五年级数学符号表示数测试题

合集下载

五年级奥数定义新运算练习题

五年级奥数定义新运算练习题

五年级奥数定义新运算练习题知识要点:定义新运算,是指用某些特殊的符号,表示特定的意义,从而解答某些特殊的算式的一种运算。

定义新运算中运算符号有:#、*、※、▽等,有时借用一些已有的运算符号“+、-、×、÷”,但与四则中的运算符号是有区别的。

解答定义新运算,必须先理解新定义的含义,遵循新定义的关系式,把问题转化为一般四则运算。

例题解答例1:已知a※b=a÷b×2+3×a-b,计算169※13例2:对于整数a,b,规定运算如下:a⊙b=a×b-a-b+1,求⊙2练习1、规定a⊕b=×b,求⊕52、对于任意整数a和b,规定a▲b=3a+2b-2,求11▲10的值。

3、已知a#b=a÷b×2+3,若256#a=19,求a定义新运算测试题1、假设x△y=÷4,求13△17的值;2△的值;求a△16=10中a的值。

2、已知P※Q=3、如果A⊙B=P?Q,求3※的值。

A?B,照这样的规则:3⊙[6⊙]的结果是多少?4、如果a□b表示a×b+a+b,那么□1=29,a是多少?5、如果a※b表示a×b+a,那么当x※5比5※x大100时,x是多少?6、若A☆B=A++++??+,那么X☆10=65中X的值是多少?7、令A#B=4A+3B,那么,#的结果是多少?五年级奥数专题三:定义新运算关键词:运算四则四则运算定义奥数符号意义这些表示年级我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

例 1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

人教版五年级上册《第5单元_简易方程》小学数学-有答案-单元测试卷(3)

人教版五年级上册《第5单元_简易方程》小学数学-有答案-单元测试卷(3)

人教版五年级上册《第5单元简易方程》单元测试卷(3)一、我会用字母表示(28分)1. 写出含有字母的式子。

6与x的和________8的a倍________比x小c的数________2. 用字母a.b.c表示乘法结合律是________.3. 用含有字母的式子表示数量的关系。

(1)五年级数学书的单价是5.35元,买a本的总价是________元。

(2)车上原有a人。

到文化广场下去了b人,又上来4人,现在车上有________人。

(3)学校有a个足球,篮球个数是足球的2.5倍。

学校有足球和篮球共________个,篮球比足球多________个。

(4)师傅每小时加工a个零件,徒弟每小时加工b个零件,师徒两人合作2小时,共加工零件________个。

(5)王明和妈妈今年的岁数和是49,岁,再过a年,两年的年龄和是________岁。

4. 含有未知数的________,叫做方程。

5. 某地一天早晨的气温是t∘C,中午比早晨高9∘C,(t+9)∘C表示________.6. (1)用字母表示长方形的面积公式是S=________;当a=4cm,b=3cm时,S=12cm2. 6.(2)当a=0.3时,a2=________;当a=48时,2a=________.7. 在〇里填上适当的运算符号,在□里填上合适的数。

(1)如果x−11=36,那么x−11+11=36〇□.(2)如果3x=99,那么3x÷3=99〇□.8. 根据图意写出等量关系式,并列方程。

关系式________+________=________方程:________二、对错我知道,对的打“”,错的打“x”.(6分)b×1可以简写成b1.________.(判断对错)式子5x+6中含有字母,所以它是一个方程。

________.(判断对错)等式两边同时加上或减去同一个数,左右两边仍然相等。

________.(判断对错)周长都是x分米的两个长方形,面积也一定相等。

人教版五年级数学上册第五单元简易方程1.用字母表示数

人教版五年级数学上册第五单元简易方程1.用字母表示数

第五单元简易方程1.用字母表示数知识清单用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

字母和数,字母和字母相乘时,可不写“×”号,用“•”表示,也可以什么符号都不写,直接把数或字母写在一起。

如,a×b×c可以写成a•b•c或abc。

字母和1相乘时,不写1。

如,1×a就写成a。

字母和数相乘时,省略乘号,必须把数写在字母的前面。

如,5a要写成5a或5a,不能写成a5。

相同的字母相乘,要写成乘方的形式。

如,aa写成a2,xxx写成x3。

经典例题例1 每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重多少千克?分析这道题已知每袋面粉重a千克,每袋大米重b千克,求8袋面粉和5袋大米共重多少千克,就是求8a+5b是多少。

解答8a+5b答:8袋面粉和5袋大米共重8a+5b千克。

名师指导字母可以表示任意的数。

需要注意的是,用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写;或用“·”(点)表示。

字母和数字相乘时,省略乘号,并把数字放到字母前。

巩固练习1.在一个三角形中,∠1=a°,∠2=b°,用含有字母的式子表示∠3的度数。

2.在一个等腰三角形中,底角是a°,用含有字母的式子表示顶角的度数。

3.一个正方形的周长是C,用含有字母的式子表示这个正方形的边长。

4.小波林场栽了梧桐树和雪松各x排,已知梧桐树每排12棵,雪松每排14棵。

(1)栽梧桐树和雪松共多少棵?(2)当x=20时,小波林场一共有多少棵梧桐树和雪松?5.一辆汽车,每小时行驶a千米,上午行驶4小时,下午行驶了b千米。

(1)用式子表示这辆汽车行驶的千米数。

(2)当a=80、b=200时,这辆汽车行驶了多少千米?6.王伯伯家有一片果园,如下图。

(1)王伯伯家苹果园和梨园的面积一共有多大?(2)a=12时,王伯伯家的苹果园和梨园的面积一共有多大?苹果园 梨园 30米 8米a 米7.买东西。

沪教版五年级数学上册课后分层作业1.1符号表示数(附答案)

沪教版五年级数学上册课后分层作业1.1符号表示数(附答案)
【详解】5×8=40,所以n=40。
故答案为:A
【点睛】找规律的题,同学们在解答时要仔细观察数,找出相邻数之间的关系。
14.C
【分析】把□=2△代入各选项求出结果,找出结果为 的选项,据此解答。
【详解】A.(□+□)÷△
=(2△+2△)÷△
=4△÷△
=4
B.2△×(△-△)
=2△×0
=0
C.△÷(□+□)
A.10(m+n)B.9(m+n)C.10m+9n
10.如图,摆1个正方形要用4根小棒,摆2个正方形要用7根小棒,那么摆b个正方形要用()根小棒。
A.4bB.4+3bC.3b+1
11.一个数减去378,差是439,这个数是()。
A.139B.817C.719
12.下列算式中,乘积可能是62的选项是()。
=△÷(2△+2△)
=△÷4△

D.□×(△+△)
=2△×2△
=4△2
故答案为:C
【点睛】用等量代换的方式把选项中各式化为只有一种符号的式子是解答题目的关键。
15.B
【分析】在乘法里,字母和字母乘,可以省略乘号;字母和数字乘,要省略乘号时,需要把数字写在字母的前面;数字与数字乘,不可以省略乘号。
【详解】A.4.5×1.2,为数字乘数字,不能省略乘号;
B.3.7×a,为数字乘字母,可以省略乘号,可写为3.7a;
C.7.5×1,为数字乘数字,不能省略乘号。
故答案为:B
【点睛】此题主要考查字母表示数的应用。
故选择:C
【点睛】此题考查了数与形,找出图形的变化规律是解题关键。
11.B
【分析】根据被减数=减数+差,用减数加上差,即可求出这个数。
【详解】378+439=817

2019年精选小学数学五年级上符号表示数沪教版练习题第六十一篇

2019年精选小学数学五年级上符号表示数沪教版练习题第六十一篇

2019年精选小学数学五年级上符号表示数沪教版练习题第六十一篇第1题【单选题】一个笼子能容纳18只同样大的兔子和9只同样大的鸡,或者容纳14只同样大的兔子和15只同样大的鸡,如果专门用来做兔笼,最多可以容纳( )只兔.A、22B、24C、25D、26【答案】:【解析】:第2题【单选题】甲、乙、丙共有100本.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1.那么乙有( )本书.A、3B、4C、5D、6【答案】:【解析】:第3题【单选题】如图(1)(2)为两架已达平衡的天平,如果要使图(3)中的天平保持平衡,则在天平右侧应放几个圆?( )A、2B、3C、4D、5【答案】:【解析】:第4题【判断题】若a-b=5,b-c=2,则a-c=7。

