中国科学院大学硕士研究生考试(数学分析)
中科大历年考研数学真题
直线 l1, l2 平行,且 π 与 l1 的距离是 91, 求 π 的方程。
3. 设 A : U → V 为数域 F 上的线性空间 U 到 V 上线性映射. 证明:
dim KerA + dim Im A = dim U
2 −1 1 4. 设 A = 2 2 −1 , 求方阵 P , 使得 P −1AP 为 A 的 Jordan 标准形。
··· ···
(α1, αn)
(α2, αn) ...
,
其中 (αi, αj) 是 V 的内积.
(αn, α1) (αn, α2) · · · (αn, αn)
求证:G 正定的充分必要条件是 α1, · · · , αn 线性无关。
5. 设 A 是无限维线性空间 V 的线性变换,B 是 A 在 ImA 上的限制变换. 求证:
.
a2x1 + x2 + x3 = 1
5.
使线性方程组
x1 + ax2 + x3 = a x1 + x2 + x3 =a2
有解的实数 a 的取值范围是
.
6.
已知实方阵 A 的伴随矩阵 A∗
2.
以曲线
y = x2 z=2
为准线,原点为顶点的锥面方程为
.
3. 以 xOy 平面上的权限 f (x, y) = 0 绕 x 轴旋转所得的旋转面的方程是
.如
果曲线方程是 x2 − y2 − 1 = 0, 由此得到的曲面类型是
.
4. 设 α1, α2α3α4 是线性空间 V 中 4 个线性无关的向量,
为 α1 = (1, 0, −1), α2 = (?, ?, ?), 求矩阵 A 以及使 A 对角化的矩阵 P 7. A 是复方阵,线性变换 T → AX + XA, 证明:如果 A 可对角化,那么 T 也可以对
2012年中国科学院大学数学分析考研试题及解答考研真题考研试题硕士研究生入学考试试题
xn
.
5、 (15 分)设在区间 a, b 上, f x 连续, g x 可积,并且 f x 0, g x 0 .证明
lim
n
b
a
f
n
x g x dx
1n
max f x .
a x b
6、 (15 分)设在区间 0, a 上, f x 二次可导,且 f x 1, f x 1 ,则当 x 0, a 时, f x
中国科学院 2012 数学分析考研试题参考解答
引言
本文是中国科学院大学 2012 年硕士研究生入学考试《数学分析》试题的参考解答.试 题来自文献[1].第二题由对称性计算定积分和二重积分.第五题证明连续函数的本性最大 模(范数)的积分定义式.第七题用介值定理和单调性处理代数方程求根问题.第八题计算 第一型曲面积分,附注中提供了另外的解题思路.
1 0
2 5
3、解:记幂级数
a x
n 1 n
n
,则 1 an 0 n ,放缩得
1 n 1 n 1 n n 1 n , k 1 k 1
由 Cauchy-Hadamard 公式,得收敛半径
R
1 lim 1 , x lim n an k 1 k 1
(2)等价无穷小量代换
1 x4 1 x4 1 lim cos exp lim ln cos exp lim cos 2 1 2 2 x x x x 2 x 2 x x4 1 1 1 exp lim 4 exp 4 x 2 e 2 x 4
中科大2023年843科目试题
中科大2023年843科目试题全文共四篇示例,供读者参考第一篇示例:中科大2023年843科目试题中科大2023年843科目试题在学术界引起了广泛的争议和讨论。
这份试题共包含了各类不同科目的考题,涉及了数理、工程、人文、社会等多个领域。
下面我们将逐一介绍其中的一部分试题内容。
数学试题:1. 计算\int_0^1 \frac{1}{x+1} dx;2. 证明勾股定理:a^2 + b^2 = c^2;3. 解方程组:\begin{cases} x + y = 5 \\ 2x - y = 3\end{cases};4. 求解微分方程:\frac{dy}{dx} = 2x;5. 计算\lim_{x \to 0} \frac{\sin x}{x}。
