小学六年级数学工程问题例题详解及练习 有答案

合集下载

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

六年级数学工程问题(附例题答案)

六年级数学工程问题(附例题答案)

第七讲 工程问题第七讲工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子:一件工作,甲做 10天可完成,乙做 15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作 1.所谓工作效率,就是单位时间内完成的工作量, 我们用的时间 单位是“天”,1天就是一个单位,因此甲的工作效率是1,乙的工作效率是 1,我们想求两人合作所需时间, 1 1 10 15就要先求两人合作的工作效率 ,再根据基本数量关系式,得到所需时间 =工作量÷工作效率10 15 =6(天). 两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额 .如上题,10与15的最小公倍数是30.设全 部工作量为30份.那么甲每天完成 3份,乙每天完成2份.两人合作所需天数是30÷(3+2)=6(天) 实际上我们把1(11)这个算式,先用 30乘了一下,都变成整数计算,就方便些.101510天与15天,体现了甲、乙两人工作效率之间比例关系1 :13:2.或者说“工作量固定,工作效率与 10 15时间成反比例”.甲、乙工作效率的比是 15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是 非常实用的.根据3:2,两人合作时,甲应完成全部工作的3 3 3,所需时间是 103 6(天). 2 5 5因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体 1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1.一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析: 甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9×3=1/3 余下的工作:1-1/3=2/3乙需做的天数:2/3 ÷1/6=4(天)例2.有一工程,甲队单独做24天完成,乙队单独做 30天完成,甲、乙两队合做 8天后,余下的由丙队做,又做了6天才完成。

小学六年级数学工程问题例题详解及练习(有答案)

小学六年级数学工程问题例题详解及练习(有答案)

工程问题(一)顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

例1 单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效例2某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

答:甲队干了12天。

例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析奥数专题:精编人教版小学数学6年级上册工程问题(试题)含答案与解析工程问题是小学数学中常见的题型之一,能够锻炼学生的逻辑思维和综合运算能力。

本文将为大家精编人教版小学数学6年级上册的工程问题试题,并附带详细的答案与解析,希望能够帮助到同学们更好地理解和掌握这一题型。

1. 小明修建了一个半径为3米的圆形花坛,请问这个花坛的周长是多少米?答案与解析:圆的周长公式为C = 2πr,其中r为半径,π取近似值3.14。

代入已知数据,得C = 2 × 3.14 × 3 = 18.84(米),所以这个花坛的周长为18.84米。

2. 小红家的房屋正前方有一个边长为6米的正方形草坪,现在要在这个草坪上种植鲜花,请问这个草坪的面积是多少平方米?答案与解析:正方形的面积公式为A = a^2,其中a为边长。

代入已知数据,得A = 6^2 = 36(平方米),所以这个草坪的面积为36平方米。

3. 丽丽要制作一个高度为2米的三角形旗帜,其中底边长为4米,请问这个旗帜的面积是多少平方米?答案与解析:三角形的面积公式为A = 0.5 ×底边长 ×高,代入已知数据,得A = 0.5 × 4 × 2 = 4(平方米),所以这个旗帜的面积为4平方米。

4. 小华要铺设一条长为5米的沟渠,他计划将沟渠分为相等的5段,请问每段的长度是多少米?答案与解析:将沟渠分为相等的5段,则每段的长度为总长度除以段数,即5 ÷ 5 = 1(米)。

所以每段的长度为1米。

5. 小明用了21个园木将一条长20米的小路两侧都种满,请问每个园木之间的距离是多少米?答案与解析:将小路分为21段,则每个园木之间的距离为总长度除以段数减1,即20 ÷ (21-1) = 1(米)。

所以每个园木之间的距离为1米。

6. 小红需要用12个石板铺满一个长为3米的小路,请问每块石板的长度是多少米?答案与解析:将小路分为12段,则每块石板的长度为总长度除以段数,即3 ÷ 12 = 0.25(米)。