A、正确B、错误【答案】:【解析】:第5题【填空题】△+△+△=18△+○=30○=______.【答案】:【解析】:第6题【填空题】假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换______只兔子.【答案】:【解析】:第7题【填空题】镇海雅乐学校第一次买了5个足球和8个篮球,共用了51元;第二次又买了同样的8个足球和5个篮球,共用了66元.如果买1个足球和1个篮球共用______元.【答案】:【解析】:第8题【填空题】3只热水瓶与8只玻璃杯共值27.6元,5只热水瓶与6只玻璃杯共值35元,一只热水瓶______元,一只玻璃杯______元。

【答案】:【解析】:第9题【填空题】甲有4盒糖,乙有5盒糕点,总价值44元。

如果甲乙互换一盒,则每人所有的物品价值相等,一盒糖______元,一盒糕点______元。

【答案】:【解析】:第10题【填空题】某小学五年级进行速算比赛,共出了100道题,甲每分做4道题,乙每算出20道题比甲算出同样多的题少用1.5分,则乙做完100道题时,甲还有______道题没做.【答案】:【解析】:第11题【填空题】下列算式中的、各代表什么数?+=24,=++,=______,=______【答案】:【解析】:第12题【填空题】一辆小汽车的牌照是渝C8S○□△,已知○+○=□,○+□+□+5=15,△+△=○,那么牌照号码的后三位数是______。

人教版五年级(下)小学数学-有答案-第二单元测试卷(1)

人教版五年级(下)小学数学-有答案-第二单元测试卷(1)

人教版五年级(下)小学数学-有答案-第二单元测试卷(1)一、填空:1. 用正负数表示下列温度零上15∘C________零上22∘C________零下18∘C________零∘C________.2. 用正负数表示下面的数量收入3000元记作________,支出1500元记作________.电梯上升20米记作________,升降机下降10米记作________.3. 小王的数学成绩比小丁高−8分,表示________比________高8分。

4. 从银行取出−580元,表示________银行580元。

5. 一棵大树的位置高出海平面8米,那么它的海拔高度是________米,潜水员作业位置低于海平面18米,那么他处于海拔高度________米。

6. 秋季来临,如果一群大雁往南飞500千米,当春天来临它们往________飞________千米,才能回到原来的出发地。

7. 小红去新华书店买书,先向正东走240米,接着向正南走60米,然后向正北走60米,最后向正________走________米,正好回到原来的出发点。

8. ________数的相反数大于原数,________数的相反数小于原数,________的相反数等于原数。

二、选择题一辆公交车到站后,有10名乘客从后门下车,又有6名乘客从前门上车,这时车上的乘客增加的人数是()A.+6B.+4C.−4D.0(+4)+()=0.A.4B.−4C.0三、填空题如图的示意图中每格表示200米,把超市门口的位置记作为0,以向东为正。

(1)小王的位置是400米,说明小王从超市门口向________行了________米。

(2)张师傅的位置是−200米,说明张师傅从超市门口向________行了________米。

四、计算:计算:(18.5×3.8+3.8×2.5)÷0.19[32−(7.25+0.75×8)]÷50.参考答案与试题解析人教版五年级(下)小学数学-有答案-第二单元测试卷(1)一、填空:1.【答案】+15∘C,+22∘C,−18∘C,0∘C【考点】负数的意义及其应用【解析】此题主要用正负数来表示具有意义相反的两种量:零下记为负,则零上就记为正,由此即可求解。

五年级数学上册用字母表示数

五年级数学上册用字母表示数
方程的建立
用字母表示未知数可以方便地建立方程,例如,用字母x表示一元二次方程的解,则方 程可以表示为ax^2+bx+c=0。
方程的求解
用字母表示未知数可以方便地求解方程,例如,对于一元二次方程ax^2+bx+c=0,可 以通过因式分解、配方等方法求解x的值。
函数中用字母表示数的应用
函数的定义
用字母表示自变量和因变量可以方便地定义函数,例如,用字母x表示自变量,用字母y表示因变量,则函数可以 表示为y=f(x)。
不同字母相乘
当两个不同的字母相乘时,它们的指数不变。例如,$a^m \times a^n = a^{m+n}$。
除法运算规则
相同字母相除
当两个相同的字母相除时,它们的指 数相减。例如,$\frac{a^m}{a^m} = a^{m-m} = a^0 = 1$。
不同字母相除
当两个不同的字母相除时,它们的指 数不变。例如,$\frac{a^m}{a^n} = a^{m-n}$。
THANKS
04
用字母表示数的实际问题应

代数式中用字母表示数的应用
代数式的简写
用字母表示数可以简化复杂的代数式,例如,用字母a表示正方形的边长,则正方形的面积可以表示 为a^2。
代数式的运算
用字母表示数可以方便地进行代数式的运算,例如,用字母a和b表示两个数,则它们的和可以表示为 a+b。
方程中用字母表示数的应用
数的表示方法的发展
简要介绍数的表示方法的发展历程, 强调用字母表示数的优越性和重要性 。
用字母表示数的意义
01
02
03
04
抽象化
用字母表示数可以将具体的数 字抽象化,方便进行数学运算

小学数学北京版五年级上册第五单元 方程用字母表示数-章节测试习题(2)

小学数学北京版五年级上册第五单元 方程用字母表示数-章节测试习题(2)