物理试题:1. 将一个质量为m的物体从高度为h的斜面顶端滑下,求其最终速度;2. 已知一个光滑水平面上有一质量为m的物体,初速度为v_0,求它在t 时间后的位移;3. 在空气中自由落体的重力加速度约为g = 9.8 m/s^2,已知一个物体自由落体t秒后的速度v,求它的高度;4. 将一个质量为m的物体用力水平拉动,求它的加速度;5. 用牛顿第二定律推导匀加速直线运动的位移公式。
化学试题:1. 用化学方程式表示硫酸与氢氧化钠中和的反应过程;2. 已知一个反应的生成物为氧气和氢氧化钠,求该反应的方程式;3. 用化学式表示乙醇的结构;4. 硝酸铜与氢氧化钠反应得到什么产物?写出反应式;5. 用分子式表示氧化铁的结构。
工程试题:1. 设计一个简单的小车,使其能够在水平地面上行走;2. 制作一个简易的电路,包括电源、开关和LED灯;3. 根据给定材料设计一个简单的风筝;4. 利用简单材料制作一个可以测量温度的仪器;5. 设计一个简易的太阳能发电设备。
以上仅仅是中科大2023年843科目试题中的一小部分内容,试题种类繁多,覆盖了多个学科领域,旨在全面考核学生的综合能力和学识水平。
985院校数学系2019年考研数学分析高等代数试题及部分解答
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1
2020-2021年中国科学院大学(数学科学学院)基础数学考研招生情况、分数线、参考书目、录取名单
一、数学科学学院简介中国科学院大学(简称国科大)数学科学学院前身为1978年成立的中国科技大学研究生院(北京)数学教学部,2002年9月更名为中国科学院研究生院数学系,2006年6月与中国科学院数学与系统科学研究院联合组建成立中国科学院研究生院数学科学学院,院长和副院长分别由数学与系统科学研究院的院长和分管教育的副院长担任。
2014年由数学与系统科学研究院承办科教融合数学科学学院,现任院长为席南华院士。
数学科学学院下设6个教研室,分别为分析数学教研室、几何与拓扑教研室、代数与数论教研室、计算数学与计算机数学教研室、概率论与数理统计教研室、运筹学与控制论教研室。
国科大数学科学学院的专任教师每年招收硕士研究生20名左右(含推免生),培养方向有分析、代数、几何、概率论、数理统计、应用数学、运筹学与控制论、应用统计专业学位硕士以及一些交叉学科的若干个研究方向。
2019年数学科学学院为中国科学院虚拟经济与数据科学研究中心代招运筹学与控制论专业学术型硕士研究生。
二、中国科学院大学基础数学专业招生情况、考试科目三、中国科学院大学基础数学专业分数线2018年硕士研究生招生复试分数线2017年硕士研究生招生复试分数线四、中国科学院大学基础数学专业考研参考书目616数学分析现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。
801高等代数[1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷.[2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988.[3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社,1997.五、中国科学院大学基础数学专业复试原则最后的复试成绩综合考虑以上“业务能力、英语听力和口语、综合素质和思想品德”四个方面的成绩,复试成绩满分100分,其中业务能力占50%,英语听力和口语占30%,综合素质和思想品德占20%。
(一)业务能力面试1. 考核形式:问答2. 考核目的:主要考核考生掌握专业知识的广度、深度与扎实程度,运用专业知识的能力,思维能力,应变能力,表达能力,研究兴趣,科研能力与发展潜力。
2019年数学考研数学分析各名校考研真题及答案
考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。
三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。
2020-2021年中国科学院大学(数学科学学院)计算数学考研招生情况、分数线、参考书目、录取名单
