数学分析 期末考试试卷

合集下载

数学分析_I_试题(1)doc - 扬州大学

数学分析_I_试题(1)doc - 扬州大学
姓名
线
学号

扬州大学 20 —20 学年度第 学期
《数学分析 1》期末考试试卷(试卷编号: 01)
(闭卷 120 分钟)
题 号 一 二 三 四 五 六 七 八 总分 复核
应得分 20 20 20 20 5
5
5
5
实得分
阅卷人
一.判断题(每小题 2 分,共 20 分)
1.设 A,B 为非空数集, S = A ∪ B ,则 sup S = max{sup A,sup B}
F(x) = f (x) 在 (0, +∞) 递增.(5 分)
x
八.若函数 f 在闭区间[a,b]上连续,则 f 在[a,b] 上有最大最小值.(5 分)
第2页共2页 PDF 文件使用 "pdfFactory Pro" 试用版本创建
姓名
线
学号

扬州大学 20 —20 学年度第 学期
5.若
f(x)无界,则存在 { xn }

D(
f
) ,使得
lim
n→+∞
f
(xn )
=

1
6. lim (1+ x)x = e x→+∞
7.若
lim(
n→∞
xn

yn
)
=
0


lim
n→∞
xn
=
lim
n→∞
yn
8.若
f

+
(
x0
),
f−′(x0 )
均存在,则
f
′( x0 )
存在
9. f (x) = x −[x] 是周期为 1 的周期函数

数学分析试题及答案

数学分析试题及答案

数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。

A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。

A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。

答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。

答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。

答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。

答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。

2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。

答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。

3. 求定积分∫(0,2) (2x-1) dx。

答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案一、填空题(每小题2分,共10分).________dx x)lnx (f ,)(.12=+=⎰⎰则若c x dx x f .________)x (F ,)(.21cos 2='=⎰-则若dt ex F x t=+-⎰-dx x x x )cos 21(.3112 . .______.41013时收敛满足条件当广义积分p xdxp ⎰-._______u lim )u 12u 1.51nn=+-∞→∞=∑n n n 收敛,则(若 二、单选题(每小题2分,共10分)的一个原函数是则的导函数是若)(,cos )(.1x f x x f ( )(A )x sin 1+; (B )x sin 1-; (C )x cos 1+; (D )x cos 1-. 2.函数)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上( ) (A )连续 ; (B )有界; (C ) 无间断点; (D)有原函数.3.下列反常积分收敛的是( ) (A)⎰∞+321dx x ; (B) ⎰∞+3ln dx x x ; (C) ⎰∞+3sin dx xx ; (D) ⎰∞+3ln 1dx x . 4.下列级数收敛的是( )(A)∑∞=11n ne ; (B))11ln(1∑∞=+n n ; (C) ∑∞=2ln 1n n ; (D) )1)1((21n n n n --∑∞=.5.)1ln()(x x f +=的幂级数展开式为( )(A )]1,1(3232-∈•••+++x x x x ; (B )]1,1(3232-∈•••-+-x x x x ; (C ))1,1[3232-∈•••----x x x x ; (D ))1,1[3232-∈•••+-+-x x x x . 三、计算题(每小题8分,共48分);cos 1sin .1dx xx x ⎰++N);n (xdx tan I .2n n ∈=⎰的递推表达式求不定积分0);(,31x .3a >=-⎰∞+a x x d 求设π4.求函数项级数∑∞=1n xnx 的收敛域;5.求幂级数∑∞=+0)12(n n x n 的和函数;.x 9)(.62的幂级数展开成将函数x xx f +=四、讨论与应用题(每小题8分,共16分)1.求由轴y x y ,12-=与23x y =所围成的平面图形的面积,并求此图形绕x 轴旋转一周所成旋转体的体积..)1cos1()1(.211的敛散性讨论级数pn n n ∑∞=--- 五、证明题(每小题8分,共16分)(从以下三题可任选两道题做)1.