章节测试题1.【答题】一个三位数,十位上的数字是a,个位上的数字是x,最高位上的数字比个位上的数字大5,用含有字母的式子表示出这个三位数.【答案】101x+10a+500【分析】根据题意,十位上的数字是a,表示a个十,可以用a×10表示,最高位上的数字比个位上的数字大5,即(x+5),表示(x+5)个百,可以用(x+5)×100表示,最后将a×10、x和(x+5)×100相加,即为这个三位数.【解答】10a+x+(x+5)×100=10a+x+100x+500=101x+10a+5002.【答题】妈妈今年x岁,儿子(x﹣26)岁,再过y年后,母子相差()岁.A. x﹣26B. x+26C. 26【答案】C【分析】年龄差不随时间的变化而变化,今年的年龄差就是y年后的年龄差,用减法计算出今年二人的年龄差即可解答.【解答】x﹣(x﹣26)= x﹣x +26 =26(岁).再过y年后,母子相差26岁.选C.3.【答题】杨树的棵数比柳树的3倍少5棵.如果柳树有a棵,那么杨树有()棵.A. 3a﹣5B. 3(a﹣5)C. (a+5)÷3【答案】A【分析】根据等量关系式“柳树的棵数×3﹣5=杨树的棵数”解答即可.【解答】杨树的棵数比柳树的3倍少5棵.如果柳树有a棵,那么杨树有a×3﹣5=3a﹣5(棵).选A.4.【答题】a的一半与4.5的和用式子表示是().A. 2a+4.5B. a÷2+4.5C. a÷2﹣4.5D. 2÷a+4.5【答案】B【分析】先求出a的一半,即a÷2,再加4.5即可.【解答】a的一半与4.5的和用式子表示是a÷2+4.5,选B.5.【答题】用v表示速度,t表示时间,s表示路程.在某一物体活动过程中,如果已知速度和时间,求路程的公式是().A. s=v•tB. v=s÷tC. t=s÷v【答案】A【分析】根据路程=速度×时间,用字母表示即可.乘号可以写成“•”,也可省略不写.【解答】s=v×t=v•t=vt.选A.6.【答题】小红今年a岁,妈妈比小红大27岁,明年妈妈()岁.A. a+27B. a﹣27C. a+27+1【分析】小红今年a岁,妈妈比小红大27岁,由此用小红今年的年龄加上27即可求出今年妈妈的年龄,然后加上1即可求出明年妈妈的年龄.【解答】红今年a岁,妈妈比小红大27岁,明年妈妈的岁数是:(a+27+1)岁.选C.7.【答题】五年级1班有学生m人,五年级2班比五年级1班少3人,两班共有学生()人.A.m+3B.m﹣3C.2m+3D.2m﹣3【答案】D【分析】根据“五年级2班比五年级1班少3人,”得出五年级2班的人数=五年级1班的人数﹣3人,而五年级1班的人数为m,由此求出五年级2班的人数,进而求出两班共有的人数.【解答】m﹣3+m=2m﹣3(人).答:两班共有学生2m﹣3人.8.【答题】4x+8错写成4(x+8),结果比原来().A. 多4B. 少4C. 多24D. 少6【分析】应用乘法的分配律,把4(x+8)可化为4x+4×8=4x+32,再减去4x+8,即可得出答案.【解答】4(x+8)﹣(4x+8)=4x+4×8﹣4x﹣8=32﹣8=24.所以4x+8错写成4(x+8),结果比原来多24.选C.9.【答题】下面的算式中,乘号可以省略的是()A. 4.5×1.2B. 3.7×aC. 7.5×1D. 5.6+x【答案】B【分析】在乘法里,字母和字母乘,可以省略乘号;字母和数字乘,要省略乘号时,需要把数字写在字母的前面;数字与数字乘,不可以省略乘号;加减法不可省略运算符号;由此选择得出答案.【解答】A.4.5×1.2为数字乘数字,不能省略乘号;B.3.7×a为数字乘字母,可以省略乘号,可写为3.7a; C.7.5×1为数字乘数字,不能省略乘号;D.5.6+x为加法算式,不能省略加号.选B.10.【答题】a与b的和的3倍可列示表示为().A. a﹢3bB. 3a﹢bC. 3(a﹢b)【答案】C【分析】a与b的和的3倍,先求出a与b的和,即(a+b),再乘3.【解答】a与b的和的3倍可列示表示为(a+b)×3=3(a+b).选C.11.【答题】四年级同学参加兴趣小组,其中绘画有a人,比书法人数的2倍少4人,书法小组有多少人?正确的算式是()A. 2a﹣4B. a÷2﹣4C. (a+4)÷2D. (a﹣4)÷2【答案】C【分析】由题意得:绘画小组的人数=书法人数×2﹣4,所以绘画小组的人数加上4就是书法小组的人数的2倍,再除以2就是书法小组的人数.【解答】书法小组的人数列式为:(a+4)÷2.选C.12.【答题】电影院第一排有m个座位,后面一排都比前一排多1个座位.第n排有()个座位.A. m+nB. m+n+1C. m+n﹣1D. mn【答案】C【分析】第1排m个,第2排(m+1)个,第3排(m+2)个,…,从而找到规律,求出第n排的座位.【解答】根据题意得:第n排有(m+n﹣1)个座位.选C.13.【答题】丁丁比平平小,丁丁今年a岁,平平今年b岁,2年后丁丁比平小()岁.A. 2B. b﹣aC. a﹣bD. b﹣a+2【答案】B【分析】因为年龄差始终不变,所以今年的年龄差就是2年后的年龄差,即b﹣a;据此解答即可.【解答】2年后,丁丁比平平小:(b﹣a)岁.2年后丁丁比平平小(b﹣a)岁.选B.14.【答题】食堂每天用大米a千克,用了2天后还剩下b千克,原有大米()千克.A. a+2﹣bB. 2a﹣bC. 2a+bD. 2(a+b)【答案】C【分析】本题是一个用字母表示数的题.先用含字母的式子表示出2天用了大米的千克数,再用还剩的千克数+用了的千克数=原有大米的千克数.【解答】用了大米的千克数:a×2=2a(千克),原有大米的千克数:(2a+b)千克.选C.15.【答题】甲数是x,比乙数的3倍少2,乙数是().A. 3x-2B. (x-2)÷3C. (x+2)÷3【答案】C【分析】本题考查了用字母表示数的方法,要注意根据题目中所给的等量关系列式解答.【解答】甲数是x,比乙数的3倍少2,表示乙数的式子是:乙数=(甲数+2)÷3,即乙数是(x+2)÷3.选C.16.【答题】用两个边长是a厘米的正方体拼成一个长方形,拼成的长方形的周长是()厘米.A.6aB.8aC.2a【答案】A【分析】两个正方形围成的长方形的周长比原来两个正方形的周长减少了2条正方形的边长,即是正方形边长的6倍,将数据代入公式即可求解.【解答】根据题干分析可得:6×a=6a(厘米).答:拼成的长方形的周长是6a厘米.17.【答题】有m个苹果,每袋装8个,可以装()袋.A.m÷8B.8mC.m﹣8【答案】A【分析】求可以装多少袋,根据:总数量÷毎袋装的个数=装的袋数,代入数值,解答即可.【解答】m÷8(袋).所以可以装m÷8袋;故选A.18.【答题】钢笔的价格比圆珠笔价格的2倍还多1.5元.如果圆珠笔每支a元,那么钢笔每支()元.A.2a-1.5B.2a+1.5C.a2+1.5D.a2﹣1.5【答案】B【分析】由题意“钢笔的价格比圆珠笔的2倍还多1.5元”可得,钢笔和圆珠笔价格之间的关系:钢笔的价格=圆珠笔的价格×2+1.5,据此解答即可.【解答】a×2+1.5=2a+1.5(元).答:钢笔每支2a+1.5元.19.【答题】长方形的周长是c米,宽4米,长是()米.A.c÷2﹣4B.(c﹣4)÷2C.c﹣4×2【答案】A【分析】根据长方形的周长公式知道,长加宽的和的2倍是周长,那周长除以2就是长和宽的和,再根据宽是4米,由此即可求出长.【解答】c÷2﹣4米.答:长是c÷2﹣4米.20.【答题】—个两位数,十位上的数字是5,个位上的数字是a,则这个数是()A. 5aB. 50aC. 50+a【答案】C【分析】这是一道数的排列的题,十位上的数要乘10.【解答】—个两位数,十位上数字是5,个位上的数字是a,则这个数是5×10+a=50+a.所以正确答案是C.。

五年级数学上册用字母表示数

五年级数学上册用字母表示数

在含有字母的式子里,数字和
字母间或字母和字母中间的乘号
可以记作“ ”,也可以省略不写,
但其它运算符号不能省略。
要注意:在省略乘号时,应当把数字写在
字母前面;当字母与1相乘时,乘 号和1都可省略不写。
如: x 5 简写成: 5 x 或 5x ,
1×a=a
不能写成X5,1a。
(1) 省略乘号,写出下面各式。
1、下面图中的数,都是按规律排列的。
12 39
13 7
14 86
5 10
= 15 =6
30 56
21
x3
56 78
a
49
a = 36 x= 7
2、 + + =12 =4
n × 5 = 15 n =3
3、 2 4 6 m 10 12
m =8 、 或a、x、n、m 这些符号和字母都可以 用来表示数。
如果正方形的边长a=6cm,你能计算 出正方形的面积和周长吗?(先写出 公式,再把数值代入公式计算)
S=a² =6×6 =36(cm²)
a=6cm
想一想
下面哪组中的两个式子结果一定相同。
62 和 6 × 2
2.5×2.5 和 2.52 (相同)
x ·x 和 x2
(相 x = ax 5 a = 5a
mn= mn x 3 = 3x
1×x= x
m×1 = m
如果用S表示面积,C表示周长,a 表示边长,你会用字母表示出这个 正方形的面积和周长吗?
a
想一想:
a²与2a有什么区别?
{ a ²表示两个a相乘,即a ²= a a 2a 表示两个a相加,即2 a = a+a= a 2

苏教版数学五年级上册:《用字母表达数量》练习题

苏教版数学五年级上册:《用字母表达数量》练习题

苏教版数学五年级上册:《用字母表达数量》练习题一、问题描述本文档是针对苏教版数学五年级上册中的《用字母表达数量》一章的练题。

该章节主要介绍如何用字母来表示数量,包括常见的表示方法和应用场景。

以下是练题的描述和要求。

二、练题目录1. 用字母表示下列图中的数量:![图1](link1.jpg)- a) 小狗的数量是多少?- b) 小鸟的数量是多少?- c) 小鱼的数量是多少?2. 用合适的字母表示下列物体的数量:- a) 五个梨- b) 四只猫- c) 三只鸟3. 从下列字母组合中选择合适的字母来表示物体的数量:- a) A- b) B- c) C4. 用字母表示图中物体的数量:![图2](link2.jpg)三、答题要求在答题时,请用适当的字母表示所要求的数量。