一、数学科学学院简介中国科学院大学(简称国科大)数学科学学院前身为1978年成立的中国科技大学研究生院(北京)数学教学部,2002年9月更名为中国科学院研究生院数学系,2006年6月与中国科学院数学与系统科学研究院联合组建成立中国科学院研究生院数学科学学院,院长和副院长分别由数学与系统科学研究院的院长和分管教育的副院长担任。
2014年由数学与系统科学研究院承办科教融合数学科学学院,现任院长为席南华院士。
数学科学学院下设6个教研室,分别为分析数学教研室、几何与拓扑教研室、代数与数论教研室、计算数学与计算机数学教研室、概率论与数理统计教研室、运筹学与控制论教研室。
国科大数学科学学院的专任教师每年招收硕士研究生20名左右(含推免生),培养方向有分析、代数、几何、概率论、数理统计、应用数学、运筹学与控制论、应用统计专业学位硕士以及一些交叉学科的若干个研究方向。
2019年数学科学学院为中国科学院虚拟经济与数据科学研究中心代招运筹学与控制论专业学术型硕士研究生。
二、中国科学院大学计算数学专业招生情况、考试科目三、中国科学院大学计算数学专业分数线2018年硕士研究生招生复试分数线2017年硕士研究生招生复试分数线四、中国科学院大学计算数学专业考研参考书目616数学分析现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。
801高等代数[1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷.[2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988.[3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社,1997.五、中国科学院大学计算数学专业复试原则最后的复试成绩综合考虑以上“业务能力、英语听力和口语、综合素质和思想品德”四个方面的成绩,复试成绩满分100分,其中业务能力占50%,英语听力和口语占30%,综合素质和思想品德占20%。
(一)业务能力面试1. 考核形式:问答2. 考核目的:主要考核考生掌握专业知识的广度、深度与扎实程度,运用专业知识的能力,思维能力,应变能力,表达能力,研究兴趣,科研能力与发展潜力。
中科院2016年数学分析试题参考解答
(t) dt
≥
a+b 2
∫b
a
f
(t) dt.
证明: 由于
∫
b
tf
(t) dt
−
a
+
b
∫
b
f
(t) dt
=
∫
b
( t
−
a
+
) b
f
(t) dt
a
2a
a
2
∫
=
a+b 2
( t−
a + b ) f (t) dt + ∫
b
(
)
t − a + b f (t) dt
=
a
∫
a+b 2
( t
−
a
2 +
) b
f
(t)
S1
:
x2 a2
+
y2 b2
+
z2 c2
= 1,
S2
:
x2 a2
+
y2 b2
=
z2 c2
(z
≥
0) .
一开始看到这题, 感觉不好算, 觉得时间紧迫, 果断搁置. 后面才回来解决的.
解:
当
z2 c2
≥
1−
z2 c2
,
即
z
≥
√ c/ 2
时,
我们有
∫∫∫
V1 =
∫ c ∫∫
dV = dz
0
∫c
dxdy = √c
又 f (x) 单调递增, 可知 f (t) − f (a + b − t) ≤ 0. 因此
∫b
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)
|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
2020年中国科学院大学硕士学位研究生入学统一考试试题(数学与物理综合)
K
ÁKo©Š•150©§Ù¥êÆÜ©ÁK
O©Š•75©"
"
O©Š•75©§ÔnÜ©Á
êÆÜ©ÁK
‡È©£ 45©
©¤
~êaÚb:
2
x + k2
lim
− ax − b = 0.
x→+∞
x+1
1. (5©) k•¢~ꧦÑ÷veã^‡
2. (10©)
f ∈ C([a, b]), x1 , · · · , xn ∈ [a, b]. y²µ•3ξ ∈ [a, b]¦
ëY¼ê,Áy
Z
Z
1 T
1 x
f (s)ds =
f (s)ds.