六年级_工程问题_(答案)及详解 2

六年级_工程问题_(答案)及详解 2

将工程的总工作量看作单位“1”,充分利用 工作效率×工作时间=工作量 来求解问题。

例1 基本题型.1. 一项工程,甲队独做需要12天完成,那么4天可以完成这项工程的几分之几?要完成全部工程的16,需要做几天? 解答:甲工效:1÷12=112, 4×112=13;16÷112=2(天) 2. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。

从开始到完成共用了16天。

问乙队休息了多少天?解答:乙工作量=1-甲工作量:1-120×(16-3)=720, 16-720÷130=5.5(天) 3. 甲、乙两人同做一工程,需898天完工,若甲一人独做8天后,再由乙独做10天完工。

甲乙独做各需多少天?解答:甲、乙工效和:1÷889=980,合做89天的工作量:89×980=110,与乙2天的工作量相等。

乙工效:110÷2=120,甲工效:980-120=116。

则甲需1÷116=16天,乙需1÷120=20天。

4. 有一批资料要复印,甲机单独复印要11小时,乙机单独复印要13小时,当甲、乙两台复印同时复印时,由于相互干扰,每小时两台共少印28张,现在两机同时复印了6小时15分才印完,这批资料共有多少张? 解答:无干扰的工效和111+113=24143,实际工效和1÷614=425,28÷(24143-425)=3575(张)例2 复杂问题.5. 一项工程,甲、乙合做9天完成,甲、丙合做12天完成,乙、丙合做18天完成,由甲、乙、丙合做需几天完成?解答:三人工效和(11191218++)÷2=18,1÷18=8(天) 6. 五个人完成一项任务,如果第一、二、三人同时工作,需要7.5小时;第一、三、五人同时工作,需要5小时;第一、三、四人同时工作,需要6小时;第二、四、五人同时工作,需要4小时。

小学六年级数学上册——工程问题 (附答案)

小学六年级数学上册——工程问题 (附答案)

小学六年级数学上册——工程问题1.用分数解决工程问题的解题方法与用整数解决工程问题的解题方法相同,所用数量关系相同,即工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。

2.在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。

基础巩固例题1.修一段路,甲队单独修需要10天完成,乙队单独修需要15天完成。

如果两队同时修,几天能完成?练习1.录入一份稿件,陈老师单独录入要用18小时,李老师单独录入要用12小时。

两个人合作,几小时能完成这份稿件的一半?例题2.一项工作,甲单独做3天完成这项工作的101,乙单独做4天完成这项工作的51。

甲、乙合作12天,能完成全部工作吗?练习2.有一堆钢材,甲汽车运这堆钢材的61要2天,乙汽车运这堆钢材的52要10天。

乙汽车独运5天,剩下的钢材由甲、乙两汽车共同来运,这需几天运完?例题3.一项工程,甲、乙两队合作需要12天完成,乙、丙两队合作需要15天完成,甲、丙两队合作需要20天完成,甲、乙、丙三队合作需要几天完成?练习3.一项工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作60天完成。

问甲单独做需要多少天完成?思维拓展例题1.一项工程,甲队单独做要10小时完成,乙队单独做要12小时完成,丙队单独做要15小时完成。

开始三队合作,中途丙队有事离开,剩下的由甲、乙两队完成。

从工程开始到结束共用了5小时。

问丙队实际做了几小时?练习1.有一批工艺品。

王大妈独自加工要20天完成,李大妈独自加工要30天完成,张大妈独自加工要40天完成。

现在三人合作,王大妈家中有事中间暂停几天,结果用了12天完成。

王大妈中间休息了几天?例题2.一辆客车和一辆货车同时从A 、B 两城相对开出,经过8小时相遇,相遇后两车各自按原来速度继续行驶。

2024年人教版六年级下册数学小升初专题训练:工程问题(含答案)

2024年人教版六年级下册数学小升初专题训练:工程问题(含答案)

2024年人教版六年级下册数学小升初专题训练:工程问题一、单选题1.修一条水渠,计划每天修80m,20天可以完成,如果要提前4天完成,那么每天要比计划多修( )米。