如果有多个选项,请选择一个最合适的字母进行表示。

请在指定的空白处写出答案。

四、答案解析1.- a) 小狗的数量用字母A来表示。

- b) 小鸟的数量用字母B来表示。

- c) 小鱼的数量用字母C来表示。

2.- a) 五个梨的数量用字母E来表示。

- b) 四只猫的数量用字母F来表示。

- c) 三只鸟的数量用字母G来表示。

3.- a) 选择字母B。

- b) 选择字母C。

- c) 选择字母A。

4.- 图中物体的数量用字母D来表示。

以上是关于《用字母表达数量》练题的答案解析。

希望对您的研究有所帮助!五、参考资料- 苏教版数学五年级上册教材。

五年级下册数学扩展专题练习:数论.数的整除、约数倍数(C级)全国通用

五年级下册数学扩展专题练习:数论.数的整除、约数倍数(C级)全国通用

“0”大约1500年前,欧洲的数学家们是不知道用“0”的。

他们使用罗马数字。

罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。

在这种数字的运用里,不需要“0”这个数字。

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。

他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。

过了一段时间,这件事被当时的罗马教皇知道了。

当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。

教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。

就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。

后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

一、常见数字的整除判定方法:1. 一个数的末位能被2或5整除,这个数就能被2或5整除;2. 一个数的末两位能被4或25整除,这个数就能被4或25整除;3. 一个数的末三位能被8或125整除,这个数就能被8或125整除;4. 一各位数数字和能被3整除,这个数就能比9整除;5. 一个数各位数数字和能被9整除,这个数就能被9整除;6. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.7. 1001特征(家有三子7、11、13)课前预习知识框架数的整除、约数倍数一个数除以7的余数,其末三位与前面隔开,等于末三位与前面隔出数的差除以7的余数;一个数除以11的余数,其末三位与前面隔开,等于末三位与前面隔出数的差除以11的余数;或者,其奇数位数字之和(从个位往高位数,个位为第1位,即为奇数位)减去偶数位数字之和所得的差除以11的余数;一个数除以13的余数,其末三位与前面隔开,等于末三位与前面隔出数的差(大减小)能被13整除;【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3 如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4 如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6 如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a ,且d|c ,那么ac|bd;三、质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴值得注意的是很多题都会以质数2的特殊性为考点.⑵除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.四、质因数与分解质因数1.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.2. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123ka a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数. 分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.3. 部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.4. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q(均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.五、约数的概念与最大公约数0被排除在约数与倍数之外 1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来. 例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数; ②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n . 3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;ba即为所求. 六、倍数的概念与最小公倍数 1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=; ②短除法求最小公倍数;例如:2181239632,所以[]18,12233236=⨯⨯⨯=;③[,](,)a ba b a b ⨯=. 2. 最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数. ②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;ba 即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 七、最大公约数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公约数,所得的商互质。

【苏教版】五年级数学上册第8章 用字母表示数测试卷(含答案)

【苏教版】五年级数学上册第8章 用字母表示数测试卷(含答案)

