目:(1)计算给定导线长度、电流和磁场强度下的安培力大小。

(2)判断给定电流和磁场方向下的安培力方向。

2. 答案:(1)安培力大小 = BIL(其中B为磁场强度,I为电流,L为导线长度)。

(2)安培力方向可根据右手定则判定。

八、课后反思及拓展延伸1. 反思:本节课学生对安培力概念的理解及计算方法的掌握程度。

2. 拓展延伸:(1)了解安培力的应用,如电动机、发电机等。

(2)探讨安培力在电磁场中的应用,为后续学习电磁波打下基础。

重点和难点解析1. 安培力方向的判定。

高中物理选修3-1-磁场对通电导线的作用力

高中物理选修3-1-磁场对通电导线的作用力

磁场对通电导线的作用力知识元安培力知识讲解1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心.2.安培力的大小(1)计算公式:F=BIL sinθ(2)对公式的理公式F=BIL sinθ可理解为F=B(sinθ)IL,此时B sinθ为B沿垂直I方向上的分量,也可理解为F=BI(L sinθ),此时L sinθ为L沿垂直B的方向上的投影长度,也叫“有效长度”,公式中的θ是B和I方向间的夹角.注意:①导线是弯曲的,此时公式F=BIL sinθ中的L并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端.②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B的大小和方向与导体所在处的B的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的磁场力,然后求合力.3.左手定则①用于判断通电直导线在磁场中的的受力方向②用于判断带电粒子在磁场中的的受力方向方法:伸开左手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,让磁感线穿入手心,并使四指指向电流的方向,大拇指所指的方向就是通电导线所受安培力的方向(书上定义),我在这里想说一点,是不是左手定则只可以判断受力方向,我的答案是非也,在判断力的方向时,是知二求一(知道电流方向与磁场方向求力的方向),所以也可以知道力与电流求磁场,或是知道力与磁场求电流。

4.安培力的方向在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下两点:(1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心.的方向被唯一确定;但若已知B(或I)、F 注意:若已知B、I方向,则由左手定则得F安的方向,由于B只要穿过手心即可,则I(或B)的方向不唯一、安简单概括磁场对电流的作用应用步骤:1.选择研究对象以及研究过程;2.在某瞬时对物体进行受力分析并应用牛顿第二定律;3.带入安培力公式和电学公式进行公式整理;4.求解,必要时对结果进行验证或讨论。

高中物理安培力的知识点

高中物理安培力的知识点

高中物理安培力的知识点安培力是学生学习无,高考物理需要学习到,在选择题中经常会考到这方面的知识点,下面店铺的小编将为大家带来关于安培力的介绍,希望能够帮助到大家。

高中物理安培力的介绍安培力的大小⒈公式F=BILsinθ (θ为B与I夹角)⒉通电导线与磁场方向垂直时,安培力最大;⒊通电导线平行于磁场方向时,安培力为零;⒋B对放入的通电导线来说是外磁场的磁感应强度⒌式中的L为导线垂直于磁场方向的有效切割长度。

例如,半径为r的半圆形导线与磁场B垂直放置,导线的的等效长度为2r,安培力的大小就是BI*2r 。

安培力的方向⒈方向由左手定则来判断。

⒉安培力总是垂直于磁感应强度B和电流I所决定的平面,但B、I不一定是垂直关系。

洛伦兹力f向安培力F推导如果将上述的导线垂直放入磁场,那么每个电荷(基元电荷)受到的洛仑兹力为f=evB;我们依然取上述长为l的一段导线,其中的电荷总数量依然是N=nV=nSL;那么这段导线的所有电子的洛伦兹的合力为F=Nf=nSLevB;在这里我们补充一下,所有的洛伦兹力f的方向是一致的,因此合力就是Nf。