A.20B.60C.64D.1002.加工一批零件,计划30天完成,现在工作效率提高了10%,现在工作效率是多少?正确的列式是( )。

A.30×(1+10%)B.130×(1+ 10%)C.30÷(1+10%)D.130÷(1+10%)3.一个水池,甲、乙两水管同时开,5时灌满;乙、丙两水管同时开,4时灌满。

现在先开乙水管6时,还需甲、丙两水管同时开2时才能灌满。

乙水管单独开( )时可以灌满。

A.24B.20C.18D.304.小王经过一段时间的练习后,打完1000字所用的时间比原来缩短了18,则他的速度比原来提高了( )。

A.17B.18C.78D.875.一份文件,原计划3小时打完,实际2.5小时就完成了任务。

实际工作效率比计划提高了( )%。

A.13.3B.20C.25D.506.打一篇稿子,1小时打了它的18,照这样计算,( )小时可以打它的34。

A.3B.5C.6D.9二、判断题7.一项工程,甲单独完成要8天,乙单独完成要12天,甲,乙两人的工作效率之比是2:3。

( )8.某工程队修一条道路,每天修这条道路的111,那么11天可以修完这条道路。

( )9.王师傅的车间平均每人做10个零件,李师傅的车间平均每人做8个零件,王师傅一定比李师傅做的零件多。

( )10.一项工程,甲单独做3天完成,乙单独做4天完成,甲的工作效率是乙的75%.()11.甲乙两队合作修一条长180千米的公路,甲队每天修5.5千米,乙队每天修3.5千米,两队合修20天完工。

()三、填空题12.修一条公路,甲队单独修8天完成,乙队单独修10天完成,两队合修, 天能修完。

13.一项工程原计划100个工人若干天完成,如果减少20个工人,工期将推迟5天。

六年级数学上册《工程问题》专项练习题+答案解析

六年级数学上册《工程问题》专项练习题+答案解析

六年级数学上册《工程问题》专项练习题+答案解析1、甲、乙、丙三人生产一批玩具,甲生产的个数是乙、丙两人生产个数之和的1/2,乙生产的个数是甲、丙两人生产个数之和的1/3,丙生产了50个。

这批玩具共有_________个。

【答案】120【分析】甲生产的是总和的÷1/3,乙生产的是总和的1/4,那么丙生产的是总和的,由此得到这批玩具共有.2.要发一份资料,单用A传真机发送,要10分钟;单用B传真机发送。

要8分钟;若A、B同时发送,由于相互干扰,A、B每分钟共少发0.2页。

实际情况是由A、B同时发送,5分钟内传完了资料(对方可同时接收两份传真),则这份资料有__________页。

【答案】8【分析】没受干扰时传真机的合作工作效率为,而实际的工作效率为1/5,所以这份资料共有(页).3.甲、乙二人要从网上下载同一个100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快。

下载速度是乙的5倍,但是当甲下载了半时。

由于网络故障出现断网的情况,而乙家的网络一直正常。

当甲的网络恢复正常后,继续下载到99兆时(已经下载的部分无须重新下载),乙已经下载完了,则甲断网期间乙下载了__________兆。

【答案】80.2【分析】在与甲下载的同时,乙下载了99÷5=l9.8(兆),则甲断网期间乙下载了100—19.8=80.2(兆).4、放满一个水池,如果同时打开1,2号阀门,则1 2分钟可以完成;如果同时打开1,3号阀门,则15分钟可以完成;如果单独打开l号阀门,则20分钟可以完成;那么,如果同时打开l,2,3号阀门,_____ 分钟可以完成。

【答案】10【分析】根据题意可知,1,2号阀门的效率之和为1/12,l,3号阀门的效率之和为1/15,1号阀门的效率为,所以1,2,3号阀门的效率之和为1/20,所以.如果同时打开1,2,3号阀门,10分钟可以完成5、修筑一条高速公路;若甲、乙、丙合作,90天可以完工;若甲、乙、丁合作,120天可以完工;若丙、丁合作,l80天可以完工;若甲、乙合作36天后,剩下的工作由甲、乙、丙、丁合作。