设)(x f 在[0,1] 连续,试证⎰⎰=πππ00)(sin )2/()(sin dx x f dx x xf .2.设函数序列)}({x f n 在区间],[b a 上一致收敛于)(x f ,且)(x g 在区间],[b a 上有界,证明: 函数序列)}()({x g x f n 在区间],[b a 上一致收敛于)()(x g x f .3.证明若∑∞=12n nx收敛,则∑∞=-11n n nx 发散. 答案一.1.c x +2ln ; 2. x e x sin cos 2-; 3. 1sin 4; 4.32<p ; 5. 1.二.1.D 2.B 3.A 4.D 5.B. 三.1.解:原式dx xdx x x⎰⎰+=2tan 2cos 22 (2分)dx xdx x xd ⎰⎰+=2tan )2(tan (5分)Cx x dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan . (8分)2.解:dx x x I n n )1(sec tan 22-=⎰- (2分)⎰---=21)(tan tan n n I x xd (4分)),4,3,2(tan 1121 =--=--n I x n n n . (6分)其中.cos ln ,10C x I C x I+-=+= (8分)3.解:令t x =-1,则tdt dx t x 2,12=+=,当+∞→a x :时,+∞→-1:a t (2分)故原式⎰∞+-+=1212a dt t (4分)31arctan 2arctan 21ππ=--==∞+-a t a . (6分)从而,4=a (8分) 4.解:由∑∑∞=∞==111n x n x n x n x. (2分)知,当1>x时, ∑∞=11n x n收敛,因此∑∞=1n xnx 也收敛; (4分)当1≤x时,∑∞=11n x n 发散,因此∑∞=1n xnx 也发散(0≠x ); (6分) 当0=x 时,原级数收敛;故原幂级数的收敛域为0=x 及),1(+∞. (8分)5.解:.)12(lim x x n n n n =+∞→;,1x 级数收敛时当<;)12n (,1x 0n 发散原级数化为时当∑∞=+=;)12n ()1(,1x 0n n 发散原级数化为时当∑∞=+--=故原幂级数的收敛域为)1,1(+-. (4分))1x 1()x 1(x 1x 11)x 1(2x x 11)x 1x (2x x 11)x 2x(x 11)dx nx (2x x 2nx x )12n ()x (s 221n n 1n x 01-n 0n nn n 0n n <<--+=-+-=-+'-=-+'=-+'=+=+=∑∑⎰∑∑∑∞=∞=∞=∞=∞=令 . (8分)6.解:nn n x x x x x f 202)3()1(91)3(191)(∑∞=-=+= (4分))1(21203)1(++∞=∑-=n n n nx (6分)).3,3(,9)1(121--=-∞=∑nn n nx (8分)五.1.解:1>联立可解得与由223x y x 1y =-= 1/2x =故所求图形的面积为31)34(]3)1[(2/1032/1022=-=--=⎰x x dx x x S (4分)2>所求旋转体的体积为dx x dx x V 222/102/1022)3()1(⎰⎰--=ππ (5分)ππ12031)5832(2/1053=--=x x x . (8分) 2.解.2pp n n 121~n 1cos1u -=由于.,n 121,21p 2p1n 故原级数绝对收敛收敛时当∑∞=> (4分) .,n 121)1(,n 121,21p 2p1n 1n 2p 1n 故条件收敛莱布尼茨交错级数条件满足而级数发散时当∑∑∞=-∞=-≤ 故原级数在21p ≤时条件收敛. (8分) 六.1.证明:则令,x t -=π (2分)⎰⎰-=πππ00)sin ()t ()sin (x dt t f dx x f (4分)⎰⎰-=πππ00xf(sinx)dx )sin (dx x f (6分) ⎰⎰=πππ00)sin ()2/()sin (x dx x f dx x f 故. (8分)2.证明:因为)(x g 在闭区间],[b a 上有界.不放设],[,)(b a x M x g ∈∀≤ (2分)又函数序列)}({x f n 在闭区间],[b a 上一致收敛,故对0)(,0>∃>∀εεN 当N n >时,对],[b a x ∈∀,都有Mx f x f n ε<-)()( (6分)于是当N n >时,对],[b a x ∈∀,都有ε<-)()()()(x g x f x g x f n 函数序列)}()({x g x f n 在闭区间],[b a 上一致收敛)()(x g x f . (8分)3.证明:由于)1(2122n x n x n n +≤ (4分),又因为∑∑∑∞=∞=∞=+=+12122121)1(n n n n n nx n x 收敛,故∑∞=12n nn x 收敛,从而,∑∞=1n n n x 绝对收敛. (6分).,11故原级数发散发散而∑∞=n n(8分)一、填空题(每小题3分,共15分)1.已知)(x f 为x 2sin 的原函数,且21)0(=f ,则⎰=dx x f )( 。