利用(2)中I的推导公式I=neSv;将其带入,则有F=BIL,这就是安培力的公式。

我们有这样的结论:杆件所受到的安培力是其内部大量粒子所受到的洛仑兹力的宏观表现。

洛伦兹力与安培力公式的比较洛伦兹力f=Bvq;其描述的是某个粒子的受力情况。

安培力F=BIL;其描述的是通电的杆件的受力情况。

通过公式的比较,我们应确定主思路:1利用微积分基本原理,建立起单独某个粒子与杆件内大量粒子之间的关系;2研究IL与vq之间的关系。

高中物理洛伦兹力的知识点介绍洛伦兹力是带电粒子在磁场中运动时受到的磁场力。

洛伦兹力f的大小等于Bvq,其最大的特点就是与速度的大小相关,这是高中物理中少有的一个与速度相关的力。

我们从力的大小、方向、与安培力关系这三个方面来研究洛伦兹力。

洛伦兹力的大小⒈当电荷速度方向与磁场方向垂直时,洛伦兹力的大小f=Bvq;高中物理网建议同学们用小写的f来表示洛伦兹力,以便于和安培力区分。

高中物理选修3-1课件:3.4-(一)安培力方向和大小+课件

高中物理选修3-1课件:3.4-(一)安培力方向和大小+课件
2、区别安培力方向和电场力方向与场的方向的关系: 安培力方向总是与磁场方向垂直; 电场力方向总是与电场方向平行。
3、左手定则和安培定则的区别和联系: 因果关系不同 安培定则中的“电流”是“因”,“磁场”为
“果”,正是有了电流才出现了由该电流产生的磁场。
左手定则中的“电流”和“磁场”都是“因”,磁 场对通电导线的作用力为“果”,两个“因”对 “果”来说缺一不可。
2、当通电导线与磁感线垂直时,所受的安培力最大,
Fmax=BIL 3、当通电导线与磁感线斜交时,所受的安培力介于
最大值和零之间。 F=B⊥IL
魂古
总人
要云
有:
一“
个读
在万
路卷
上书
。,
”行
从万
古里
至路
今。
,”
学今
习人
和说
旅:
行“
You made my day!
都要 是么
相读
辅书
相,
成要
的么
两旅
件行
事,
。身
。体


我们,还在路上……
磁场对 通电导线的作用力
安培力 方向 大小
I F
B
I F
B
I F
B
F、B、I方向关系:
安培力方向既与电流方向垂直 F
又与磁场方向垂直,即垂直于电流 B
Hale Waihona Puke 和磁场所在的平面。B与I可以不垂直,但
I
F一定垂直于B,F一定垂直于I。
B与I间的
夹角为90°
F
F
B
B
I
I
B与I间的 夹角为60°
B与I间的 夹角为45°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固练习
1、磁场的理解
2、安培力的计算
导与练P117 1,2,3
例, 一根长为0.2m的通以2A电流的导线, 放在磁感应强度为0.5T的匀强磁场中,受到 磁场力的大小可能是( BCD )
A. 0.4N
B. 0.2N C. 0.1N D. 0
如图3-4-8所示在匀强磁场中有下列各种形状 的通电导线,电流为I,磁感应强度为B,求各 导线所受的安培力.
图3-4-11
拓展2:如图所示,蹄形磁体用悬线悬于O 点,在磁铁的正下方有一水平放置的长直导线, 当导线中通以由左向右的电流时,蹄形磁铁的 运动情况将是( )C
图3-4-12
解析 根据电流方向和所给定磁场方向的关系 ,可以确定通电导线所受安培力分别如图所示 .
又因为导线还受重力G和支持力FN,根据力的平衡知,只有 mgsin α A、C两种情况是可能的,其中A中F=mgsin α,则B= , IL mgtan α C中F=mgtan α,B= . IL 答案 AC

BS cos
为平面与垂直磁场方向 的夹角,当平面与磁场方 向平行时。磁通量=?
二、磁通量()
当平面转过1800,此时的磁通量又是多少?
BS cos180 BS