小学六年级数学上册——工程问题 (附答案)

小学六年级数学上册——工程问题 (附答案)

小学六年级数学上册——工程问题1.用分数解决工程问题的解题方法与用整数解决工程问题的解题方法相同,所用数量关系相同,即工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。

2.在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。

基础巩固例题1.修一段路,甲队单独修需要10天完成,乙队单独修需要15天完成。

如果两队同时修,几天能完成?练习1.录入一份稿件,陈老师单独录入要用18小时,李老师单独录入要用12小时。

两个人合作,几小时能完成这份稿件的一半?例题2.一项工作,甲单独做3天完成这项工作的101,乙单独做4天完成这项工作的51。

甲、乙合作12天,能完成全部工作吗?练习2.有一堆钢材,甲汽车运这堆钢材的61要2天,乙汽车运这堆钢材的52要10天。

乙汽车独运5天,剩下的钢材由甲、乙两汽车共同来运,这需几天运完?例题3.一项工程,甲、乙两队合作需要12天完成,乙、丙两队合作需要15天完成,甲、丙两队合作需要20天完成,甲、乙、丙三队合作需要几天完成?练习3.一项工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作60天完成。

问甲单独做需要多少天完成?思维拓展例题1.一项工程,甲队单独做要10小时完成,乙队单独做要12小时完成,丙队单独做要15小时完成。

开始三队合作,中途丙队有事离开,剩下的由甲、乙两队完成。

从工程开始到结束共用了5小时。

问丙队实际做了几小时?练习1.有一批工艺品。

王大妈独自加工要20天完成,李大妈独自加工要30天完成,张大妈独自加工要40天完成。

现在三人合作,王大妈家中有事中间暂停几天,结果用了12天完成。

王大妈中间休息了几天?例题2.一辆客车和一辆货车同时从A 、B 两城相对开出,经过8小时相遇,相遇后两车各自按原来速度继续行驶。

六年级 工程问题(综合)奥数 含答案

六年级 工程问题(综合)奥数 含答案

耐心 细心 责任心1 工程问题(综合)知识梳理教学重、难点作业完成情况典题探究例1. 甲、乙、丙三人合修一堵围墙,甲、乙合修6天完成了31,乙、丙合修2天完成余下工程的41,剩下的再由甲、乙、丙三人合修5天完成,现领工资共180元,按工作量分配,甲、乙、丙应各领多少元?例2. 一项工程,甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。

现由甲、乙、丙三个合作完成此工程。

在工作过程中甲休息了2天,乙休息了3天,丙没有休息,最后把这项工程完成了。

问这项工程前后一共用了多少天?例3. 一项工程,乙队先单独做4天,继而甲、丙两队合做6天,剩下的工程甲队又独做9天才全部完成。

已知乙队完成的是甲队完成的31,丙队完成的是乙队完成的2倍。

甲、乙、丙三队独做,各需要多少天完成?例4. 一个水池装了一根进水管和3根粗细相同的出水管。

单开一根进水管20分钟可将水池注满,单开一根出水管45分钟可将水池的水放完。

现在水池中有32池水,4根水管一起打开,多少分钟后水池的水还剩下52?例5. 2个蟹将和4个虾兵能打扫龙宫的103,8个蟹将和10虾兵在同样的时间里就能打扫完全部龙宫,如果单让蟹将去打扫与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多几个?例6. 一批工人到甲、乙两上工地进行清理工作,甲工地的工作量是乙工地工作量的211倍。

上午去甲工地人数是去乙工地人数的3倍,其他工人到乙工地,到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做一天。

那么这批工人有多少人?例7. 一个空水池有甲、乙两根进水管和一根排水管,单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需要6分钟流尽。

