二次函数与一次函数(分段函数)相结合利润问题
二次函数--利润问题-分段函数
22.3(3.3)---利润问题-分段函数一.【知识要点】1.分段求最值,进行比较。
2.销售利润=(售价-成本价)×销售量.3.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。
二.【经典例题】1.九(13)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问该商品第几天时,当天销售利润最大,最大利润是多少?22018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?3.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件. (1)如图,设第x (0<x ≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围). (2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)4.为喜迎佳节,某食品公司推出一种新年礼盒,每盒成本为20元.在元旦节前30天进行销售后发现,该礼盒在这30天内的日销售量p (盒)与时间x (天)的关系如下表:在这30天内,前20天每天的销售价格1y (元/盒)与时间x (天)的函数关系式为11254y x =+(1≤x ≤20,且x 为整数),后10天每天的销售价格2y (元/盒)与时间x (天)的函数关系式为21402y x =-+(21≤x ≤30,且x 为整数). (1)直接写出日销售量p (盒)与时间x (天)之间的关系式;(2)请求出这30天中哪一天的日销售利润最大?最大日销售利润是多少?(3)元旦放假期间,该公司采取降价促销策略.元旦节当天,销售价格(元/盒)比第30天的销售价格降低a%,而日销售量就比第30天提高了4a%,日销售利润比前30天中的最大日销售利润少380元,求a 的值.三.【题库】【A】1.数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程,若前49天销售获得的最大日利润为5408元,求出m的值时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x【B】1.我县云蒙湖被临沂市人民政府定位“饮用水水源地”,为净化水源,某水产养殖企业在净化水源的同时,为谋求养殖利润最大化,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=﹣x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.“五•一”之前,月份出售这种品每千克的利润最大.【C】1.(本题满分11分)绵阳经开区“万达广场”开业在即,开发商准备对一楼的40个商铺出租,小王和开发商约定:小王租赁的每个商铺每个月的租金y(元/个.月)与租赁的商铺数量x(个)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C ). (1)求y 与x 之间的函数关系式;(2)已知开发商每个月对每个商铺的投入成本共280元,那么当小王租赁的商铺数量为多少时,开发商在这次租赁中,每个月所获的利润w 最大?最大利润是多少?【D 】1.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x ≤50时. (1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系. (2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式. (3)这50天中,该超市第几天获得利润最大?最大利润为多少?2.某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
中考二次函数解决利润应用题
中考数学挑战满分知识点二次函数应用题题型一、与一次函数结合销售总利润=利润×销售量(利润=售价-成本)1.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大最大利润是多少(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润每月的最大利润是多少解:(1)依题意设y=kx+b,则有所以y=-30x+960(16≤x≤32).(2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16) =30(-x2 +48x-512)=-30(x-24)2 +1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象得⎩⎨⎧=+=+3015050130b k b k 解得 ⎩⎨⎧=-=1801b k∴函数关系式为y =-x +180.(2)W =(x -100) y =(x -100)( -x +180) =-x2+280x -18000 =-(x -140) 2+1600当售价定为140元, W 最大=1600.∴售价定为140元/件时,每天最大利润W =1600元某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB ﹣﹣BC ﹣﹣CD 所示(不包括端点A ).(1)当100<x <200时,直接写y 与x 之间的函数关系式: y=﹣+8 .O(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润考点:二次函数的应用分析:(1)利用待定系数法求出当100<x<200时,y与x之间的函数关系式即可;(2)根据当0<x≤100时,当100<x≤200时,分别求出获利W与x的函数关系式,进而求出最值即可;(3)根据(2)中所求得出,﹣(x﹣150)2+450=418求出即可.