lim
x→+∞ x 0
T 0
5. (10©)
D = (x, y) ∈ R2 | x2 + y 2 ≤ 1 ,OŽ
RR
-È©
(xy 2 + x2 )dxdy"
D
‚5“ê £ 30©
©¤
1. (10©) ?Øα
ÛŠž±e•§|k)§¿¦Ù)(18©)µ
(B) 长杆的转动惯量对运动的平衡作用;
(C) 长杆对风的平衡能力;
(D) 走钢丝者的体重加上长杆的重量,增加了运动的惯性。
2. 三个点电荷分别位于边长为的正三角形的三个顶点,它们的电荷量分别为, 2
和 − 4。真空介电常数为0 ,则这个系统的总静电能为(设相距无穷远时相互作用能
为零)
(A) −5 2 /20 ; (B) −5 2 /40 ; (C) −7 2 /40 ; (D) −7 2 /20 。
化而连续线性从1 变化到2 。内球带自由电荷。
(完整版)数学分析_各校考研试题及答案
2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a nn =∞→lim ;据两边夹定理有极限成立。
三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x )分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nxx x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f (x )在0可导则1->α四、设f (x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f (x )在R 上连续故存在F(u )使dF (u )=f(u )du=ydy xdx y x f ++)(22所以积分与路径无关。
(此题应感谢小毒物提供思路)五、设f(x)在[a,b ]上可导,0)2(=+b a f 且M x f ≤')(,证明2)(4)(a b M dx x f b a-≤⎰证:因f(x)在[a ,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。
中科大、中科院试卷清单总汇
中科大、中科院试卷清单总汇许多试卷属中科院系统通用试卷,适用于中科院很多单位高等数学(甲)(中国科学院研究生院命题试卷)2006——2007高等数学(乙)(中国科学院研究生院命题试卷)2005(第1种),2005(第2种),2007高等数学(A)(中国科学院-中国科学技术大学联合命题试卷)2003——2008(2003——2008有答案)高等数学(B)(中国科学院-中国科学技术大学联合命题试卷)1993——2005(1993——2004有答案)高等数学(甲)(中国科学院-中国科学技术大学联合命题试卷)2001高等数学(丙)(中国科学院-中国科学技术大学联合命题试卷)2000——2002 高等数学(乙)(中国科学院-中国科学技术大学联合命题试卷)2000——2002(2000——2002有答案)普通物理(甲)(中国科学院研究生院命题试卷)2006——2007普通物理(乙)(中国科学院研究生院命题试卷)2007普通物理(A)(中国科学院-中国科学技术大学联合命题试卷)2003——2008(2003——2008有答案)普通物理(甲)(中国科学院-中国科学技术大学联合命题试卷)1997——1998,2000普通物理(B)(中国科学院-中国科学技术大学联合命题试卷)2003——2008(2004——2008有答案)普通物理(乙型)(中国科学院-中国科学技术大学联合命题试卷)1997——2002(1998,2000——2002有答案)量子力学(中国科学院研究生院命题试卷)2006——2007量子力学(中国科学院-中国科学技术大学联合命题试卷)2003——2008(2003——2008有答案)量子力学(实验型)(中国科学技术大学命题试卷)1990——1998(1997有答案)量子力学(实验型)(中国科学院命题试卷)1998——1999量子力学(实验型)(中国科学院-中国科学技术大学联合命题试卷)(2000——2002有答案)量子力学(理论型)(中国科学院-中国科学技术大学联合命题试卷)1990——2002 固体物理(中国科学院研究生院命题试卷)2007固体物理(B)(中国科学院研究生院命题试卷)2006——2007(2006——2007有答案)固体物理(中国科学技术大学命题试卷)1997——1999(1997有答案)固体物理(中国科学院命题试卷)1998,1999固体物理(中国科学院-中国科学技术大学联合命题试卷)2000——2008(2000——2008答案)电动力学(中国科学院研究生院命题试卷)2007电动力学(中国科学院命题试卷)1998电动力学(中国科学技术大学命题试卷)1999电动力学(中国科学院-中国科学技术大学联合命题试卷)2000——2002——2008有答案)电动力学(B)(中国科学院-中国科学技术大学联合命题试卷)2003——2005分析化学(中国科学院研究生院命题试卷)2007分析化学(中国科学院-中国科学技术大学联合命题试卷)1997,1997答案,1998,1998答案,1999,1999答案,2000A卷(第1种),2000A卷(第1种)答案,2000A卷(第2种),2000B卷,2000B卷答案,2001B卷(第1种),2001B卷(第1种)答案,2001B卷(第2种),2001B卷(第2种)答案,2002A卷,2002A卷答案,2002B卷(第1种),2002B卷(第2种),2002B卷(第2种)答案,2003A卷,2003A卷答案,2003B卷,2004,2004答案,2005B卷,2005B 