某次池中无水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管。

又过了同样时间,水池的41注了水。

如果继续注满水池,前后一共花了多少时间?例8. 一件工作,甲做了5小时以后由乙来做,再做3小时可以完成。

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1—45/80=35/80表示还要的进水量35/80÷(9/80—1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满.2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成.如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效〉甲的工效〉乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成.只有这样才能“两队合作的天数尽可能少”.设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成.现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

小学六年级数学 稍复杂的工程问题 例题+针对性练习(带答案)

小学六年级数学 稍复杂的工程问题  例题+针对性练习(带答案)

针对性练习: 1.师、徒二人合做一批零件,12天可以完成。师傅先做了3天,因事外出, 由徒弟接着做1天,共完成任务的3/20。如果这批零件由师傅单独做,多 少天可以完成?
答案:30天
2.某项工程,甲、乙合做1天完成全部工程的5/24。如果这项工程由甲队 独做2天,再由乙队独做3天,能完成全部工程的13/124。甲、乙两队单 独完成这项工程各需多少天?
六年级上学期数学 较复杂的工程问题
【例题1】一项工程,甲、乙两队合作15天完成,若甲队 做5天,乙队做3天,只能完成工程的7/30,乙队单独完 成全部工程需要几天?
【解析】此题已知甲、乙两队的工作效率和是1/15,只要求出甲 队货乙队的工作效率,则问题可解,然而这正是本题的难点,用 “组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合 作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量 7/30-1/15×3=1/30,从而求出甲队的工作效率。所以 1÷【1/15-(7/30-1/15×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
答案:600米
9.修一段公路,甲队独修要40天,乙队独修要用24天。两队同时从两端 开工,结果在距中点750米处相遇。这段公路全长多少米?
答案:6000米
10.一项工作,甲、乙、丙三人合做,4小时可以完成。如果甲做4小时后, 乙、丙合做2小时,可以完成这项工作的13/18;如果甲、乙合做2小时后, 丙再做4小时,可以完成这项工作的11/18。这项工作如果由甲、丙合做需 几小时完成?
答案:甲12天,乙8天
3.甲、乙两队合做,20天可完成一项工程。先由甲队独做8天,再由乙队 独做12天,还剩这项工程的8/15。甲、乙两队独做各需几天完成?

六年级数学工程问题(附例题答案)

六年级数学工程问题(附例题答案)

第七讲 工程问题一、知识要点 在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率 =6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 ×3=1/3余下的工作:1 -1/3 =2/3 乙需做的天数:2/3 ÷1/6=4(天)例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。

小学六年级数学工程问题例题详解及练习(有答案)

小学六年级数学工程问题例题详解及练习(有答案)

工程问题(一)分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效例2 分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?"这样一来,问题就简单多了.答:甲队干了12天.例3 分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间,例5例6 分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。

甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。

我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。

答:甲再出发后15分钟两人相遇。

答案与提示练习22。

14天.3.120天。

4.350棵。

5.6000米。

6.8时。

提示:甲管12时都开着,乙管开7。

280千米。

工程问题(二)分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。

于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)甲、乙合做这一工程,需用的时间为例2分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独例3 分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的,乙需要10+5=15(天)。

甲、乙合作需要例4 分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一例5 分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是例6分析与解:把甲、乙、丙三人每人做一天称为一轮。

小学六年级数学特殊工程问题讲解提高训练(附答案解析)

小学六年级数学特殊工程问题讲解提高训练(附答案解析)