解答:解;(1)设当100<x<200时,y与x之间的函数关系式为:y=ax+b,,解得:∴y与x之间的函数关系式为:y=﹣+8;故答案为:y=﹣+8;(2)当采购量是x千克时,蔬菜种植基地获利W元,当0<x≤100时,W=(6﹣2)x=4x,当x=100时,W有最大值400元,当100<x≤200时,W=(y﹣2)x=(﹣+6)x=﹣(x﹣150)2+450,∵当x=150时,W有最大值为450元,综上所述,一次性采购量为150千克时,蔬菜种植基地能获得最大利润为450元;(3)∵418<450,∴根据(2)可得,﹣(x﹣150)2+450=418解得:x1=110,x 2=190,答:经销商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及一元二次方程的解法等知识,利用数形结合以及分段讨论得出是解题关键.5.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.⑴求出日销售量y(件)与销售价x(元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元此时每日销售利润是多少元某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为60x2,其中自变量x的取值范围是0≤x≤;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.考点:二次函数的应用;一次函数的应用分析:(1)设函数的解析式为y=ax2,然后把点(1,60)代入解析式求得a的值,即可得出抛物线的表达式,根据图象可得自变量x 的取值范围;(2)设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可;(3)先求出普通窗口的函数解析式,然后求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可.解答:解:(1)设函数的解析式为y=ax2,把点(1,60)代入解析式得:a=60,则函数解析式为:y=60x2(0≤x ≤);(2)设需要开放x个普通售票窗口,由题意得,80x+60×5≥1450,解得:x≥14,∵x为整数,∴x=15,即至少需要开放15个普通售票窗口;(3)设普通售票的函数解析式为y=kx,把点(1,80)代入得:k=80,则y=80x,∵10点是x=2,∴当x=2时,y=160,即上午10点普通窗口售票为160张,由(1)得,当x=时,y=135,∴图②中的一次函数过点(,135),(2,160),设一次函数的解析式为:y=mx+n,把点的坐标代入得:,解得:,则一次函数的解析式为y=50x+60.点评:本题考查了二次函数及一次函数的应用,解答本题的关键是根据题意找出等量关系求出函数解析式,培养学生的读图能力以及把生活中的实际问题转化为数学问题来解决.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:销售单价x(元/件)…55 60 70 75 …一周的销售量y(件)…450 400 300 250 …(1)直接写出y与x的函数关系式:y=﹣10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元考点:二次函数的应用.3718684分析:(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过10000元,求出进货量,然后求最大销售额即可.解答:解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000;(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为x=70,∴当40≤x≤70时,销售利润随着销售单价的增大而增大;(3)当购进该商品的贷款为10000元时,y==250(件),此时x=75,由(2)得当x≥70时,S随x的增大而减小,∴当x=70时,销售利润最大,此时S=9000,即该商家最大捐款数额是9000元.点评:本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.题型二、寻找件数之间的关系(一)售价为未知数1.某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。
九年级上册数学二次函数利润问题解法
在九年级数学课程中,学习二次函数是一个重要的内容,而解决利润问题是二次函数的常见应用之一。
在本文中,我将从浅入深地探讨九年级上册数学二次函数利润问题的解法,并共享我的个人观点和理解。
让我们简要回顾一下二次函数的基本概念。
二次函数的一般形式可以写作f(x) = ax^2 + bx + c,其中a、b和c是实数且a不等于0。
在数学上,二次函数通常以抛物线的形式呈现,因此我们可以通过二次函数的图像来更直观地理解其性质和应用。
解决利润问题通常涉及到寻找最大利润或最小成本的情况,而这正是二次函数的优势所在。
通过求解二次函数的顶点,我们可以轻松地找到最大值或最小值,从而有效地解决利润问题。
在九年级上册数学中,我们学习了如何通过二次函数的标准形式(一般式)或顶点形式来解决利润问题。
对于利润问题,我们需要理解如何将利润表示成一个二次函数,并通过求解该二次函数来找到最大利润的时机或最低成本的发生时机。
当探讨九年级上册数学二次函数利润问题解法时,我们需要从以下几个方面展开讨论:1. 利润问题基本概念:对于利润问题的基本概念和应用进行介绍,包括如何将商业活动的成本和收入表示成一个二次函数。
2. 二次函数的顶点形式:介绍如何通过二次函数的顶点形式来解决利润问题,以及理解顶点对应的意义和应用。
3. 利润问题的示例分析:通过实际的利润问题示例,演示如何利用二次函数的顶点形式来解决问题,并深入分析每一个步骤和推理过程。
4. 个人观点和理解:共享我对利润问题解法的个人看法和理解,以及对二次函数在实际应用中的优势和局限性的思考。
通过以上系统的论述,我将为您撰写一篇深入、广泛,并具有实际应用价值的九年级上册数学二次函数利润问题解法的文章。
文章将以清晰的逻辑框架和条理性的表达方式让您更深入地理解这一主题,并能够灵活地应用到实际问题中。
文章的总字数将超过3000字,以确保内容的细致和全面。
接下来,我将把重点放在准备材料和深入研究示例上,以确保文章的质量和深度。
专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】
专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。
专题实际问题与二次函数利润问题
日销售量y(kg)与时间第t(天)之间的函数关系 如图所示.