第8章用字母表示数单元测试题一.选择题(共10小题,满分20分,每小题2分)1.(2分)小兵今年(x﹣4)岁,小红今年x岁,再过a年后,他们相差()岁.A.4B.x C.x+a D.无法确定2.(2分)一筐番茄的质量是一篮土豆的5倍.如果土豆有x千克,那么番茄和土豆一共有()千克.A.4红B.5x C.6x3.(2分)比x的7倍少13的数是()A.13﹣7x B.7x﹣13C.7x+124.(2分)A、B两地相距S千米,一辆汽车从A地出发,每小时行X千米,5小时候距离A地有()千米.A.5X B.S÷5﹣X C.S﹣5X D.5S5.(2分)超市运来a箱苹果,每箱8千克(),一共运来多少千克苹果?如果用“8(a+b)”表示“一共运来多少千克苹果?”,那么横线上的信息应选择()A.又运来b千克B.又运来b箱C.卖出b千克6.(2分)哥哥今年m岁,弟弟今年n岁,五年后,哥哥比弟弟大()岁A.m﹣n B.m﹣n+5C.m﹣n﹣5D.m+5﹣n7.(2分)当a=5,b=4时,ab+3的值是()A.12B.57C.238.(2分)当a=20,b=40时,2a2﹣b=()A.0B.160C.7609.(2分)如果a=2a,那么a=()A.0B.2C.410.(2分)已知a÷b=2c,4c应等于()A.2a÷2b B.2a÷b C.4a÷b D.a÷4b二.填空题(共10小题,满分16分)11.(2分)如果用a、b分别表示两个乘数,那么乘法交换律可以写成;如果用a、b、c 分别表示三个乘数,那么乘法结合律可以写成.12.(3分)爸爸的年龄是小刚年龄的5倍,假设小刚的年龄是x岁,则爸爸的年龄是岁,爸爸比小刚大岁,他们一共岁.13.(2分)小明到商店买了a支钢笔,每支8.5元,一共要花元,付给售货员50元,应找回元.14.(1分)小芳用30元钱买了y支铅笔,每支4.7元,还剩元.15.(1分)一支钢笔a元,比一本笔记本的2倍还少b元,一本笔记本元.16.(1分)小明到商店买钢笔a支,每支0.8元,一共需元.17.(1分)已知a=2,b=1.4,那么ab﹣(b2﹣1)=.18.(2分)一个本子y元,买5个需要元,当y=1.5时,需要元.19.(1分)a=b,如果b=3.5,那么a=.20.(2分)如果a+b=500,那么a+(b+20)=.如果x×y=40,那么x×5×y=.三.判断题(共5小题,满分10分,每小题2分)21.(2分)已知m是真分数,则m2一定小于2m..(判断对错)22.(2分)一个两位数,十位上是a,个位上是b,这个两位数用字母表示是ab.(判断对错)23.(2分)a是b的25%,a、b不为0.则b是a的4倍.(判断对错)24.(2分)当x=78时,x﹣14=64.(判断对错)25.(2分)当x=2时,2x=x2.(判断对错)四.计算题(共2小题,满分12分,每小题6分)26.(6分)直接写出计算结果.8x+6x=6.5b﹣5.5b=0.52=0.5×2=6x+3x﹣4x=3.6a+5.4a+a=27.(6分)求下列各式子的值.当x=5时.5x+1860﹣4x.五.应用题(共3小题,满分17分)28.(5分)小欣妈妈今年a岁,比小欣大28岁,比小欣爸爸小3岁.小欣今年多少岁?小欣爸爸呢?29.(6分)小明去商店买文具,所带的钱如果全部买笔记本,可以买10本,如果全部买铅笔,可以买15支.(1)用2本笔记本可以换几支铅笔?(2)假如每本笔记本比每支铅笔贵a元,那么小明所带的钱可以怎样表示?(用只含有字母a 的式子来表示)30.(6分)妈妈买了a千克苹果和b千克梨,每千克苹果4.5元,每千克梨3.2元.(1)用含有字母的式子表示妈妈买水果付的钱.(2)当a=2.4,b=1.8时,妈妈一共付了多少钱?六.操作题(共1小题,满分7分,每小题7分)31.(7分)连一连.七.解答题(共3小题,满分18分,每小题6分)32.(6分)在○里填运算符号,在□里填合适的字母.(a+b)+c=a+(□○□)(a+b)×c=a×□○□×c.33.(6分)(1)一天早晨的温度是b摄氏度,中午比早晨高9摄氏度.b+9表示.(2)某班共有60名学生,女生有60﹣C名,这里的C表示.(3)在一场篮球赛中,小方接连投中y个3分球,3y表示.34.(6分)6至10岁儿童体重的千克数一般是“实足年龄×2+7”.小华今年8岁,请你根据这个公式算算小华的体重.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:x﹣(x﹣4)=4(岁)答:他们相差4岁.故选:A.2.解:x×5+x=6x(千克)答:番茄和土豆一共有(6x)千克.故选:C.3.解:x×7﹣13=7x﹣13故选:B.4.解:经过5小时离乙地路程为:S﹣X×5=S﹣5X(千米)答:5小时候距离A地有(S﹣5X)千米.故选:C.5.解:由分析可得:超市运来a箱苹果,每箱8千克,又运来b箱,一共运来多少千克苹果,如果用“8(a+b)”表示“一共运来多少千克苹果?”,那么横线上的信息应选择:又运来b箱;故选:B.6.解:五年后,哥哥比弟弟大m﹣n(岁)答:五年后,哥哥比弟弟大(m﹣n)岁.故选:A.7.解:当a=5,b=4时ab+3=5×4+3=20+3=23即当a=5,b=4时,ab+3的值是23.故选:C.8.解:当a=20,b=40时,2a2﹣b=2×202﹣40=2×400﹣40=800﹣40=760故选:C.9.解:A、当a=0时,a=2a=0;B、当a=2时,2×2=4,2≠4;C、当a=4时,2×4=8,2≠8;故选:A.10.解:由题意可知,(4c)÷(2c)=2,由根据商不变的性质,可知商扩大了2倍,A选型被除数和除数同时扩大了2倍,商不变,所以排除A;B选项,被除数扩大了2倍,除数不变,那么商也扩大2倍,即4c,符合题意;C选项被除数扩大4倍,除数不变,商扩大4倍,不符合;D 选项被除数不变,除数扩大4倍,商缩小4倍,也不符合题意.故选:B.二.填空题(共10小题,满分16分)11.解:乘法交换律:ab=ba乘法结合律可以写成:a×b×c=a×(b×c).故答案为:ab=ba,a×b×c=a×(b×c).12.解:x×5=5x(岁)5x﹣x=4x(岁)5x+x=6x(岁)答:爸爸的年龄是5x岁,爸爸比小刚大4x岁,他们一共6x岁.故答案为:5x,4x,6x.13.解:一共要花8.5×a=8.5a(元)付给售货员50元,应找回(50﹣8.5)元故答案为:8.5a,(50﹣8.5a).14.解:买y支铅笔花的钱数:y×4.7=4.7y元,还剩的钱数:(30﹣4.7y)元.故答案为:(30﹣4.7y).15.解:一支钢笔a元,比一本笔记本的2倍还少b元,一本笔记本(a+b)÷2元.故答案为:(a+b)÷2.16.解:a×0.8=0.8a(元)答:一共需0.8a元.故答案为:0.8a.17.解:把a=2,b=1.4代入ab﹣(b2﹣1)可得:2×1.4﹣(1.42﹣1)=2.8﹣(1.96﹣1)=2.8﹣0.96=1.84故答案为:1.84.18.解:一个本子y元,买5个需要5y元当y=1.5时5y=5×1.5=7.5(元)故答案为:买5个需要5y元,当y=1.5时,需要7.5元.故答案为:5y,7.5.19.解:a=b则a=×3.5a=2.5答:a等于2.5.故答案为:2.5.20.解:a+(b+20)=(a+b)+20=500+20=520.x×5×y=(x×y)×5=40×5=200.故答案为:520、200.三.判断题(共5小题,满分10分,每小题2分)21.解:m是真分数,则m2=m×m,m<1,所以m2<m,2m=m×2,2>1,所以2m>m,所以m2<2m.故题干的说法是正确的.故答案为:√.22.解:一个两位数,十位上是a,个位上是b,这个两位数用字母表示是(10a+b)原题说法错误.故答案为:×.23.解:a是b的25%即a=25%ba÷25%=25%b÷25%4a=b所以b是a的4倍原题说法正确.故答案为:√.24.解:当x=78时x﹣14=78﹣14=64即当x=78时,x﹣14=64原题说法正确.故答案为:√.25.解:当x=2时,2x=2×2=4x2=22=2×2=4所以原题说法正确.故答案为:√.四.计算题(共2小题,满分12分,每小题6分)26.解:(1)8x+6x=14x(2)6.5b﹣5.5b=b(3)0.52=0.5×0.5=0.25(4)0.5×2=1(5)6x+3x﹣4x=5x(6)3.6a+5.4a+a=8a故答案为:14x;b;0.25;1;5x;8a.27.解:当x=5时,5x+18=5×5+18=25+18=43;60﹣4x=60﹣4×5=60﹣20=40.五.应用题(共3小题,满分17分)28.解:小欣今年(a﹣28)岁,小欣爸爸今年(a+3)岁,答:小欣今年(a﹣28)岁,小欣爸爸今年(a+3)岁.29.解:(1)笔记本单价×10=铅笔单价×15笔记本单价×10÷5=铅笔单价×15÷5笔记本单价×2=铅笔单价×3即即2本笔记本的钱数=3支铅笔的钱数因此,用2本笔记本可以换3支铅笔答:用2本笔记本可以换3支铅笔.(2)设小明带的钱数为“1”则笔记本的单价就是,铅笔的单价就是,每本笔记本比每支铅笔贵a元小明带的钱数就是:a÷(﹣)=a÷=30a(元)30.解:(1)根据总价=单价×数量可得妈妈付的钱数可以表示为:(4.5a+3.2b)元.(2)a=2.4,b=1.8时:4.5a+3.2b=4.5×2.4+3.2×1.8=10.8+5.76=16.56(元)答:妈妈一共付了16.56元.六.操作题(共1小题,满分7分,每小题7分)31.解:x×6=6xb+b=2bx+5y20﹣bx÷7(a+b)×3x2+4七.解答题(共3小题,满分18分,每小题6分)32.解:(a+b)+c=a+(b+c)(a+b)×c=a×c+b×c故答案为:b、+、c,c、+、b.33.解:1)一天早晨的温度是b摄氏度,中午比早晨高9摄氏度.b+9表示中午的温度.(2)某班共有60名学生,女生有60﹣C名,这里的C表示男生人数.(3)在一场篮球赛中,小方接连投中y个3分球,3y表示小方得到的分数.故答案为:中午的温度,男生人数,小方得到的分数.34.解:8×2+7=16+7=23(千克)答:小华的体重是23千克.。

2019-2020学年苏教版五年级数学第一学期第八单元用字母表示数 测试题

2019-2020学年苏教版五年级数学第一学期第八单元用字母表示数 测试题

五年级上册数学第八单元测试卷姓名:得分:家长签字:一、填空题(每空1分,共27分)1.学校田径队有20人,篮球队人数比田径队多x人,篮球队有()人。

航模队比田径队少w人,航模队有()人。

合唱队的人数第田径队的c倍,合唱队有()人。

舞蹈队的人数比田径队的人数的2倍少a人,舞蹈队有()人。

2.比X的5倍多20的数是()。

比Y多20的数是5的()倍。

3.如果x-5=15,那么x2=()2x=()。

4.五(1)班有男生x人,女生y人,全班一共有()人,把他们分成4组活动,平均每组有()人。

5.王师傅要做100个零件,已经做了4小时,每小时做x个,这时已超额完成任务,超额了()个。

6.在一个等腰三角形中,底角是n°,那么顶角的度数就是()°。

在一个直角三角形中,一个锐角是m°,另一个锐角是()°。

7.一根40厘米长的铁丝围成一个正方形后,还余下m厘米,所围成的正方形的边长是()厘米。

8.学校买来y盒粉笔,买来白粉笔的盒数是红粉笔的10倍,学校买来()盒粉笔;当y=10时,学校买来()盒粉笔。

9.一只乒乓球拍y元,一个计算器比一副乒乓球拍便宜x元,一个计算器()元。

10.一个直角梯形的上底是3厘米,下底是5厘米,高是h厘米,那么它的面积是()平方厘米。

如果把这个梯形的上底延长到5厘米,这时就变成了长方形,那么这个长方形的周长是()厘米。

11.用a表示三个连续自然数中间的一个数,那么比a大的数可以用()来表示,这三个连续自然数的和是()。

12.一个等边三角形,每边上a厘米。

它的周长可以用字母表示为()厘米。

当a=10时,它的周长是()分米。

13.一辆汽车t小时行了300千米,平均每小时行()千米。

李师傅每小时加工40个零件,加工了a小时,一共加工了()个。

14.每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重()千克。

15.王叔叔靠着一面墙用篱笆围了一块长方形地,如图1所示,共用篱笆()米。

第5章简易方程第1课时用字母表示数-五年级上册数学同步重难点讲练

第5章简易方程第1课时用字母表示数-五年级上册数学同步重难点讲练

【学霸笔记】五年级上册数学同步重难点讲练第5章简易方程第1课时用字母表示数1、可以用字母或含有字母的式子来表示一个数或表示数量关系;2、字母与数字相乘时,把乘号省略。