特殊工程问题一、知识要点有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题。

二、精讲精练【例题1】修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。

两队合作,每天工作6小时,几天可以完成?把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”。

则1÷[15×8+110×6]÷6=4(天)或1÷[(15×8+110×6)×6]=4(天)答:4天可以完成。

练习1:1.修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5天可以完成。

现在让甲、乙两队合修,要求2天完成,每天应修几小时?2.一项工作,甲组3人8天能完成,乙组4人7天也能完成。

现在由甲组2人和乙组7人合作,多少天可以完成?3.货场上有一堆沙子,如果用3辆卡车4天可以完成,用4辆马车5天可以运完,用20辆小板车6天可以运完。

现在用2辆卡车、3辆马车和7辆小板车共同运两天后,全改用小板车运,必须在两天内运完。

问:后两天需要多少辆小板车?【例题2】有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时。

甲和丙在A仓库,乙在B仓库,同时开始搬运。

中途丙转向帮助乙搬运。

最后,两个仓库同时搬完,丙帮助甲、乙各多少时间?设搬运一个仓库的货物的工作量为“1”。

总整体上看,相当于三人共同完成工作量“2”①三人同时搬运了2÷(110+112+115)=8(小时)②丙帮甲搬了(1-110×8)÷115=3(小时)③丙帮乙搬了8-3=5(小时)答:丙帮甲搬了3小时,帮乙搬了5小时。

练习2:1.师、徒两人加工相同数量的零件,师傅每小时加工自己任务的110,徒弟每小时加工自己任务的115。

最新六年级数学工程问题(附例题答案)

最新六年级数学工程问题(附例题答案)

最新六年级数学⼯程问题(附例题答案)六年级数学⼯程问题(附例题答案)⼀、知识要点在⽇常⽣活中,做某⼀件事,制造某种产品,完成某项任务,完成某项⼯程等等,都要涉及到⼯作总量、⼯作效率、⼯作时间这三个量,它们之间的基本数量关系是⼯作总量=⼯作效率×⼯作时间.在⼩学数学中,探讨这三个数量之间关系的应⽤题,我们都叫做“⼯程问题”.举⼀个简单例⼦:⼀件⼯作,甲做10天可完成,⼄做15天可完成.问两⼈合作⼏天可以完成?⼀件⼯作看成1个整体,因此可以把⼯作量算作1.所谓⼯作效率,就是单位时间内完成的⼯作量,我们⽤的时间单位是“天”,1天就是⼀个单位,因此甲的⼯作效率是101,⼄的⼯作效率是151,我们想求两⼈合作所需时间,就要先求两⼈合作的⼯作效率151101+,再根据基本数量关系式,得到所需时间=⼯作量÷⼯作效率=6(天).两⼈合作需要6天.这是⼯程问题中最基本的问题,这⼀讲介绍的许多例⼦都是从这⼀问题发展产⽣的.为了计算整数化(尽可能⽤整数进⾏计算),可把⼯作量多设份额.如上题,10与15的最⼩公倍数是30.设全部⼯作量为30份.那么甲每天完成3份,⼄每天完成2份.两⼈合作所需天数是30÷(3+ 2)= 6(天)实际上我们把111()1015÷+这个算式,先⽤30乘了⼀下,都变成整数计算,就⽅便些. 10天与15天,体现了甲、⼄两⼈⼯作效率之间⽐例关系11:3:21015=.或者说“⼯作量固定,⼯作效率与时间成反⽐例”.甲、⼄⼯作效率的⽐是15∶10=3∶2.当知道了两者⼯作效率之⽐,从⽐例⾓度考虑问题,也是⾮常实⽤的.根据3:2,两⼈合作时,甲应完成全部⼯作的33325=+,所需时间是31065=(天). 因此,在下⾯例题的讲述中,我们可以采⽤ “把⼯作量设为整体1”的做法,也可以“整数化”或“从⽐例⾓度出发”、“列⽅程”等,这样会使我们的解题思路更灵活⼀些.⼆、典型例题例1. ⼀件⼯作,甲做9天可以完成,⼄做6天可以完成.现在甲先做了3天,余下的⼯作由⼄继续完成.⼄需要做⼏天可以完成全部⼯作?解析:甲的⼯效:1÷9=1/9 ⼄的⼯效:1÷6=1/6 甲三天做了的:1/9 × 3=1/3余下的⼯作:1 - 1/3 =2/3 ⼄需做的天数:2/3 ÷ 1/6=4(天)例2. 有⼀⼯程,甲队单独做24天完成,⼄队单独做30天完成,甲、⼄两队合做8天后,余下的由丙队做,⼜做了6天才完成。