(2)哪一天的日销售利润最大?最大利润是多少?
②当41≤t≤80时,
1 w= ( t 46 6)(-2t+200)=(t-90)2-100, 2
解得
∴y=-2t+200(1≤t≤80,t为整数).
展示竞学 荆州市某水产养殖户进行小龙虾养殖,已知每千克小龙虾养殖成本 为6元,在整个销售旺季的80天里,销售单价p(元/kg)与时间第t(天)
(1 t 40,t为整数), 14t+16 之间的函数关系为 p 1 - t+46 (41 t 80,t为整数), 2
y= ,且第12天的售价为32元/千克,第26天的售价为25元/千 克.已知种植销售蓝莓的成本是18元/千克, 每天的利润 是W元(利润=销售收入一成本) (1)m= ,n= ; (2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?
∴当t=41时,w最大值=2 301,
∵2 450>2 301,
小结评学
1.通过本节课的学习你有什么收获?
检测固学
(2016•湖北襄阳)襄阳市某企业积极响应政府“创新 发展”的号召,研发了一种新产品.已知研发、生产 这种产品的成本为30元/件,且年销售量y(万件)关 于售价x(元/件)的函数解析式为: y=
合作互学
展示竞学 荆州市某水产养殖户进行小龙虾养殖,已知每千克小龙虾养殖成本 为6元,在整个销售旺季的80天里,销售单价p(元/kg)与时间第t(天)
(1 t 40,t为整数), 14t+16 之间的函数关系为 p 1 - t+46 (41 t 80,t为整数), 2
【教育资料】九年级数学中考复习二次函数实际应用利润问题教学设计学习精品
《《二次函数的实际应用—利润问题》教学设计
青岛第六十一中学胡大海
教学目标1.对本题的要求,通过实际问题背景考察学生构建数学模型,探究利用函数的图像与性质解决实际问题的能力,关注学生对变量间关系的刻画和数形结合的思想方法的运用,体现初、高中数学知识的衔接
2.利用所学的二次函数知识解决与利润相关的实际问题,发展学生应用数学解决问题的能力,是学生体会数学与生活的密切联系,并进一步感受数学的应用价值。
重点列函数关系式、二次函数的实际应用、利用二次函数求最值
难点二次函数的实际应用、利用二次函数求最值
教学过程及设计思路:
(四)、解一元二次方程,利用图像解不等式
万达广场购进一批进价为每件20元的日用商品,试销阶段商品的月销y(件)与每件商品的销售单价x(元∕件)之间满足一次函数的关
3)如果商场想要每月获得4000元的利润,那么销售单价应定为多少。
二次函数解决利润应用题
xx数学挑战满分知识点二次函数应用题题型一、与一次函数结合销售总利润=利润×销售量(利润=售价-成本)1.为了落实国务院副总理xx同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有所以y=-30x+960(16≤x≤32).(2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=30(-x2 +48x-512)=-30(x-24)2 +1920. 所以当x=24时,P 有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y (件)之间满足如图所示的关系: (1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k≠0).由所给函数图象得解得∴函数关系式为y =-x +180.(2)W =(x -100) y =(x -100)( -x +180) =-x2+280x -18000 =-(x -140) 2+1600当售价定为140元, W 最大=1600.元/件)∴售价定为140元/件时,每天最大利润W=1600元某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,直接写y与x之间的函数关系式:y=﹣0.02x+8 .(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?解得:5.某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表:若日销售量是销售价的一次函数.⑴求出日销售量(件)与销售价(元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为60x2 ,其中自变量x的取值范围是0≤x≤;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450xx,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.时,);,时,∴图②中的一次函数过点(把点的坐标代入得:解得:某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:(1)直接写出y与x的函数关系式:y=﹣10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)xx地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?由题意得,,解得:=250题型二、寻找件数之间的关系(一)售价为未知数1.某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。
二次函数与一次函数(分段函数)相结合利润问题
二次函数与一次函数(分段函数)利润销售问题1.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.2.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为(年获利=年销售收入-生产成本-投资成本)(1)当销售单价定为28元时司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?3.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),若每份售价不超过10元,每天可销售400份;若每份超过10元,每提高1元,每天的销售量就减少40份,为了便于结算,每份套餐的售价X(元)取整数,用Y(元)表示该店日净收入,(日净收入=每天的销售额—套餐成本—每天固定支出)(1)求Y与X之间的函数关系式;(2)若每分套餐的售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入。