数学分析期末考试试题

数学分析期末考试试题

数学分析期末考试试题一、选择题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在区间[1,3]上的最大值是:A. 0B. 2C. 4D. 62. 以下哪个选项不是闭区间[a, b]上连续函数的性质?A. 有界性B. 保号性C. 介值性D. 可微性3. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 函数f(x)=x^3+2x^2-3x+1在x=-1处的泰勒展开式(展开到x^2项)是:A. -1+2x-x^2B. 1-2x+x^2C. -1+2x+x^2D. 1+2x-x^25. 以下哪个级数是发散的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1^2 + 1/2^2 + 1/3^2 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...6. 函数f(x)=x^2在x=1处的高阶导数f^(n)(x)(n≥2)是:A. 0B. 1C. 2D. 47. 函数f(x)=e^x的原函数是:A. e^x + CB. ln(x) + CC. sin(e^x) + CD. cos(e^x) + C8. 函数f(x)=x^2在[0,1]上的定积分是:A. 1/3B. 1/2C. 1D. 2/39. 函数f(x)=|x|在x=0处的导数是:A. 1B. -1C. 0D. 不存在10. 以下哪个函数是周期函数?A. f(x)=x^2B. f(x)=e^xC. f(x)=sin(x)D. f(x)=ln(x)二、填空题(每题2分,共10分)11. 若函数f(x)=x^3-6x^2+11x-6在x=2处取得极小值,则f'(2)=_________。

12. 若函数f(x)=x^3+bx^2+cx+d在x=-1处取得最大值,则b=_________。

13. 函数f(x)=ln(x)的原函数是_________。

《数学分析》(期末考试)试卷

《数学分析》(期末考试)试卷

浙江师范大学《数学分析》(期末考试)试卷(2004-2005学年第一学期)考试类别: 考试 使用学生: 初阳学院数学专业03级 考试时间:150分钟 出卷时间2005年1月2日 说明:考生应将全部答案都写在答题纸上,否则作无效处理。

一、(15%)选择题(每小题3分,共15分)1、 设32()3f x x x x =+,则()(0)n f 存在的最高阶数n 为(A)0 (B)1 (C)2 (D)32、 函数23()(2)f x x x x x =---不可导点的个数是(A)3 (B)2 (C)1 (D)03、 设(0)0f =,则f()x 在0x =可导的充要条件为(A)201lim (1cos )h f h h →-存在. (B)01lim(1)h h f e h→-存在. (C)201lim (1sin )h f h h→-存在.(D)[]01lim (2)()h f h f h h→-存在4、 设2()d f x x x C =+⎰,则2(1)d xf x x -=⎰().(A )222(1)x C --+(B)222(1)x C -+(C)221(1)2x C --+(D)221(1)2x C -+ 5、 双纽线22222()x y x y +=-所围成的平面区域面积可用定积分表示为(A)π402cos 2d θθ⎰ (B )π404c o s 2d θθ⎰(C)2θ⎰(D )π2401(c o s 2)d2θθ⎰ 二、(24%)填空题(每小题3分,共24分)1、 已知曲线的极坐标方程为e r θ=,若在直角坐标系中,yk x b =+是该曲线在参数为π2θ=的点处的切线方程,则k = ① ,b = ② .2、 设 (ln )2f x x '=-,则 ()f x = ③ .3、 设曲线()nf x x = 在点()1,1处的切线与y 轴的交点为n t ,则lim ()n n f t →∞= ④4、 设1()1f x '=-,则011lim(2)()x xf x x f x x →=--- ⑤ .5、x =⎰⑥ .6、 设21,0(),0xx x f x e x -⎧+≤⎪=⎨>⎪⎩,则30(2)f x dx -=⎰ ⑦ .7、函数1()(2x f x u =-⎰(0x >)的单调下降区间为 ⑧ . 三、(21%)计算题(每小题7分,共21分)1、 求10lim(sin 2cos )xx x x →+2、 求12ln(1)d (2)x x x +-⎰3、 求d sin 22sin xx x +⎰四、(40%)证明题(每小题8分,共40分)1、设函数()f x 在[0,2]上连续,在(0,2)可导,且21()d (0)f x x f =⎰证明存在一点(0,2)c ∈,使()0f c '=2、设f ()0x ''<,f(0)0=,证明对任何10x >,20x >,有1212()()()f x x f x f x +≤+3、设lim 5n n a →∞=,试用定义证明12lim5nn a a a n→∞+++=4、设()f x 在[0,π]上连续,π()d 0f x x =⎰,π0()cos d 0f x x x =⎰,则在(0,π)内至少存在不同的两点12,ξξ,使12()()0f f ξξ==5、设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤, 其中,a b 都是非负常数,c 是(0,1)内的任一点,证明()22bf c a '≤+。