小学六年级数学工程问题练习题及答案

小学六年级数学工程问题练习题及答案

【答案】12天小学六年级数学工程问题练习题及答案1.一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?【答案】此题已知甲、乙两队的工作效率和是1/15,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用"组合法"将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量7/30—1/15X3=1/30,从而求出甲队的工作效率。

所以1三【1/15—(7/30—1/15X3)三(5—3)】=20(天)答:乙队单独完成全部工程需要20天。

2.师、徒二人合做一批零件,12天可以完成。

师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的3/20。

如果这批零件由师傅单独做,多少天可以完成?【答案】30天3.某项工程,甲、乙合做1天完成全部工程的5/24。

如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的13/24。

甲、乙两队单独完成这项工程各需多少天?4.甲、乙两队合做,20天可完成一项工程。

先由甲队独做8天,再由乙队独做12天,还剩这项工程的8/15。

甲、乙两队独做各需几天完成?【答案】30天,60天。

5.一项工程,甲队独做12天可以完成。

甲队先做了3天,再由乙队做2天,则能完成这项工程的1/2。

现在甲、乙两队合做若干天后,再由乙队单独做。

做完后发现两段所用时间相等。

求两段一共用了几天?【答案】此题很容易先求乙队的工作效率是:(1/2—1/12X3)三2=1/8;再由条件,,做完后发现两段所用时间相等"的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。

(1)乙队每天完成这项工程的(1/2—1/12X3)三2=1/8[来源:学#科#网](2)两段时间一共是1^(1/8X2+1/12)X2=6(天)答:两段时间一共是6天。

六年级下册数学试题-工程问题综合知识精讲+练习题 全国通用(含答案)

六年级下册数学试题-工程问题综合知识精讲+练习题  全国通用(含答案)

工程问题综合【知识精讲】例题1.一栋大楼,甲队单独去盖需要10天完成,乙队单独去盖需要40天完成。

那么两队一起盖共需要多少天盖完整栋大楼?例题2.一项工程,甲、乙两队合作需要12天完成,若由甲队单独干需要36天才能完成,那么若由乙队单独完成这项工程的21需要多长时间?例题3.(1)修筑一条公路,甲队独修15天完成,乙队独修12天完成,两队合修4天后乙队调走,剩下的路由甲队继续修完.甲队共修了多少天?(2)修筑一条公路,如果乙工程队单独修,需要18天完成。

如果两队合作10天之后,剩下的全都由乙来完成,则还需要6天才能完成。

那么如果这条路全部都由甲队来修,需要多少天才能完成?例题4.有一堆沙子,甲车单独运需12天,乙车单独运需15天。

现在让两车合运,但其间甲车休息了2天,乙车休息了若干天,结果从头到尾用了10天才把这堆沙子运完。

请问乙车休息了多少天?例题5.有一座大桥,A、B两个工程队合作12天可以修完。

如果A工程队单独先修8天,B工程队再修18天,恰好把这座大桥修完。

那么A工程队单独修这座大桥需要多少天修完?例题6.单独完成一项工程,甲需要30天,乙需要15天。

现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作,那么完成这项工作需要多少天?工程问题综合练习题(一)1. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的1.5倍.两队合修共需要天完成.2. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成.现由2个老工人和4个徒工同时做,多少天可以完成.3. 加工一批零件,徒弟单独做要30小时完成.现在师徒合作5小时加工了这批零件的21.师傅单独做这批零件需要多少小时完成.4. 一项工程,由甲单独做需要30天完成,乙要45天完成现在先由甲、乙两人合作,中途乙因其他工作调走,结果20天才完成全部工作.那么乙做了多少天?5. 单独完成一项工程,甲需要20天,乙需要30天.现在两人按甲、乙、甲、乙、.... 的顺序,一人一天轮流工作,那么完成这项工作需要多少天?(二)1. 韩师傅修一条路需要 10天,那么他完成这条路53的工作量需要多少天?2. 一件工作,甲独做16天可以完成,乙独做12天可以完成,现在乙先做3天,剩下的由甲做,还需要多少天可以完成这项工程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题(一)
顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:
工作量=工作效率×工作时间,
工作时间=工作量÷工作效率,
工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可
工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