按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?4.市一中准备组织学生及学生家长到武汉大学参观体验,为了便于管理,所有人员到武汉必须乘坐在同一列动车上;根据报名人数,若都买一等座单程火车票需2556元,若都买二等座单程火车票且花钱最少,则需1530元;已知学生家长与教师的人数之比为2:1,安陆到武汉的动车票价格(动车学生票只有二等座可以打6折)如下表所示(1)参加参观体验的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加参观体验的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票的总费用至少是多少钱?最多是多少钱?5.为了“创边文明城市,边设美好家园”,我市某社区将社区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分种花.设种草部分的向积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.6.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?7.荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.8. 我市雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中y(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示;实体商店的日销售量1y(百件)与时间t(t为整数,单位:天)的关系如下图所示.网上商店的日销售量2时间t(天)0 5 10 15 20 25 30y(百件)0 25 40 45 40 25 0日销售量1y与t的变化规(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映1y与t的函数关系式及自变量t的取值范围;律,并求出1y与t的函数关系式,并写出自变量t的取值范围;(2)求2(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.。
中考数学频考点突破--二次函数与一次函数
中考数学频考点突破--二次函数与一次函数1.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y (千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?2.已知抛物线C:y1=a(x﹣h)2﹣1,直线L:y2=kx﹣kh﹣1(1)试说明:抛物线C的顶点D总在直线y2=kx﹣kh﹣1上;(2)当a=﹣1,m≤x≤2时,y1≥x﹣3恒成立,求m的最小值;(3)当0<a≤2,k>0时,若在直线L下方的抛物线C上至少存在两个横坐标为正整数的点,求k的取值范围.3.某商场以每千克40元的价格购进某种海鱼,计划以每千克60元的价格销售.为了让顾客得到更大的实惠,现决定降价销售,已知这种海鱼销售量y(kg)与每千克降价x (元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y关于x的函数表达式;(2)商场在销售这种海鱼中要想获利2090元,则这种海鱼每千克应降价多少元?共销售了多少千克这种海鱼?4.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴交于点A,B,直线BC的解析式是y=x+b.(1)求二次函数图象的顶点坐标.(2)求不等式ax2+2x+c⩽x+b的解.5.在平面直角坐标系中,设二次函数y=ax2+bx+2(a,b是常数,a≠0).(1)若a=1,当x=−1时,y=4.求y的函数表达式.(2)写出一题a,b的值,使函数y=ax2+bx+2的图象与x轴只有一个公共点,并求此函数的顶点坐标.(3)已知,二次函数y=ax2+bx+2的图象和直线y=ax+4b都经过点(2,m),求证a2+b2≥12.6.已知,如图:直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B,C两点,点B的坐标为(1,1).(1)求直线AB和抛物线的函数解析式;(2)如果抛物线上有一点D,使得S△AOD=S△BCO,求点D的坐标.7.(1)化简:4aa2−1+a−1 a+1;(2)已知二次函数y=ax2+43(a≠0)与正比例函数y=4x的图象只有一个交点,求a的值.8.已知,如图,抛物线与x轴交点坐标为A(1,0),C(-3,0),(1)若已知顶点坐标D为(-1,4)或B点(0,3),选择适当方式求抛物线的解析式.(2)若直线DH为抛物线的对称轴,在(1)的基础上,求线段DK的长度,并求△DBC的面积.(3)将图(2)中的对称轴向左移动,交x轴于点p(m,0)(-3<m<-1),与线段BC、抛物线的交点分别为点K、Q,用含m的代数式表示QK的长度,并求出当m 为何值时,△BCQ的面积最大?9.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x 轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.10.如图,直线l:y=−3x+3与x轴、y轴分别相交于A、B两点,抛物线y= ax2−2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式:(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值.11.抛物线y=x2与直线y=x+2交于A,B两点,点A在第二象限,求(1)A、B两点的坐标;(2)△AOB的面积12.某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=100.在销售过程中,每天还要支付其他费用350元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大利润是多少元?13.如图,抛物线y=x2+mx与直线y=−x+b交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>−x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.14.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标;(2)求一次函数和二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.15.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.