数学分析期末试题A答案doc

数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。

因此,答案为 D。

2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。

A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。

因此,答案为 B。

3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。

4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。

在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。

因此,答案为 C。

高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。

以下是本次考试的部分试题及其答案,供大家参考。

一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。

最新数学分析1-期末考试试卷(A卷)

最新数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。

2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。

3、设)1ln(2x x y ++=,则=dy 。

4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。

5、xdx arctan 1⎰= 。

二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。

(A )若n x 发散,则n y 必发散。

(B )若n x 无界,则n y 必无界。

(C )若n x 有界,则n y 必为无穷小。

(D )若nx 1为无穷小,则n y 必为无穷小。

2、设函数x x x f =)(,则)0(f '为( )。

(A ) 1。

(B )不存在。

(C ) 0。

(D ) -1。

3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。

(B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。

(D )0)(,0)(>''<'x f x f 。

4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。

(A )())(x f e f e x x ----。

数学分析期末考试题.doc

数学分析期末考试题.doc

数学分析期末考试题一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在 [a,b ] 上可积,那么( ) A )(x f 在[a,b ]上有界 B )(x f 在[a,b ]上连续C )(x f 在[a,b ]上单调D )(x f 在[a,b ]上只有一个间断点 2、函数)(x f 在 [a,b ] 上连续,则在[a,b ]上有( )A )()(x f dx x f dx d b a =⎰B )()(x f dt t f dx d x a =⎰C )()(x f dt t f dx d b x -=⎰D )()(x f dt t f dxd b x =⎰ 3、 在[a ,+∞]上恒有)()(x g x f ≥,则( ) A ⎰+∞a dx x f )(收敛⎰+∞adx x g )(也收敛 B ⎰+∞adx x g )(发散⎰+∞adx x f )(也发散C⎰+∞adx x f )(和⎰+∞adx x g )(同敛散 D 无法判断4、级数∑∞=1n na收敛是( )对p =1,2…,0)(lim 21=++++++∞→p n n n n a a aA 充分条件B 必要条件C 充分必要条件D 无关条件 5、若级数∑∞=+111n n α收敛,则必有( )A 0≤αB 0≥αC 0<αD 0>α 6、)()(1x ax f n n∑∞==在[a ,b ]一致收敛,且a n (x )可导(n =1,2…),那么( )A f (x )在[a ,b ]可导,且∑∞==1'')()(n nx ax fB f (x )在[a ,b ]可导,但)('x f 不一定等于∑∞=1')(n nx aC∑∞=1')(n nx a点点收敛,但不一定一致收敛D∑∞=1')(n nx