“导数的概念(起始课)”的教学设计、反思与点评

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“导数的概念(起始课)”的教学设计、反思与点评

1教学预设

1.1教学标准

(1)通过情境的介绍,让学生知道导数的实际背景,体验学习导数的必要性;

(2)通过大量的实例的分析,让学生知道平均变化率的意义,体会平均变化率的思想及内涵,为后续建立瞬时变化率和导数的数学模型提供丰富的背景;

(3)通过实例的分析,让学生感受平均变化率广泛存在于日常生活之中,经历运用数学描述刻画现实世界的过程,体会数学知识来源于生活,又服务于生活,感悟数学的价值;

(4)通过问题探索、观察分析、归纳总结等方式,引导学生从变量和函数的角度来描述变化率,进而抽象概括出函数的平均变化率,会求函数的平均变化率.

1.2标准解析

1.21内容解析

本节是导数的起始课,主要包括三方面的内容:变化率、导数的概念、导数的几何意义.实际上,它们是理解导数思想及其内涵的不同角度.首先,从平均变化率开始,利用平均变

化率探求瞬时变化率,并从数学上给予各种不同变化率在数量上精确描述,即导数;然后,从数转向形,借助函数图象,探求切线斜率和导数的关系,说明导数的几何意义.根据教材的安排,本节内容分4课时完成.第一课时介绍平均变化率问题,在“气球膨胀率”、“高台跳水”两个问题的基础上,归纳出它们的共同特征,用f(x)表示其中的函数关系,定义了一般的平均变化率,并给出符号表示.本节内容通过分析研究气球膨胀率问题、高台跳水问题,总结归纳出一般函数的平均变化率概念,在此基础上,要求学生掌握函数平均变化率解法的一般步骤.平均变化率是个核心概念,它在整个高中数学中占有极其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,注意特殊到一般、数形结合等数学思想方法的渗透.

教学重点在实际背景下直观地解释函数的变化率、平均变化率.

1.22学情诊断

吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,这两个实例的共同点是背景简单.从简单的背景出发,既可以利用学生原有的知识经验,又可以减少因为背景的复杂而可能引起的对数学知识学习的干扰,这是有利的方面.但是如何从具体实例中抽象出共同的数学问题的

本质是本节课教学的关键.而对本节课(导数的概念),学生

是在充满好奇却又一无所知的状态下开始学习的,因此若能让学生主动参与到导数的起始课学习过程,让学生体会到自己在学“有价值的数学”,必能激发学生学习数学的兴趣,树立学好数学的自信心.

教学难点如何从两个具体的实例归纳总结出函数平均

变化率的概念,对生活现象作出数学解释.

1.23教学对策

本节作为导数的起始课,同时也是个概念课,如何自然引入导数的概念是至关重要的.为了有效实现教学目标,准备投影仪、多媒体课件等.

①在信息技术环境下,可以使两个实例的背景更形象、更逼真,从而激发学生的学习兴趣,通过演示平均变化率的几何意义让学生更好地体会数形结合思想.

②通过应用举例的教学,不断地提供给学生比较、分析、归纳、综合的机会,体现了从特殊到一般的思维过程,既关注了学生的认知基础,又促使学生在原有认知基础上获取知识,提高思维能力,保持高水平的思维活动,符合学生的认知规律.

1.24教学流程设置情境→提出问题→知识迁移→概括小结→课后延伸

2教学简录

2.1创设情境,引入课题

为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立与自然科学中四类问题的处理直接相关:(课件演示相关问题情境)

(1)已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;

(2)求曲线的切线;

(3)求已知函数的最大值与最小值;

(4)求长度、面积、体积和重心等.

导数是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

评析充分利用章引言中提示的微积分史料,引导学生探寻微积分发展的线索,体会微积分的创立与人类科技发展之间的紧密联系,初步了解本章的学习内容,从而激发他们学习本章内容的兴趣.

2.2提出问题,探求新知

问题1气球膨胀率(课件演示“吹气球”)

我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?

气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是V(r)=43πr3;

如果将半径r表示为体积V的函数,那么r(V)=33V4π.

师:当V从0增加到1时,气球半径增加了多少?如何表示?

生:r(1)-r(0)≈0.62(dm).

师:气球的平均膨胀率为多少?如何刻画?

生:r(1)-r(0)1-0≈0.62(dm/L).

师:当V从1增加到2时,气球半径增加了多少?如何表示?

生:r(2)-r(1)≈0.16(dm).

师:气球的平均膨胀率为多少?如何刻画?

生:r(2)-r(1)2-1≈0.16(dm/L).

师:非常好!可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.

归纳到一般情形,当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

生:r(V2)-r(V1)V2-V1.

师生活动:教师播放多媒体,学生可以直接回答问题,教师板书其正确答案. 评析通过熟悉的生活体验,提炼出数学模型,从而为归纳函数平均变化率概念提供具体背

景.自然合理地提出问题,让学生体会“数学来源于生活”,创造和谐积极的学习氛围,让学生能通过感知表象后,学会进一步探讨问题的本质,学会使用数学语言和数学的观点分析问题,避免浅尝辄止和过分依赖老师.

问题2高台跳水(观看多媒体视频)

在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)

=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?

师:请同学们分组,思考计算:0≤t≤0.5和1≤t≤2的平均速度.

生:(第一组)在0≤t≤0.5这段时间里,=h(0.5)-h(0)0.5-0=4.05(m/s);

生:(第二组)在1≤t≤2这段时间里,=h(2)-h(1)2-1=-8.2(m/s)

师生活动:教师播放多媒体,学生通过计算回答问题.

对第(2)小题的答案说明其物理意义.

评析高台跳水展示了生活中最常见的一种变化率――

运动速度,而运动速度是学生非常熟悉的物理知识,这样可以减少因为背景的复杂而可能引起的对数学知识学习的干扰.通过计算为归纳函数平均变化率概念提供又一重要背景.

师:(探究)计算运动员在0≤t≤6549这段时间里的平

相关文档
最新文档