采购数量(件)12…A产品单价(元/件)14801460…B产品单价(元/件)12901280…1y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的119,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.16.如图,已知二次函数y1=ax2+bx+c的图象过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式和顶点坐标;(2)直线y2=kx+b过B、C两点,请直接写出当y1>y2时,自变量x的取值范围.答案解析部分1.【答案】(1)解:设y=kx+b ,由图象可知,{20k +b =2030k +b =0, 解之,得: {k =−2b =60 ,∴y=﹣2x+60(2)解:p=(x ﹣10)y =(x ﹣10)(﹣2x+60) =﹣2x 2+80x ﹣600, ∵a=﹣2<0, ∴p 有最大值,当x=﹣ 80−2×2=20时,p 最大值=200.即当销售单价为20元/千克时,每天可获得最大利润200元【知识点】二次函数与一次函数的综合应用【解析】【分析】(1)由待定系数法求一次函数解析式。
2023安徽中考数学专题《二次函数利润问题的四种题型》原卷
第05讲二次函数利润问题的四种题型题型一:“每每”的利润问题商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,“每每”问题的做题步骤①找出原来的销量:30件,原来的每件盈利:50元;②确定每件产品降价(或涨价)后的利润:(50-x)元;③计算出降价(或涨价)后销量的变化量:2x件;④找出降价(或涨价)后的销量,本题里有明确的“多出”字样,即为:(30+2x)件;⑤利润=每件利润×数量:y=(50−x)(30+2x)计算注意事项①若题中要求价格为整数,而二次函数的对称轴不是整数,要用二次函数的性质取适当的整数求最值;②结果可能不唯一,例如题中要求结果为整数,而对称轴是51.5,那么51和52都可以;③看清楚题中是否有“最优惠”等条件,算出多个结果需要舍根。
【例1】商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y千克,每千克的售价为x元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?6.(2022·贵州铜仁·统考中考真题)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?题型二:二次函数和一次函数综合的利润问题当题中明确出现了“成一次函数关系”,或给了一次函数的图像,或给了一次函数表格时,先求出相关的一次函数解析式;然后根据利润的相关公式表示利润。
二次函数的应用(利润问题)
二次函数的应用——利润问题[例1]:求以下二次函数的最值:〔1〕求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.〔2〕求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,商品的进价为每件40元,如何定价才能使利润最大?解:设涨价〔或降价〕为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 那么:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y 〔元〕)20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y 〔元〕综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 那么:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?月 日解:设旅行团有x 人)30(≥x ,营业额为y 元, 那么:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y 〔元〕答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件本钱10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 假设日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.那么1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y 〔元〕答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)〞的设问中, “某某〞要设为自变量,“什么〞要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.〔2006十堰市〕市“健益〞超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x 〕存在如以下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益〞超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).x 〔元〕 15 20 30 … y 〔件〕 25 20 10 …解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P 〔元〕〔或通过配方,4500)35(202+--=x P ,也可求得最大值〕答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,那么具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大〞“最小〞).3.不管自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解〞或“无解〞)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m 4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一局部,如下图,假设命中篮圈中心,那么他与篮底的距离L 是 4.5米 .月 日解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x 〔不合题意,舍去〕5.