a不一定点点收敛7、下列命题正确的是( ) A)(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C)(1x an n∑∞=在[a ,b ] 条件收敛必收敛D 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛8、∑∞=--1)11()1(n n nx n 的收敛域为( ) A (-1,1) B (-1,1] C [-1,1] D [-1,1) 9、下列命题正确的是( )A 重极限存在,累次极限也存在并相等B 累次极限存在,重极限也存在但不一定相等C 重极限不存在,累次极限也不存在D 重极限存在,累次极限也可能不存在10、函数f (x,y )在(x 0,,y 0)可偏导,则( )A f (x,y )在(x 0,,y 0)可微B f (x,y )在(x 0,,y 0)连续C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在D 以上全不对二、计算题:(每小题6分,共30分)1、)0(21lim1>++++∞→p n n p pp p n 2、计算由曲线2x y =和2y x =围成的面积 3、求极限)1sin 11(lim 2222)0,0(),(x y y x y x y x +-+++→4、 已知),(yx x f z =,求yzx z ∂∂∂∂, 5、 计算nn n n x n ∑∞=--112)1(的收敛半径和收敛域 三、讨论判断题(每小题10分,共30分)1、讨论dx x x qp p⎰∞++--01|1|的敛散性 2、 判断∑∞=--+122)11(n n n 的敛散性3、 判断∑∞=+-121sin )1(n n n nx的一致收敛性 四、证明题(每小题10分,共20分)1、设f (x )是以T 为周期的函数,且在[0,T ]上可积,证明⎰⎰=+TTa adx x f dx x f 0)()(2、设级数∑∞=10n n n x α收敛,则当0αα>时,级数∑∞=1n nn x α也收敛参考答案一、1、A 2、B3、D4、A5、D6、D7、C8、A9、D10、D 二、1、由于px 在[0,1]可积,由定积分的定义知(2分)=++++∞→121lim p p p p n n n 11)21(1lim 10+==++⎰∞→p dx x n n n n n pp p p p p p n (4分) 2、 、两曲线的交点为(0,0),(1,1)(2分)所求的面积为:31)(12=-⎰dx x x (4分) 3、解:由于x1sin 有界,01sin lim )0,0(),(=→x y y x (2分))1sin 11(lim 2222)0,0(),(x y y x y x y x +-+++→=)11)(11()11)((lim22222222)0,0(),(+++-++++++→y x y x y x y x y x (3分)=111lim22)0,0(),(+++→y x y x =2(1分)4、解:xz∂∂=y f f 121+(3分)y z ∂∂=22y x f -(3分)5、解:212)1(lim 1=--∞→n nn n n ,r =2(3分) 由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、因为被积函数可能在x =0和x =1处无界,所以将其分为dx x x q p p ⎰∞++--01|1|=dx x x p q p ⎰-+-101|1|1+dx x x q p p⎰∞++--11|1|(2分) 考虑奇点x =0应要求p-1<1;奇点x =1应要求p+q<1;(4分)当+∞→x 时,由于1211~)1(1-++--q p q p p xx x ,知2p+q -1>1时积分收敛(2分) 所以反常积分满足p <2且2(1-p)<q<1-p 收敛,其余发散(2分) 2、解:由于nn n n n 1~112112222-++=--+(6分),又∑∞=11n n 发散(2分)所以原级数发散(2分)3、解:2211sin )1(n n nx n ≤+-(6分),由weierstrass 判别法原级数一致收敛性(4分)四、证明题(每小题10分,共20分)1、证明:⎰⎰⎰⎰++++=Ta TT aTa adx x f dx x f dx x f dx x f )()()()(00(1)(4分)⎰⎰⎰=+++=+aaTa Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、证明:∑∑∞=-∞==11)1)((00n n n n n nx n x αααα(4分)01αα-n 单调下降有界(3分)由Abel 定理知原级数收敛(3分)。