省略乘号时,一般把数字写在字母前面。

含有字母的式子中的加、减、除号不能省略。

3、用含有字母的式子可以表示数量关系,也可以表示一个具体数量。

当字母的值确定时,含有字母的式子的值也就确定了。

4、用字母表示出这些运算定律在含有字母的式子里,字母中间的乘号可以记作“.”,也可以省略不写。

5、比较a²与2a的区别:6、(1)在含有字母的式子里,字母中间的乘号可以记作“.”,也可以省略不写;(2)只有“×”可以简写成“.”或者省略不写,“+、—、÷”都不可以省略不写;(3)在含有字母的式子里,数字和字母中间的乘号可以记作“·”,也可以省不写。

注意:数必须写在字母的前边。

7、应用公式求值解决问题的步骤:第一步:写出字母公式第二步:把字母表示的数值代入公式第三步:计算出结果,记住写单位8、用字母表示较复杂的数量关系的步骤:(1)分析出数量之间的关系。

(2)列出含有字母的数量关系式。

(3)根据实际情况,确定字母的取值范围。

根据给出的数值求一个式子的值时,结果一般不写单位名称。

9、用字母表示图形中的数量关系的步骤:(1)找出图形中存在的数量关系,列出含有字母的式子(当数量关系中含有相同的字母时,要化成最简结果)。

(2)将数据代入含有字母的式子,求出值。

an﹣bn+cn=()n.A.a﹣b+c B.a+b+c C.a+b﹣c D.a﹣b﹣c【分析】根据乘法分配律进行解答即可.【解答】解:an﹣bn+cn=(a﹣b+c)n故选:A.【点评】灵活掌握乘法分配律,是解答此题的关键.小明家到学校765米,平均每分钟走b米,8分钟后距学校765﹣8b米.当b=60时,他距学校285米.【分析】首先根据速度×时间=路程,用小明的速度乘以走的时间,求出小明8分钟走的路程是多少;然后用小明从家到学校的路程减去小明8分钟走的路程,求出8分钟后离学校还有多少米,然后把b=60代入含有字母的式子,解答即可.【解答】解:765﹣b×8=765﹣8b(米)765﹣8b=765﹣8×60=765﹣480=285(米)答:8分钟后距学校765﹣8b米.当b=60时,他距学校285米.故答案为:765﹣8b,285.【点评】解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.6a+5=6(a+1).×(判断对错)【分析】根据乘法分配律,把6(a+1)化简成6a+6,据此判断.【解答】解:6(a+1)=6a+6所以6a+5≠6(a+1)故答案为:×.【点评】此题考查运用乘法分配律化简代数式;熟练掌握乘法分配律的内容是解决此题的关键.小明家平均每月的伙食费开支为a元,平均每月的水电费开支为b元.(1)用含有字母的式子表示小明家上半年的伙食费和水电费一共是多少元?(2)当a=1500,b=105时,小明家上半年的这两项开支一共是多少元?【分析】(1)用平均每月伙食费开支的钱数加上每月水电费开支的钱数求出和来,然后再乘6即可表示出小明家上半年两项费用共要多少钱;(2)把a=1500,b=105代入(1)中的式子,即可求小明家上半年两项费用一共要多少钱【解答】解:(1)(a+b)×6=6(a+b)(元)答:成老师家上半年两项费用一共要(6a+b)元.(2)(a+b)×6=(1500+105)×6=9630(元)答:小明家上半年两项费用一共要9630元.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.一.选择题(共6小题)1.a的平方与b的2倍的和用含有字母的式子表示是()A.a2+2b B.2a+2b C.2(a+b)22.a元可以买20个篮球,篮球的单价是()A.20÷a B.a÷20C.20a D.20+a3.甲数是a,乙数比甲数的4倍多5,表示乙数的式子是()A.4a+5﹣a B.4a﹣5C.4a+5D.a+4+54.把3x+6错写成3(x+6),结果比原来()A.多3B.少3C.多125.当x=8,y=0.6时,x2+5y=()A.19B.67C.486.满足条件<<的所有整数n的个数有()A.1个B.2个C.3个D.无数个二.填空题(共6小题)7.天天今年a岁,妈妈的年龄是他的4倍,今年他们的年龄和是岁.8.长方形的周长是c米,宽是b米,则它的长用字母表示为米.9.王师傅完成一批零件.每小时做a个,做了3小时后还剩50个没有完成,这批零件共有个;照这样计算,他还需做小时才能完成任务.10.淘气有200元钱,买书包用去a元,买钢笔用去b元,还剩下元.11.一本书,李丽每天看15页,x天后还剩a页没有看完,这本书共有页.12.三角形的三条边分别长a﹣2、a+2、a+5(单位:cm),则a一定大于.三.判断题(共5小题)13.工地上每天用去水泥2.5t,m天用去的吨数为2.5m.(判断对错)14.a2表示两个a相乘,当a=2时,a2=2a.(判断对错)15.1.5×(m+n)=1.5m+n.(判断对错)16.2x<x2.(判断对错)17.三个连续自然数,如果最小的一个是a,那么最大的一个是(a+2).(判断对错)四.应用题(共5小题)18.修一段公路,已经修了12天,每天修a米,还剩300米没有修.(1)请用含有字母的式子表示这段公路的长度.(2)如果a=150,求这段公路长多少?19.甲乙两个工程队分别从两端同时开凿一条隧道.甲队每天凿a米,乙队每天凿b米,120天后凿完.(1)这条隧道长多少米?(2)当a=11米,b=9米时,这条隧道多少米?20.小明去商店买文具,所带的钱如果全部买笔记本,可以买10本,如果全部买铅笔,可以买15支.(1)用2本笔记本可以换几支铅笔?(2)假如每本笔记本比每支铅笔贵a元,那么小明所带的钱可以怎样表示?(用只含有字母a的式子来表示)21.六一儿童节期间,王老师买了10盒签字笔和12盒橡皮作为节日礼物.每盒签字笔x元,每盒橡皮y 元(1)买签字笔比买橡皮多用多少钱?用含有字母的式子表示.(2)如果x=12,y=6,买签字笔和橡皮一共要付多少元?22.某粮食局为了保证粮食安全,决定将100吨粮食全部转移到A、B两个仓库中.已知粮食所在地到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨千米)A库2012B库1810(1)若运往A库粮食x吨那么将粮食运往A、B两库的总运费是多少元?(请用含有x的最简单的式子表示出来)(2)当总运费为20400元时,求x的值.参考答案与试题解析一.选择题(共6小题)1.【分析】a的平方是a2,b的2倍是2b,所以a的平方与b的2倍的和用含有字母的式子表示是a2+2b.【解答】解:a的平方与b的2倍的和用含有字母的式子表示是a2+2b.故选:A.【点评】此题主要考查了用字母表示数的方法,要熟练掌握,解答此题的关键是弄清楚题中的数量关系.2.【分析】用买篮球的总价除以数量,即可求得篮球的单价;进而判断得解.【解答】解:a÷20(元)答:篮球的单价是(a÷20)元.故选:B.【点评】解决此题用到的关系式是:总价÷数量=单价.3.【分析】首先分析条件“乙数比甲数的4 倍多5”,则甲数的4倍加上5就是乙数,进而逐步列式算出答案.【解答】解:a×4+5=4a+5故选:C.【点评】做这道题的关键是要弄清“求一个数的n倍是多少,要用乘法计算”.4.【分析】由题意得,用3(x+6)减去3x+6,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小.【解答】解:3(x+6)﹣(3x+6)=3x+18﹣3x﹣6=1212>0所以结果比原来大,大12;故选:C.【点评】注意括号前面是减号,去掉括号时,括号里面的运算符号要改变.5.【分析】把x=8,y=0代入含字母的式子x2+5y中,计算即可求出式子的数值.【解答】解:当x=8,y=0.6时,x2+5y=82+5×0.6=64+3=67故选:B.【点评】此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值.6.【分析】根据分数的大小比较,把这三个分数通分化成分母是56的分数,即<<,根据分数的大小比较方法可得出32<7n<48,满足条件的整数n只能是5、6,即满足条件<<的所有整数n的个数有2个.【解答】解:把这三个分数通分化成分母是56的分数是<<根据分数的大小比较,可以得到32<7n<48满足条件的整数n只能是5、6即满足条件<<的所有整数n的个数有2个.故选:B.