例1 单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?
分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效
例2某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?
分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

答:甲队干了12天。

例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?
分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了
例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?
分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间,
例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?
例6 甲、乙二人同时从两地出发,相向而行。

走完全程甲需60分钟,乙需40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再出发后多长时间两人相遇?
分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。

甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。

我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。

答:甲再出发后15分钟两人相遇。

练习1
1.某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?
2.某工程甲队单独做需48天,乙队单独做需36天。

甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。

求乙队在中间单独工作的天数。

3.一条水渠,甲、乙两队合挖需30天完工。

现在合挖12天后,剩下的乙队单独又挖了24天挖完。

这条水渠由甲队单独挖需多少天?
则完成任务时乙比甲多植50棵。

这批树共有多少棵?
5.修一段公路,甲队独做要用40天,乙队独做要用24天。

现在两队同时从两端开工,结果在距中点750米处相遇。

这段公路长多少米?
6.蓄水池有甲、乙两个进水管,单开甲管需18时注满,单开乙管需24时注满。

如果要求12时注满水池,那么甲、乙两管至少要合开多长时间?
7.两列火车从甲、乙两地相向而行,慢车从甲地到乙地需8时,比快车从
40千米。

求甲、乙两地的距离。

答案与提示?练习2
天。

天。

棵。

米。

时。

提示:甲管12时都开着,乙管开
千米。

工程问题(二)
上一讲我们讲述的是已知工作效率的较简单的工程问题。

在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。

例1一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。

如果甲、乙合做,那么多少天可以完成?
分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:
从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。

于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)
甲、乙合做这一工程,需用的时间为
例2一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后
么还要几天才能完成?
分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作
们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独
例3 单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。

如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。

问:甲、乙二人合做需多少天完成?
分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的
,乙需要10+5=15(天)。

甲、乙合作需要
例4 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。

问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?
分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一
例5 某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。

如果按一、二、三、四、一、二、三、四、……的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?
分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是
例6 甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。

若按乙、丙、甲的顺序轮流
件工作,要用多少天才能完成?
分析与解:把甲、乙、丙三人每人做一天称为一轮。

在一轮中,无论谁先谁后,完成的总工作量都相同。

所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。

由最后一轮完成的工作量相同,得到
练习2
1.甲、乙二人同时开始加工一批零件,每人加工零件总数的一半。

甲完成
有多少个?
需的时间相等。

问:甲、乙单独做各需多少天?
3.加工一批零件,王师傅先做6时李师傅再做12时可完成,王师傅先做8时李师傅再做9时也可完成。

现在王师傅先做2时,剩下的两人合做,还需要多少小时?
独修各需几天?
5.蓄水池有甲、乙、丙三个进水管,甲、乙、丙管单独灌满一池水依次需要10,12,15时。

上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。

问:甲管在何时被关闭?
6.单独完成某项工作,甲需9时,乙需12时。

如果按照甲、乙、甲、乙、……的顺序轮流工作,每次1时,那么完成这项工作需要多长时间?
7.一项工程,乙单独干要17天完成。

如果第一天甲干,第二天乙干,这样交替轮流干,那么恰好用整天数完成;如果第一天乙干,第二天甲干,这样交替轮流干,那么比上次轮流的做法多用半天完工。

问:甲单独干需要几天?
答案与提示练习2
个。

2.甲18天,乙12天。

时。

解:由下页图知,王干2时等于李干3时,所以单独干李需12+6÷2×3=21(时),王需21÷3×2=14(时)。

所求为
5.上午9时。

时15分。

天。

解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。

甲乙甲乙……甲乙甲乙甲乙……甲乙甲
现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做天。

相关文档
最新文档