数学分析期末试题

数学分析期末试题

数学分析2期末试题课程名称 数学分析Ⅱ 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业一、单项选择题每小题3分;3×6=18分1、 下列级数中条件收敛的是 .A .1(1)nn ∞=-∑ B . 1n n ∞= C . 21(1)n n n∞=-∑ D . 11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数; 则f 的傅里叶Fourier 级数在它的间断点x 处 .A .收敛于()f xB .收敛于1((0)(0))2f x f x -++C . 发散D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是 .A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ;则()f x '=A . 1xB .ln x xC . 21x- D . x e5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1;则k =A . 2πB .22πC . 2D . 24π6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+收敛;则A . x e <B .x e >C . x 为任意实数D . 1e x e -<< 二、填空题每小题3分;3×6=18分1、已知幂级数1n n n a x ∞=∑在2x =处条件收敛;则它的收敛半径为 .2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+;则其通项n u = ;和S = . 3、曲线1y x=与直线1x =;2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得;1()()bx x ae f e dx f x dx =⎰⎰;则a = ;b = .5、数集(1) 1, 2 , 3, 1nn n n ⎧⎫-=⎨⎬+⎩⎭的聚点为 . 6、函数2()x f x e =的麦克劳林Maclaurin 展开式为 .65三、计算题每小题6分;6×5=30分1、 (1)dxx x +⎰. 2、2ln x x dx ⎰.3、 0(0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题第1小题6分;第2、3 小题各8分;共22分1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性.2、求幂级数1nn x n∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =; 将f 在(,)ππ-上展为傅里叶Fourier 级数. 五、证明题每小题6分;6×2=12分1、已知级数1n n a ∞=∑与1n n c ∞=∑都收敛;且证明:级数1n n b ∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析Ⅱ 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业一、 单项选择题每小题3分;3×6=18分⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D 二、 填空题每小题3分;3×6=18分⒈ 2 ⒉ 2, =2(1)n u S n n =+ ⒊ ln 2⒋ 1, a b e == ⒌ 1± ⒍201, (,)!nn x x n ∞=∈-∞+∞∑ 三、 计算题每小题6分;6×5=30分1. 解1(1)dx x x ∴+⎰3分ln ln 1.x x C =-++3分2. 解 由分部积分公式得3311ln ln 33x x x d x =-⎰ 3分 3311ln 39x x x C =-+ 3分 3. 解 令sin , [0, ]2x a t t π=∈ 由定积分的换元积分公式;得2220cos atdt π=⎰3分67682.4a π=3分4. 解 由洛必达L 'Hospital 法则得20cos lim cos x x x→= 4分 1= 2分5. 解= 2分4204(cos sin ) (sin cos )x x dx x x dx πππ=-+-⎰⎰ 2分2.= 2分四、 解答题第1小题6分;第2、3小题各8分;共22分1. 解 (, ), x n ∀∈-∞∞∀+正整数22sin 1nx n n ≤ 3分 而级数211n n ∞=∑收敛;故由M 判别法知;21sin n nxn ∞=∑在区间(,)-∞+∞上一致收敛. 3分2. 解 幂级数1nn x n∞=∑的收敛半径1R ==;收敛区间为(1,1)-. 2分易知1nn x n ∞=∑在1x =-处收敛;而在1x =发散;故1nn x n∞=∑的收敛域为[1,1)-. 2分1, (1, 1)1n n x x x ∞==∈--∑ 2分 逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑ 2分 3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的;故由收敛性定理知它可以展开为Fourier 级数.. 2分由于()f x 在(,)ππ-为奇函数; 故 0, 0, 1, 2, n a n ==…, 而1(1)2n n+-⋅= 4分所以在区间(,)ππ-上;11sin ()2(1).n n nxf x x n ∞+===-∑ 2分6970五、 证明题每小题5分;5×2=10分1. 证明 由1n n a ∞=∑与1n n c ∞=∑都收敛知;级数1()nn n ca ∞=-∑也收敛.. 1分又由 , 1, 2, 3 n n n a b c n ≤≤=,可知; 0, 1,2,3,n n n n b a c a n ≤-≤-=从而由正项级数的比较判别法知1()nn n ba ∞=-∑收敛; 2分于是由 (), 1,2,3,n n n n b b a a n =-+=知级数1nn b∞=∑收敛. 2分2. 证明 令2x t π=-;则2t x π=-. 1分由定积分的换元积分公式;得202sin sin ()2n n xdx t dt πππ=-⎰⎰- 2分 20cos n xdx π=⎰ 2分。

数学系第三学期数学分析期末考试题

数学系第三学期数学分析期末考试题

第三学期《数学分析》期末考试题一、 叙述题(每小题10分,共20分) 1. 叙述第一类曲面积分的概念。

2. 叙述Stokes 公式的内容。

二、 讨论题(每小题15分,共30分) 1. 讨论函数在任意有界闭区域D 上的可积性。

2. 试确定函数 的连续范围。

三、 计算题(每小题10分,共30分)1.设四边形各边长为定值(分别为d c b a ,,,),求其最大面积,并且指出此时四边形的几何特性。

2.求球面2222R z y x =++在圆柱Rx y x ±=+22外那部分曲面S 的面积。

3、求曲面积分)0,(,:,22>=+=++=⎰⎰R h R y z h z S xydzdx zxdydz yzdxdy I S由及三个坐标面所围的第一卦限部分的外侧. 四、证明题(每小题10分,共20分) 1. 若1) 积分⎰+∞adx x f )(收敛,2) 函数),(y x ϕ有界,并且关于x 是单调的, 则积分⎰+∞adx y x x f ),()(ϕ一致收敛。