可见,磁通量虽然是标量,但还是有正负。 正负是用来表示穿过平面的方向。 如果有两个大小相等但方 向相反的磁场同时穿过该 平面。则平面位置的磁感 应强度等于( ),磁 通量等于( )
第三章 磁场
3.4 通电导线在磁场中 受到的力
探究: (1)磁场对通电导线有没有力的作用 (2)猜想: 磁场对通电直导线的作用力同哪些 因素有关? (3)什么样的情况下,磁场对通电直导 线的作用力最大? 反之呢?
一、安培力的方向
演示:按照右图所示进行实验。 1、改变导线中电流的方向, 观察受力方向是否改变。 2、上下交换磁场的位置以改变磁场 的方向,观察受力方向是否变化。
磁场对电流的作用是电动机的基本原理
直流电动机的转速可由电流大小来控制;转动 方向可由电流方向和磁极的位置来控制。
2、安培力的综合问题
例1 (2012· 天津理综) 如图所示,金属棒MN两端由等长的轻质细线水平 悬挂,处于竖直向上的匀强磁场中,棒中通一由M向N 的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改 变下列某一个条件,θ角的相应变化情况是( A)
安 培 力 方 向 垂 直 于 电 流 和 磁 场 方
【例1】判断下列图中安培力的方向
B F B F I α α I
B
B
B
F I
F I
B
I 30 ° F
α
强调:应用安培力应注意的问题
1、分析受到的安培力时,要善于 把立体图,改画成易于分析受力的平 面图形 2、注意磁场和电流的方向是否 垂直
请画出磁场、电流和导线受到的力的正视图
• 缺点是绕制线圈的导线很细,允许通过的 电流很弱(几十微安到几毫安)。如果通 过的电流超过允许值,很容易把它烧坏。
(二)电动机
实验分析
F
N
F
S
I
通电线圈在磁场中会发生逆时针转动
当线圈的平面与磁场垂直时,通电线圈受平衡 力作用,达到平衡位置。这时由于惯性,线圈 还会继续转动 F
N
S
F
线圈靠惯性越过平衡位置的后,磁场力作用的 结果使线圈顺时针旋转
为多少?若从初始位置转过90°,则此时穿过线框平
面的磁通量为多少?
【互动探究】(1)若从初位置使框架绕OO′转过60°,则穿
过框架的磁通量变化了多少?
(2)若从初位置使框架绕OO′转过180°,则穿过框架的磁 通量是多少?磁通量变化了多少?
三.安培力的应用 (一)磁电式电表
(一)磁电式电表
【问题】(1)电流表主要由哪几部分组成的? 电流表由永久磁铁、铁芯、线圈、螺旋 弹簧、指针、刻度盘等六部分组成。
二、磁通量()
在磁感应强度为B的匀强磁场中, 当磁场方向与某一面积S垂直时, 则穿过该面积的磁通量
单位:韦伯,简称韦,符号Wb 2
BS
1Wb 1T m
问题:如果面积为S的平面与磁场方向不垂直 时,则穿过该面积的磁通量还会不会是BS呢?
二、磁通量()
B
S cos
从图示中可以看出:当 平面与磁场方向的夹角 变化时,穿过平面的磁 感线条数也发生变化。 穿过平面的磁感线条数 与平面在垂直磁场方向 上的投影面积穿过的磁 感线条数相等。
磁感线的疏密
特斯拉(T) 磁感应强度的方向 磁场的方向
小磁针在该点N极的受力方向
一、磁感应强度(B)
磁感应强度有大小也有方向,所以是 矢量。如果某点处于多个磁场中则该点的 磁感应强度遵循平行四边形的叠加原理。
两根非常靠近且相互垂直的长直导线分别通相同 强度的电流,方向如图所示,那么两电流在垂直 导线平面所产生的磁场方向向内且最强的区域是 A.区域1 B.区域2 C.区域3 D.区域4
导练P119
θ
θ