在距离地面2m 高的某处把一物体以初速度V 0〔m/s 〕竖直向上抛出,•在不计空气阻力的情况下,其上升高度s 〔m 〕与抛出时间t 〔s 〕满足:S=V 0t-12gt 2〔其中g 是常数,通常取10m/s 2〕,假设V 0=10m/s ,那么该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天 在某段公路上行驶上,速度为V 〔km/h 〕的汽车的刹车距离S 〔m 〕可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.假设这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,那么应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 那么:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一局部,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),那么这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.〔2006年青岛市〕在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x 〔元/千克〕 … 25 242322…销售量y 〔千克〕… 2000 2500 3000 3500 …〔1〕在如图的直角坐标系内,作出各组有序数对〔x ,y 〕所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; 〔2〕假设樱桃进价为13元/千克,试求销售利润P 〔元〕与销售价x 〔元/千克〕之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:〔1〕由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点〔•25,2000〕,〔24,2500〕在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. 〔2〕P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量根本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.月 日∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元那么:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2021湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农〞优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,这种产品的本钱价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y 〔元〕(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x 〔不合题意,舍去〕252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2021河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元〕与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,〔万元〕均与满足一次函数关系.〔注:年利润=年销售额-全部费用〕〔1〕成果说明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润〔万元〕与之间的函数关系式;〔2〕成果说明,在乙地生产并销售吨时,〔为常数〕,且在乙地当年的最大年利润为35万元.试确定的值;〔3〕受资金、生产能力等多种因素的影响,某投资商方案第一年生产并销售该产品18吨,根据〔1〕,〔2〕中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:〔1〕甲地当年的年销售额为万元;.〔2〕在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.〔3〕在乙地区生产并销售时,年利润,将代入上式,得〔万元〕;将代入,得〔万元〕.,应选乙地.。
二次函数与一次函数结合问题
二次函数与一次函数相结合的专题一、知识点1、二次函数的解析式求解:(待定系数法)①一般式法:设二次函数为)0(2≠++=a c bx ax y利用这种方法求解时,往往题目会告诉我们二次函数经过几个点的坐标,到底需要几个点的坐标就能求出解析式呢?就看c b a ,,不知道几个,3个系数都不知道就需要3个点的坐标,2个系数不知道就需要2个点的坐标,1个系数都不知道就需要1个点的坐标。
把坐标带入函数,然后求解方程组得到系数,就可以得到解析式;例:已知二次函数),,(2均为常数c b a c bx ax y ++=的图象经过三点A (2,0),B (0,-6),C (1,-2),求这个二次函数的解析式;解:把A (2,0),B (0,-6),C (1,-2)代入c bx ax y ++=2,得 ⎪⎩⎪⎨⎧-==-=⇒⎪⎩⎪⎨⎧-=++-==++65126024c b a c b a c c b a 所以二次函数的解析式为:652-+-=x x y②顶点式法:设二次函数为)0()(2≠+-=a k h x a y利用这种方法求解时,往往题目会告诉我们一个条件就是对称轴和顶点坐标,因为在所设的函数中,对称轴就是x=h ,所以顶点坐标是(h,k )。
只要告诉我们二次函数的顶点坐标,那么就知道了h 和k 两个未知数(a,h,k )的值,需要再告诉我们函数上一个点的坐标就可以求出a ,即求出了解析式;例:已知某二次函数的顶点坐标为(1,5),且该函数经过点A (),求这个二次函数的解析式;解:由题意,可设该二次函数为5)1(2+-=x a y ,又因为函数经过点A (0,7),把A (0,7)代入函数得 2,75)10(2=∴=+-a a所以二次函数的解析式为:742,5)1(222+-=+-=x x y x y 即③交点式法:设二次函数为)0)()((21≠--=a x x x x a y利用这种方法求解时,往往题目会告诉我们某二次函数与x 轴的两个交点的坐标,所以只需要再告诉我们函数上一个点的坐标就可以求出a ,即求出了解析式;例、已知某二次函数的图象与x 轴相交于两点A (3,0)和B (5,0),且该二次函数经过点C (6,6),求该二次函数的解析式;解:由题意,可设该二次函数的解析式为)5)(3(--=x x a y又因为二次函数经过点C (6,6),将点C 代入函数得2,6)56()36(=∴=-⨯-a a所以该二次函数的解析式为)5)(3(2--=x x y ,即301622+-=x x y当然:二次函数的解析式还有可能是:2ax y =,k ax y +=2,2)(h x a y -=,其实也可以由上面的解析式得到,只是所给的已知条件不同,根据不同的已知条件而设相对应的解析式。