卷答案,2006,2006答案,2007,2007答案,2008,2008答案物理化学(甲)(中国科学院研究生院命题试卷)2006——2008物理化学(乙)(中国科学院研究生院命题试卷)2007物理化学(中国科学院-中国科学技术大学联合命题试卷)1987,1995——2008(1995——2008有答案)物理化学(B)(中国科学院-中国科学技术大学联合命题试卷)2003——2008(2003——2008有答案)物理化学(C)(中国科学院-中国科学技术大学联合命题试卷)2004物理化学(合肥智能机械研究所命题试卷)2001——2004有机化学(中国科学院研究生院命题试卷)2006——2008有机化学(中国科学院命题试卷)1986——1990,1992——1998(1986,1988,1995——1998有答案)有机化学(中国科学技术大学命题试卷)1993,1998(1998有答案)有机化学(中国科学院-中国科学技术大学联合命题试卷)1999——2008(1999——2004,2006——2008有答案)无机化学(中国科学院研究生院命题试卷)2006——2007无机化学(中国科学院-中国科学技术大学联合命题试卷)1999——2008(2001,2003——2008有答案)高分子化学(中国科学院-中国科学技术大学联合命题试卷)1989,1991,1993——1998,2003——2005高分子化学与物理(中国科学院研究生院命题试卷)2007高分子化学与物理(中国科学院-中国科学技术大学联合命题试卷)1999——2002,2004(2001——2002有答案)高分子物理(中国科学院-中国科学技术大学联合命题试卷)1994高分子物理部分(中国科学院-中国科学技术大学联合命题试卷)2003(占总分值50%)高聚物的结构与性能(中国科学院-中国科学技术大学联合命题试卷)1996——1997,2001——2002普通化学(甲)(中国科学院研究生院命题试卷)2007普通化学(乙)(中国科学院研究生院命题试卷)2007普通化学(中国科学院-中国科学技术大学联合命题试卷)2001,2004——2008(2004,2006——2008有答案)综合化学(中国科学院命题试卷)1996综合化学(中国科学技术大学命题试卷)1999——2004有答案)基础化学(中国科学院-中国科学技术大学联合命题试卷)2008(2008有答案)化工原理(中国科学院研究生院命题试卷)2005,2007化学工程学(中国科学院-中国科学技术大学联合命题试卷)2003——2004(2004有答案)半导体物理(甲)(中国科学院研究生院命题试卷)2007半导体物理(乙)(中国科学院研究生院命题试卷)2007半导体物理(中国科学院、半导体研究所、中国科学技术大学联合命题试卷)1997——2002,2004(1997——2002有答案)半导体物理(中国科学院微电子中心命题试卷)2004半导体材料(半导体研究所命题试卷)1996,1998,2000——2001(1996,2000有答案)半导体材料物理(半导体研究所命题试卷)2002——2003半导体集成电路(中国科学院-中国科学技术大学联合命题试卷)2001——2002,2004(2002有答案)半导体模拟集成电路(中国科学技术大学、半导体研究所联合命题试卷)1995——1996,1998(1996,1998,1999有答案)模拟集成电路(中国科学技术大学、半导体研究所联合命题试卷)1997(1997有答案)材料力学(中国科学院研究生院命题试卷)2007——2008材料力学(中国科学院-中国科学技术大学联合命题试卷)2001,2003——2008(2001,2003——2007有答案)材料力学(等离子体物理研究所试卷)2004(2004有答案)大气科学导论(中国科学院-中国科学技术大学联合命题试卷)2005——2008(2005——2008有答案)地球化学(中国科学院研究生院命题试卷)2007地球化学(中国科学院-中国科学技术大学联合命题试卷)2000——2002,2004——2005地球物理学(中国科学院研究生院命题试卷)2007第四纪地质学(中国科学院研究生院命题试卷)2007电磁场理论(中国科学院-中国科学技术大学联合命题试卷)2003电路(中国科学院研究生院命题试卷)2007电子技术(中国科学院研究生院命题试卷)2007电子线路(中国科学院研究生院命题试卷)2007电子线路(中国科学院-中国科学技术大学联合命题试卷)1996——2008(1996——2001,2003——2008有答案)(注:2002年的试卷共12页,缺P2—P5)电子线路(电子所命题试卷)2002——2005(2002——2004有答案)电子线路(半导体研究所命题试卷)2002——2004信号与系统(中国科学院研究生院命题试卷)2006——2007信号与系统(中国科学技术大学命题试卷)1990——1999(1996——1999有答案)(另:有《信号与系统》期末考试试题11份,每份3元。
41、中科院2018数学分析试题-1页 文字版
中国科学院大学
2018年招收攻读硕士学位研究生入学统一考试试题
科目名称:数学分析
考生须知:
1.本试卷满分为150分,全部考试时间总计180分钟;
2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效.