【点评】把三个分数通分化成相同分母的分数,然后再根据分数的大小比较方法即可确定整数n的个数.二.填空题(共6小题)7.【分析】妈妈的年龄是天天的4倍,即4×a=4a,求他们的年龄和,用加法列式.【解答】解:妈妈的年龄为:4×a=4a他们的年龄和:a+4a=5a故答案为:5a.【点评】本题主要考查了用字母表示数,根据题中的数量关系,列出算式,是本题解题的关键.8.【分析】根据长方形的周长公式知道,长加宽的和的2倍是周长,那周长除以2就是长和宽的和,再减去宽是b米,由此即可求出长.【解答】解:长是:c÷2﹣b(米)答:长是(c÷2﹣b)米故答案为:(c÷2﹣b).【点评】此题主要考查了长方形的周长公式变形应用,即周长÷2=长+宽,由此即可得出答案.9.【分析】先用乘法求出3小时做的零件个数,然后加上剩下的50个即可;求还需要多少小时才能完成,根据:工作总量÷工作效率=工作时间,由此解答即可.【解答】解:a×3+50=3a+50 (个)50÷a=(小时)答这批零件共有(3a+50)个;照这样计算,他还需做小时才能完成任务.故答案为:(3a+50),.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.10.【分析】根据一共的钱数减去用去的钱数就等于剩下的钱数解答即可.【解答】解:(200﹣a﹣b)元,答:还剩下(200﹣a﹣b)元.故答案为:(200﹣a﹣b)元.【点评】根据减法的意义列式,明确一共的钱数、用去的钱数和剩下的钱数之间的关系是解答的关键.11.【分析】李丽每天看15页,x天后看了15x页,再加上没看完的a页就是这本书的总页数.【解答】解:一本书,李丽每天看15页,x天后还剩a页没有看完,这本书共有(15x+a)页.故答案为:(15x+a).【点评】此题是考查学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.用含有字母的式子表示一个名数时,式子中有加、减号的,把单位前的式子加括号.12.【分析】有一边为a﹣2,那么a一定要大于2才可以,还需要根据三角形三边的关系得到满足两边之和大于第三边的条件,分别将a等于3,4,5,…代入,看a要为多少才满足三角形三边关系.【解答】解:根据a﹣2为三角形的一条边可知:a要大于2,当a=3时,三边为:1,5,8,1+5<8,不满足三角形三边关系;当a=4时,三边为:2,6,9,2+6<9,不满足三角形三边关系;当a=5时,三边为:3,7,10,3+7=10,不满足三角形三边关系;当a=6时,三边为:4,8,11,4+8>11,满足三角形三边关系;所以a一定大于5.故答案为:5.【点评】本题考查的是用字母表示数、三角形的特征,根据三角形三边关系来确定a的值.三.判断题(共5小题)13.【分析】根据“用去的吨数=每天用去的吨数×天数”解答即可.【解答】解:2.5×m=2.5m(吨)原题没加单位,所以原题说法错误;故选:×.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.14.【分析】根据题意,当a=2时,把a=2分别代入a2与2a,求出值再比较解答.【解答】解:当a=2时;a2=2×2=4;2a=2×2=4;所以a2=2a.所以,原题说法正确.故答案为:√.【点评】此题考查了用字母表示数,把a表示的数代入即可得出结论.15.【分析】根据乘法分配律可得1.5×(m+n)=1.5m+1.5n.【解答】解:1.5×(m+n)=1.5m+1.5n,题干的计算是错误的.故答案为:×.【点评】此题是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.关键是记住乘法分分配律的意义.16.【分析】x2表示两个x相乘,2x表示两个x相加,两个算式表示的意义不同,x表示的数值又不知道,所以2x<x2是错误的.【解答】解:x2表示两个x相乘,2x表示两个x相加,两个算式表示的意义不同,x表示的数值又未知,所以2x<x2是错误的.故答案为:×.【点评】解决此题关键是理解一个数的平方和一个数的2倍的意义不同.17.【分析】根据自然数的特征,相邻两个自然数相差1,三个连续自然数,如果最小的一个是a,较大的一个是(a+1),最大的一个是(a+1+1)即(a+2).【解答】解:三个连续自然数,如果最小的一个是a,那么最大的一个是(a+2)原题说法正确.故答案为:√.【点评】此题是考查学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.关键是连续自然数的性质,相邻两个自然数相差1.四.应用题(共5小题)18.【分析】首先用每天修的米数乘以修的天数,求出已经修了多少页;然后加上还剩下的300米,就是这段公路的长度;然后再把a=150代入含有字母的式子求出结果即可.【解答】解:(1)a×12+300=12a+300(米)答:示这段公路长(12a+300)米.(2)当a=150时;12a+300=12×150+300=1800+300=2100(米)答:如果a=150,这段公路长2100米.【点评】此题主要考查了用字母表示数的方法,以及代入法求含有字母的式子的值的应用.19.【分析】(1)根据“工作量=工作效率×工作时间”,分别求出甲、乙的工作量,把二者相加即可,或用甲、乙的工作效率之和乘工作时间.(2)把a=11米,b=9米时代入上面求出的含有字母a、b的表示这条隧道长度的式子计算即可.【解答】解:(1)a×120+b×120=120(a+b)(米)答:这条隧道长120(a+b)米.(2)当a=11米,b=9米时120(a+b)=120×(11+9)=120×20=2400(米)答:这条隧道2400米.【点评】此题是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量;使学生在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母式子的值.20.【分析】(1)根据“总价=单价×数量”,由题意可短,笔记本单价×10=铅笔单价×15,根据等式的性质,两边都除以5就是笔记本单价×2=铅笔单价×3,即2本笔记本的钱数=3支铅笔的钱数,因此,用2本笔记本可以换3支铅笔.(2)把小明所带的钱数看作单位“1”,根据“单价=总价÷数量”,笔记本的单价就是,铅笔的单价就是,每本笔记本比每支铅笔贵a元,根据分数除法的意义,小明带的钱数就是a÷(﹣)=30a(元).【解答】解:(1)笔记本单价×10=铅笔单价×15笔记本单价×10÷5=铅笔单价×15÷5笔记本单价×2=铅笔单价×3即即2本笔记本的钱数=3支铅笔的钱数因此,用2本笔记本可以换3支铅笔答:用2本笔记本可以换3支铅笔.(2)设小明带的钱数为“1”则笔记本的单价就是,铅笔的单价就是,每本笔记本比每支铅笔贵a元小明带的钱数就是:a÷(﹣)=a÷=30a(元)【点评】解答此题的关键一是总价、单价、数量之间关系的灵活运用;二是在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.21.【分析】(1)根据总价=单价×数量,先表示出买签字笔的钱数为10x,橡皮的钱数为12y,再用二者相减即可;(2)先用含有字母的式子表示出买签字笔和橡皮一共要付(10x+12y)元,再将x=12,y=6代入字母式中即可.【解答】解:(1)(10x﹣12y)元答:买签字笔比买橡皮多用(10x﹣12y)元;(2)买签字笔和橡皮一共要付(10x+12y)元,如果x=12,y=6,则10x+12y=10×12+12×6=120+72=192(元)答:买签字笔和橡皮一共要付192元.【点评】此题考查的是用字母表示数,还有求代数式的值.22.【分析】(1)若运往A库粮食x吨,那么运往B库粮食就是(100﹣x)吨,分别求出将粮食运往A、B两库的运费是多少元,再相加即可;(2)把总运费20400元代入(1)式求出x的值即可.【解答】解:(1)12x×20+10×(100﹣x)×18=240x+18000﹣180x=60x+18000(元)答:将粮食运往A、B两库的总运费是(60x+18000)元.(2)当总运费为20400元时,60x+18000=2040060x+18000﹣18000=20400﹣1800060x÷60=2400÷60x=40答:x=40.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.。