2021届中考数学专题复习训练——二次函数 专题3.1二次函数应用之利润问题
2021中考专项训练:二次函数应用题基本公式:总利润=(售价-进价)*销售量总利润=总售价-总成本利润率=%100-⨯进价进价售价成本一般包括固定成本(进价等)和浮动成本(房租、水电费等)类型一:一次函数型(销售量与销售单价成一次函数关系)【经典例题1——图象型】某公司去年年初投资1200万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元,按规定,该产品售价不得低于100元/件且不超过200元/件,该产品的年销售量y (万件)与产品售价x (元/件)之间的关系如图所示. (1)求y 与x 的函数关系式,并写出x 的取值范围; (2)求该公司去年所获利润的最大值;(3)在去年获利最大的前提下,公司今年重新确定产品的售价,能否使去年和今年共获利1320万元?若能,请求出今年的产品售价;若不能,请说明理由.【解析】(1)设y=kx +b ,则⎩⎨⎧=+=+1020020100b k b k ,解得⎪⎩⎪⎨⎧==30101-b k ,∴y 与x 的函数关系式为y=−101x +30(100∴x ∴200); (2)设公司去年获利w 万元 则w=(x −60)(−101x +30)−1200=−101(x −180)2+240, ∴−101<0,100∴x ∴200, ∴当x =180时,w 取最大值240, ∴去年获利最大为240万元;(3)根据题意,得(x −60)(−110x +30)+240=1320, 解得x 1=120,x 2=240, ∴100∴x ∴200, ∴x =120.答:今年的产品售价定为120元/件时,可使去年和今年共获利1320万元。
【经典例题2——两点型】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 【解析】(1)设y=kx +b ,把(22,36)与(24,32)代入得:则⎩⎨⎧=+=+32243622b k b k ,解得⎩⎨⎧==802-b k ,则y=−2x +80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元, 根据题意得:(x −20)y=150, 则(x −20)(−2x +80)=150, 整理得:x 2−60x +875=0, (x −25)(x −35)=0, 解得:x 1=25,x 2=35, ∵20∴x ∴28,∴x =35(不合题意舍去),答:每本纪念册的销售单价是25元; (3)由题意可得:w=(x −20)(−2x +80)=−2x 2+120x −1600=−2(x −30)2+200, 此时当x =30时,w 最大,又∵售价不低于20元且不高于28元,∴x <30时,y 随x 的增大而增大,即当x =28时,w 最大=−2(28−30)2+200=192(元), 答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元。
二次函数实际应用(利润问题)
二次函数实际应用(利润问题)教学设计教学目标知识技能能根据具体问题中的数量关系,列出二次函数,体会二次函数是刻画现实世界的有效数学模型。
数学思考经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能用二次函数对之进行描述。
解决问题通过解决销售的最大利润等问题的过程,学会将实际问题转化成数学问题,发展实践应用意识。
情感态度通过用二次函数解决经济生活中的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
重点会把实际问题中的最值问题转化为二次函数的最值问题难点发现问题中的函数关系。
活动流程图活动内容和目的活动1 创设情境,导入新课引发学生兴趣,导入新课。
活动2 合作交流,解读探究例一:商品涨价降价利润求法对比涨价、降价的最大利润,熟悉分析、解决最大利润问题的思路和方法,培养分类讨论思想,全面考虑问题的思想。
活动3 应用迁移,能力提升(宾馆的利润)探究问题中的函数关系,提高分析问题的能力。
活动4 当堂检测,试试身手(变式训练)当堂检测,回馈教学效果。
活动5 总结反思,归纳理顺回顾,总结,提高对知识的系统性认识。
活动6 课后练习,知识应用解决问题,巩固所学知识。
问题与情境师生行为设计意图活动1【创设情境,导入新课】某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?老建教师展示课件,出示问题 .教师分步出示问题①②③,引导学生回答这些问题,教师步入学生中间,及时发现学生在解答时的不足,加以辅导。
分组解决,小组内分别计算涨价、降价的最大利润,展示学生的解答过程,教师及学生共同评析。
师提出问题,引导学生层层深入,思考问题。
分步回答问题,降低问题难度,深入学生中间,加强师生沟通。
通过该问题使学生,体会分类讨论,全面考虑问题的重要意义活动2【合作交流,解读探究】问题①,请一位学生回问题①②有助于学某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.设每个房间的房价每天增加x元(x为10 的正整数倍).⑴设一天订住的房间数为y,直接写出y 与x的函数关系式.⑵设宾馆一天的利润为w元,求w与x 的函数关系式.⑶一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?小结如何求二次函数的最值。
二次函数的实际应用利润问题
二次函数的定义和特征,以及通过图像展示二次函数的形状和特点,奠定了 解决利润问题的基础。
二次函数在经济中的应用
成本分析
二次函数帮助分析成本的增长或减少,为经济决策提供依据。
营收预测
通过利用二次函数来预测营收变化,帮助企业规划和管理财务。
市场调研
利用二次函数模型进行市场需求的预测和分析,指导产品定价和市场营销。
结论
二次函数的应用十分广泛,涉及经济、物理、工程和生活的方方面面,为解决实际问题提供了有效的数学工具。
3
电力传输
通过二次函数模型分析电路中电流和电阻的关系,优化电力传输效率。
二次函数在生活中的应用
1 健身
二次函数可以用于描述人体肌肉在不同锻炼负荷下的力量变化。