一、(15分)计算极限lim x →∞(sin 1x +cos 1x
)x .二、(15分)计算极限lim x →0(4+e 1x 2+e 4x
+sin x x )三、(15分)判断(并证明)函数f (x,y )=√xy 在点(0,0)处的可微性.四、(15分)求三个实常数a,b,c ,使得下式成立lim x →01tan x −ax ∫x b s 2√1−s 2ds =c.五、(15分)计算不定积分∫1sin 6x +cos 6x
dx.六、(15分)设函数f (x )在[−1,1]上二次连续可微,f (0)=0,证明:
∫1−1f (x )dx ≤M 3,其中M =max x ∈[−1,1] f ′′(x ) 七、(15分)求曲线y =12
x 2上的点,使得曲线在该点处的法线被曲线所截得的线段长度最短.八、(15分)设x >0,证明√
1+x −√x =12√x +θ其中θ=θ(x )>0,并且lim x →0θ(x )=14
.九、(15分)设u n (x )=(−1)n (n 2−n +1
)x (n ≥0),求函数f (x )=∞∑n =0u n (x )的绝对收敛,条件收敛以及发
散的区域.
十、(15分)证明
15<∫10xe x √x 2−x +25dx <2√1133.考试科目:数学分析整理人:匣与桔
QQ :1433918251第1页共1页。
中国科学院数学与系统科学研究院2020年硕士研究生招生
6 复杂系统分析与控制、机器学习
7 计算与系统生物学
8 博弈理论与应用
9 量子信息与控制、机器学习
10 控制理论及其应用
1 不确定系统的建模与控制
2 混合动态系统
3 系统与控制
4 系统估计与优化
5 复杂系统,多自主体系统的控制
6 复杂系统
7 不确定系统的建模与控制ຫໍສະໝຸດ 8 不确定系统的建模与控制
考试科目:①101思想政治理论 ②201英语一 ③616数学分析 ④801高等代数
考试科目:①101思想政治理论 ②201英语一 ③616数学分析 ④801高等代数
张文生 郭雷 陈翰馥 张纪峰 方海涛 李婵颖 郭宝珠 姚鹏飞 席在荣 洪奕光 黄一 薛文超 赵延龙 戴彧虹 刘波 张汉勤 闫桂英 胡旭东 陈旭瑾 吴凌云 李邦河 李博 张俊华 张世华 王勇 姚大成 丁超 陈鸽 牟必强
只招免试推荐的硕博连读生 只招硕博连读 只招硕博连读 只招硕博连读
孙斌勇 丁彦恒 张志涛 李翀 葛力明 尚在久 岳澄波 王友德 李嘉禹 张晓 阮卫东 彭文娟 陈亦飞 潘宣余 吴刘臻 石钟慈 崔俊芝 张林波 陈志明 周爱辉 曹礼群 胡齐芽 许学军 谢和虎 郑伟英 崔涛 毛士鹏 张硕 林群 白中治
只招硕博连读 只招硕博连读 只招硕博连读
只招硕博连读 只招硕博连读 只招硕博连读 只招硕博连读 只招硕博连读 只招硕博连读
只招硕博连读
只招硕博连读
应用数学070104
12 数学物理 13 数学物理及相关大规模科学计算 14 计算代数几何,量子机器学习 15 计算代数几何、量子信息、多项式优化 16 符号计算 17 符号计算 18 符号计算 19 计算代数几何 20 计算代数几何、计算机辅助设计与制造 21 符号计算、自动推理与软件开发 22 符号计算、组合数学 23 自动推理及其应用 24 密码学与计算数论 25 组合、代数、离散分析 26 计算几何、计算机图形学 27 应用几何、应用代数 28 数学物理与非线性微分方程 29 密码学 30 密码与编码 31 密码学 32 优化理论与应用、凸分析 33 人工智能中的优化理论与方法 34 随机微分方程及其数值方法 35 孤立子、可积系 36 机器学习与动力系统 37 软物质材料建模与计算 38 数学物理 39 动力系统 40 非线性动力系统的混沌和分支 41 构造性微分代数几何