M
N
【解析】 画出整个图形的侧视图,选金属 棒为研究对象进行受力分析.可得 F安= mgtanθ

θ
① ②
F安= BIL 由①和②得:
BIL tan mg
【例】如图所示的立体图中,质量m,长L, 通有电流为I的导体棒ab静止在水平导轨上, 匀强磁场磁感应强度为B,其方向与导轨平面 成θ角斜向下并与ab垂直,ab处于静止状态. 求: (1)棒ab受到的摩擦力Ff大小和方向 (2)受到的支持力FN.
此时磁通量Φ1=BS.
框架绕OO′转过60°时,
1 磁通量Φ2=BScos60°= 2 BS.框架转过90°时,磁通量
Φ3=BScos90°=0. 答案:BS
1 BS 2
0
4、如图所示,框架面积为S,框架平面与磁感应强度
为B的匀强磁场垂直,则穿过线框平面的磁通量为多少?
若使框架绕OO′转过60°,则穿过线框平面的磁通量
FI
FL
F 磁场强弱
二.安培力的大小 为了方便探究安培力的大小 与电流大小和导线长短的关 系,我们采取控制变量法。
电流元:一段长为L的通电导线 中,电流与电线长度的乘积IL
在匀强磁场中,当磁场与通电导线垂直时,下面是通电导线 在不同的磁场中受力的情况
磁场1 磁场2
F (N ) IL(A·m) F (N ) IL(A·m)
磁场感应强度的进一步了解
磁感线只能是定性的描述磁场的性质。
问题:能不能从定量的角度来描述磁场的性质呢?
“磁感应强度”
定量描述磁场的强弱与方向。
一、磁感应强度(B)
规定:穿过垂直于磁感线的单位面积的磁 怎么比较疏密程度?从量性的角度理解磁 感线条数等于该处的磁感应强度。 感应强度?
磁感应强度的大小
(一)磁电式电表
【问题】(2)为什么电流表可测出电流的 强弱和方向?
测出电流的强弱和方向: 线圈中的电流越大,安培力越大,线圈和指针偏转的角 度就越大—— 根据指针偏转角度的大小,判断被测电流的强弱。 测出电流的强弱和方向: 当线圈中的电流方向改变时,安培力的方向随着改变, 指针的偏转方向也随着改变—— 根据指针的偏转方向,判断被测电流的方向。
F
N
S
F
通电线圈最后静止在平衡位置
FNSຫໍສະໝຸດ F(二)电动机定子
转子
彼此绝缘的 两个半圆环
一对与电源 连接的电刷
能够完成改变电流方向的装置叫做换向器
换向器的作用:
• 当线圈刚越过平衡位置时,换向器 自动改变电流的方向使线圈能持续 地转动下去
直流电动机
电动机是把电能转化为机械能的动力机器 使用直流电的电动机叫做直流电动机
2、如图所示,框架面积为S,框架平面与磁感应强度
为B的匀强磁场垂直,则穿过线框平面的磁通量为多少?
若使框架绕OO′转过60°,则穿过线框平面的磁通量
为多少?若从初始位置转过90°,则此时穿过线框平
面的磁通量为多少?
【思路点拨】磁通量的大小直接利用公式Φ=BScosα即 可求解,应特别注意α角的大小. 【自主解答】 框架平面与磁感应强度为B的匀强磁场方向垂直时α=0,
磁场感应强度:B
F B IL
总结:(二)安培力的大小
(1) 在匀强磁场中,在通电直导线与磁场方向垂 直的情况下,导线所受安培力F等于磁感应强度B、电
流I和导线的长度L三者的乘积。 即: F=ILB
(2)平行时:F=0
垂直时:F=BIL
磁场方向与电流方向间的夹角θ时
F B⊥
B

B
(3)公式:
F=I L B sinθ
B
a
F
B
.
.
b
B
B
F
×
B
拓展:如图所示,两条平行的通电直导线之间会通 过磁场发生相互作用。在通以相同方向的电流时, 为什么相互排斥?请你运用学过的知识进行讨论。
区别安培定则
与左手定则
探究:电流方向相反时,将 会怎么样?
二.安培力的大小
实验中: (1)当通电直导线垂直匀强磁 场时,导线受到的安培力最大。 (2)当通电直导线平行匀强磁 场时,导线受到的安培力最小 探究:安培力的大小与什么有关? 电流大小、磁场中导线长短,磁场强弱
答案
A.ILBcos α
B.ILB
C. 2ILB
D.2BIR
E.0
1、安培力的平衡问题
巩固练习:
1.如图所示,在水平匀强磁场中,用两根 相同的细绳水平悬挂粗细均匀的直导线 MN,导线中通以从M到N的电流I,此时 绳子都受到拉力作用;为使拉力减小为零, 下列方法中可行的是( ) A
A. 把电流强度增大到某一值 B. 把电流强度减小到某一值 C. 使电流I反向 D. 使磁场B反向
相关文档
最新文档