2. 设有半径为R 的球面,其球冠的高为h ,证明球冠的面积Rh S π2=球冠.数学分析试题答案一 叙述题(每小题10分,共30分)1.设曲面Ω为有界光滑(或分片光滑)曲面,函数),,(z y x f z =在Ω上有界。

将曲面Ω用一个光滑曲线网分成n 片小曲面n ∆Ω∆Ω∆Ω,...,,21,并记i σ∆为i ∆Ω的面积。

在每片i ∆Ω上任取一点),,(i i i ζηξ,作和式i ni iiif σζηξ∆∑=1),,(。

如果当所有的小曲面i ∆Ω的最大直径为λ趋于零时,这个和式的极限存在,且与小曲面的分法和点),,(i i i ζηξ的取法无关,则称此极限值为),,(z y x f z =在曲面Ω上的第一类曲面积分,记为 i ni iiif dS z y x f I σζηξλ∆==∑⎰⎰=Ω→1),,(lim ),,(。

2.设∑是光滑曲面,其边界∑∂为分段光滑闭曲线。

《数学分析》Ⅰ期末考试试题

《数学分析》Ⅰ期末考试试题

《数学分析》Ⅰ期末考试试题
学号 姓名
一、叙述题
1、 叙述数列{}n x 的Cauchy 准则;
2、 写出函数)(x f 在点0x 带 Lagrange 型余项的Taglor 公式;
3、 叙述函数)(x f y =的一阶微分形式的不变性;
二、计算题
4、 求函数[]1 . 0 2 1
)(∈==x n x x f n )、、(Λ的上确界[]
)(sup 1.0x f x ∈ ; 5、 求极限4202cos lim x e
x x x -→- ;
6、 求不定积分⎰+dx x )1ln(2 ;
7、 设=)(x f ⎪⎩⎪⎨⎧=≤0 ,
010 , x 1cos x 2-1sin 222x x x x π 求)(x f 在[]1,0上的一个原函数;
三、讨论举例题
8、 举出最大、最小值均不存在,但上、下确界均存在的数集的例子;
9、 指出函数[]x
x x f 1sin )(=的不连续点,并确定其不连续点的类型;
四、证明题
10、 用“N -ε”定义验证3
22312lim 22=+-∞→n n n ; 11、 设0)(0'φx f +,0)(0'πx f -,证明0x 是)(x f 的极小值点;
12、 证明2)(x x f =在[) , 0∞+上内闭一致连续(即在[) , 0∞+中的任何
闭子区间上一致连续)。