2022人教版五年级数学上册 用字母表示数(3)

2022人教版五年级数学上册 用字母表示数(3)
人教版五年级数学上册
用字母表示数(3)
复习导入
1.口答 (1)一支铅笔0.2元,买a支铅笔需多少元?
0.2a元 (2)红红每分钟走50米,她y分钟走多少米?
50y米
复习导入
2.下面各式中,哪些运算符号可以省略?
a×8
5×3
10×b
a÷3
a×a
0.2×0.2
其实用字母不仅可以表示运算定律和计算公式,还可以表 示数量关系,这节课我们就一起来研究这方面的内容。
(2)当x=12时,y=7时,求xy的值。 xy = 84
(3)当m=72,n=9时,求m÷n的值。 m÷n = 8
(4)当x=20时,y=100时,求4x+y的值。 4x+y = 180
[教材P61 练习十三 第6题 ]
6.张叔叔每天投递75份快递,李叔叔每天投递60份快递。 (1)他们每天共投递_1_3_5_份,x天共投递_1_3_5_x_份。 (2)用第(1)题中的式子计算他们30天的总投递数。
探索新知
一大杯果汁1200 g,从中倒出3小杯。如 果每小杯果汁xg,你能用含有字母的式 子表示大杯里的果汁还剩多少克吗?
还剩(1200-3x) g。
剩下果汁的质量=果汁总质量-倒出的果汁质量 一小杯果汁是x g,3小杯果汁总共3x g。
列式:1200-3x
1200-3x
根据这个式子,当x等于200时,果汁还剩多少克? 当x=200时 1200-3x =1200-3×200 =600
答:当a等于25时,商店一共有370千克苹果。
巩固练习
[教材P58 做一做 第1题 ]
2.仓库里有货物96 t,运走了12车,每车运b t。 (1)用式子表示仓库里剩下货物的吨数。

人教版PEP五年级数学上册第二单元测试题及答案

人教版PEP五年级数学上册第二单元测试题及答案

人教版PEP五年级数学上册第二单元测试题及答案第一部分:选择题1. 以下哪一个是平行四边形?A. ▱B. ▭C. △答案:A2. 计算下列各组数的和:246, 375, 154答案:7753. 两个表情符号一共需要多少个圆?☺, ◉, ♡, ◑答案:3第二部分:填空题1. 下图中,阴影部分表示的分数是$\frac{5}{8}$。

___5 |___|82. 一架飞机每小时飞行300千米,若飞行1小时40分钟,则飞行的总距离是\_\_\_千米。

答案:5203. 当分子是4,分母是6时,该分数的简化形式是$\frac{2}{3}$。

第三部分:解答题1. 小明的家到学校的距离是8千米,他每天骑车上下学。

如果他每天早上骑车骑了4千米,那么他离学校还有多远?答案:4千米。

2. 若一个球的直径是18厘米,求该球的半径和周长。

答案:半径为9厘米,周长为56.52厘米。

3. 两根绳子长度分别是12米和6米,将它们进行连接后,整个绳子的长度是多少?答案:18米。

第四部分:应用题1. 一包有六个苹果,一个小朋友拿走了其中的三分之一,另一个小朋友拿走了其中的四分之一,剩下的苹果还有几个?答案:2个苹果。

2. 一辆汽车每小时行驶50千米,若开了2小时,又行驶了30分钟,汽车还剩下多少千米未行驶?答案:5千米。

3. 若一根绳子的长度是1米6分米,又有一根绳子的长度是3分米1厘米,这两根绳子一共有多长?答案:1米9分米1厘米。

以上是人教版PEP五年级数学上册第二单元测试题及答案。

希望对你的学习有所帮助!。

小学数学-有答案-沪教新版五年级(上)小升初题同步试卷:11_符号表示数(02)

小学数学-有答案-沪教新版五年级(上)小升初题同步试卷:11_符号表示数(02)

沪教新版五年级(上)小升初题同步试卷:1.1 符号表示数(02)一、选择题(共15小题)1. 下列选项中,正确的是()A.ba =b+ca+cB.ba=b+ba+aC.ba=b+ba×aD.ba=b+ba÷a2. 在一座桥梁旁,有地块限重的交通标志牌(如图).被空中的飞鸟遮挡的字母应该是()A.kmB.kgC.tD.L3. 化简a−(b+c−d)=()A.a−b+c−dB.a+b−c+dC.a−b−c+d4. 一个半圆形纸片的直径是d,它的周长是()A.12πd B.12πd+d C.12(πd+d) D.πd+d5. 下面各组式子中,两个式子结果不相同的是()A.252和25×25B.x−y−z和x−z−yC.6(x+1)和6x−1D.2x和x+x6. 一家电脑公司计划5天安装a台电脑,实际每天比计划多安装2台,实际平均每天安装()台电脑。

A.3÷a+2B.a÷5+2C.c÷5−27. a为18,比b的2倍少4.则计算b的算式为()A.(18+4)÷2B.18÷2+4C.18÷2−48. 大斌今年a岁,小明今年(a−27)岁,再过3年,他们相差()A.3B.24C.27D.309. 甲数为a,它比乙数的3倍少5,表示乙数的式子是()A.(a+5)÷3B.(a−5)÷3C.a÷3−510. 今年,妹妹a岁,姐姐a+3岁,2年后,姐姐比妹妹大()岁。

A.5B.2C.311. 一个两位数,十位上的数字是5,个位上的数字是a,表示这个两位数的式子是()A.50+aB.5+aC.5+10a12. 3x表示()A.x×3B.x×x×xC.x+3D.3+3+x13. m与n的和除m与n的差。

正确的列式为()A..(m−n)÷(m+n)B.(m+n)÷(m−n)C.(m−n)÷(m+n)D.(m+n)×(m−n)14. 一个两位数,十位上的数字是5,个位上的数字是a,这个两位数用含有字母的式子表示是()A.50+aB.5+aC.5+10aD.5a15. 今年小马的爸爸A岁,小马(A−25)岁,再过x年后,爸爸比小马大()岁。

人教版五年级上册数学用字母表示数

人教版五年级上册数学用字母表示数
2、小刚每天看课外书15页,a天共看 了( 15a )页。
3、一辆公共汽车上原来有35人,到新街 车站下去χ人,又上来y人。现在车上有
(35-χ+y)人。
作业:
练习十二第一题和第二题。
再见
x x×6
1、用含有字母式子表示出 人在月球上举起的重量。
x 6 ______×________
字母与数字之间的乘号可以省略不写, 一般把数字写在字母前面
x×6可以简写成6x
2、式子中的字母能是200吗?
不能,因为人在地球上能举起的 质量是有限的。
3、如果图中的小朋友在地球上举
起15kg,那么他在月球上举起的质 量是多少?

小红的岁数
爸爸的岁数

1
1+30

2
2+30

3
3+30
……
……
a
a+30
你能用式子表示出爸爸任何一年的年龄吗?
小红的年龄+30岁=爸爸的年龄
a+30
a可能是哪些数?a能是200吗? 在特殊情况下,字母的取值是有一定范围的。 当a=11时,爸爸的年龄是多少?
a+30=__1__1_+_3_0___=_____4_1___(_ 岁)
表示:1
表示:11
表示:12
表示:13
12 39
1 3
=9
30 56
56 78
a
49
a = 36
21
x3 x= 7
++
= 12 =4
n × 5 = 15 n= 3
2、4、6、m、10、12 m= 8
或a、x、n、m 这些符号和字 母都可以表示数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档