2 交通规划
利用二次函数模型分析车流量和道路容量,改善交通拥堵问题。
3 药物代谢
通过二次函数模型研究药物在人体内的代谢过程,用于设计药物剂量和治疗方案。
二次函数在物理中的应用
抛物线轨迹
二次函数用于描述抛射物体的轨 迹,如抛物线。
摆动运动
通过二次函数可描述摆动系统中 物体的运动状态和周期。
自由落体
二次函数能够描述物体在自由落 体中的高度变化。
二次函数在工程中的应用
1
桥梁设计
通过二次函数模Байду номын сангаас,工程师能够优化桥梁的曲线形状,提高结构强度。
2
信号处理
二次函数模型在电信号分析和处理中发挥重要作用,例如音频滤波器设计。
二次函数与一次函数结合问题
二次函数与一次函数结合问题二次函数与一次函数相结合的专题一、知识点1、二次函数的解析式求解:(待定系数法)①一般式法:设二次函数为y=ax²+bx+c(a≠0)使用这种方法求解时,通常题目会告诉我们二次函数经过几个点的坐标。
需要知道a、b、c的值,要求出三个点的坐标,如果只知道两个系数,则需要两个点的坐标,如果只知道一个系数,则需要一个点的坐标。
将坐标代入函数,然后求解方程组得到系数,就可以得到解析式。
例如:已知二次函数y=ax²+bx+c(a、b、c为常数)的图像经过三点A(2,0),B(4,-6),C(1,-2),求这个二次函数的解析式。
解:将A(2,0),B(4,-6),C(1,-2)代入y=ax²+bx+c,得到三个方程:①4a+2b+c=0②16a+4b+c=-6③a+2b+c=-2解方程组得到a=-1,b=5,c=-6,因此二次函数的解析式为y=-x²+5x-6.②顶点式法:设二次函数为y=a(x-h)²+k(a≠0)使用这种方法求解时,通常题目会告诉我们对称轴和顶点坐标。
在所设的函数中,对称轴就是x=h,因此顶点坐标是(h,k)。
只要告诉我们二次函数的顶点坐标,那么就知道了h和k两个未知数(a,h,k)的值。
需要再告诉我们函数上一个点的坐标就可以求出a,即求出了解析式。
例如:已知某二次函数的顶点坐标为(1,5),且该函数经过点A(0,7),求这个二次函数的解析式。
解:由题意,可设该二次函数为y=a(x-1)²+5,因为函数经过点A(0,7),将A(0,7)代入函数得到:a(-1)²+5=7因此,a=2,所以二次函数的解析式为y=2(x-1)²+5,即y=2x²-4x+7.③交点式法:设二次函数为y=a(x-x₁)(x-x₂)(a≠0)使用这种方法求解时,通常题目会告诉我们某二次函数与x轴的两个交点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与一次函数(分段函数)利润销售问题
1.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
2.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关
系式为(年获利=年销售收入-生产成本-投资成本)
(1)当销售单价定为28元时司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
3.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),若每份售价不超过10元,每天可销售400份;若每份超过10元,每提高1元,每天的销售量就减少40份,为了便于结算,每份套餐的售价X(元)取整数,用Y(元)表示该店日净收入,(日净收入=每天的销售额—套餐成本—每天固定支出)(1)求Y与X之间的函数关系式;(2)若每分套餐的售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入。
按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
4.市一中准备组织学生及学生家长到武汉大学参观体验,为了便于管理,所有人员到武汉必须乘坐在同一列动车上;根据报名人数,若都买一等座单程火车票需2556元,若都买二等座单程火车票且花钱最少,则需1530元;已知学生家长与教师的人数之比为2:1,安陆到武汉的动车票价格(动车学生票只有二等座可以打6折)如下表所示
(1)参加参观体验的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(x小于参加参观体验的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票的总费用至少是多少钱?最多是多少钱?
5.为了“创边文明城市,边设美好家园”,我市某社区将社区内的一块面
积为1000m2的空地进行绿化,一部分种草,剩余部分种花.设种草部分的向积为x(m2),种草所需费用y1(元)与x(m2)的函数关系
式为
,其图象如图所示;栽花所需费用
y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).
(1)请直接写出k1,k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分
的面积不少于100m2,请求出绿化总费用W的最小
值.
6.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是件,日销售利润是元.
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
7.荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:
,日销售量y(千克)与时间第t(天)之间
的函数关系如图所示:
(1)求日销售量y与时间t的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.
8. 我市雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中y(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示;实体商店的日销售量
1
y(百件)与时间t(t为整数,单位:天)的关系如下图所示.
网上商店的日销售量
2
时间t(天)0 5 10 15 20 25 30
y(百件)0 25 40 45 40 25 0
日销售量
1
y与t的变化规(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映
1
y与t的函数关系式及自变量t的取值范围;
律,并求出
1
y与t的函数关系式,并写出自变量t的取值范围;
(2)求
2
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.。