《数学分析1》期末考试试卷1

《数学分析1》期末考试试卷1

《数学分析1》期末考试试卷(闭卷 120分钟)一.判断题(每小题2分,共20分)1、设A B ,为非空数集,{}S A B inf min infA infB =,则S=,.2、若0lim ()x x f x →存在,0lim ()x x g x →不存在,则0lim[()()]x x f x g x →±不存在3、若()f x 无上界,则存在{}()n x D f ⊂,使得lim ()n n f x →∞=+∞4、lim ()x af x A →=⇔存在{}()n x D f ⊂,使得lim ()n n n x a f x A →∞→=且5、若lim n n x A →∞=,lim n n y →∞不存在,lim n n n x y →∞存在,则0A =6、11(1)1)(12)n n e n n n ⎧⎫++<=⎨⎬⎩⎭递增,且(, 7、()()f x g x ,在0x x =不可导,则()()f x g x ±在0x x =也不可导 8、00()()f x f x +-'',均存在,则()f x 在0x x →连续9、若0()0f x '<,则存在0δ>,使得()f x 在00()x x δδ-+,内递减 10、()f x 在0x x =不可导,则0x 不是()f x 的极值点二.求极限(每题5分,共20分)1、4tan()4lim cot 2x x x ππ→- 2、101lim()1x x x x →+- 3、1ln lim (arctan )2xx x π→+∞-4、tan 24lim(tan )xx x π→三. 计算(每题5分,共20分)1、用导数定义求1(ln )x x e x ='2、2(arcsin )y x dy =,求3、ln((0)y x a =>,,求'y 4、求2()(sin )n x四. 证明(每题5分,共20分)1、设0lim ()0x x f x a →=>.证明:n =2、lim n n x a →∞=,lim()0n n n y x →∞-=,证明lim n n y a →∞=.3、证明:()f x =[)1∞,+内一致收敛4、求证: 3tan 23x x x x π∈>-(0,)时,. 五.确定[)()0f x x =∈∞,+的单调区间. (5分)六. ()()f x g x ,在[,]a b 上连续,()()f a g a <,()()f b g b >.求证:存在(,)a b ξ∈,使 ()()f g ξξ= (5分)七. 设()f x 在[0,1]上连续,在(0,1)内可导,求证:(0,1)ξ∈,使得()(1)()(1)f f f f ξξξξ''-=- (5分) 八. 求证:23()xf x x e -=在区间(,)-∞+∞内有界. (5分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷)
姓名: 学号: 学院专业: 联系方式:
一、填空题(本题共5个小题,每小题3分,满分15分)
1、设 82lim =⎪⎭

⎝⎛-+∞→x
x a x a x , 则 =a 。

2、设函数)
2(1
)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点
是 。

3、设)1ln(2
x x y ++=,则=dy 。

4、设)(x f 是连续函数,且dt t f x x f )(2)(1
0⎰+=,则=)(x f 。

5、xdx arctan 1
⎰= 。

二、单项选择题(本题共5个小题,每小题3分,满分15分)
1、设数列n x 与数列n y 满足0lim =∞
→n n n y x ,则下列断言正确的是( )。

(A )若n x 发散,则n y 必发散。

(B )若n x 无界,则n y 必无界。

(C )若n x 有界,则n y 必为无穷小。

(D )若n
x 1
为无穷小,则n y 必为无穷小。

2、设函数x x x f =)(,则)0(f '为( )。

(A ) 1。

(B )不存在。

(C ) 0。

(D ) -1。

3、若),()
()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则
)(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。

(B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。

(D )0)(,0)(>''<'x f x f 。

4、设)(x f 是连续函数,且⎰
-=dt t f x F x e x
)()(,则)(x F '等于( )。

(A )()
)(x f e f e x x ----。

(B )()
)(x f e f e x x +---。

(C ) ()
)(x f e f e x x --- 。

(D )()
)(x f e f e x x +--。

5、设函数x x a x f 3sin 31sin )(+
=在3
π
=x 处取得极值,则( )。

(A ))3(,1πf a =是极小值。

(B ))3
(,1π
f a =是极大值。

(C ))3(,2πf a =是极小值。

(D ))3
(,2π
f a =是极大值。

三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 )
1ln(sin 1tan 1lim 3
x x
x x ++-+→
2、设4lim 221=-++→x
x b
ax x x ,求 b a 、。

3、设)(x y y =由参数方程 ⎩⎨⎧+=+=t
t y t x arctan )1ln(2 所确定,求 22dx y
d dx dy 、。

4、设)(x f 在0=x 处的导数连续,求dx
x df x )
(sin lim 20+→ 。

5、求不定积分 dx x
x
x ⎰3
cos sin 。

6、求定积分dx x ⎰cos 4。

7、设⎩⎨⎧≥<=-0
sin )(2
2x xe
x x
x f x , 求 ⎰-dx x f )2(31 。

四、证明下列不等式(本题10分) 1、
)2,0(,
sin 2π
π
∈<<x x x x
; 2、2sin 12
π
π
<<⎰dx x x 。

五、(本题10分)
设 0
0)()(=≠⎪⎩⎪
⎨⎧-=-x x x
e x g x
f x
,其中)(x g 具有二阶连续导数,且1)0(,1)0(-='=g g 。

(1)求)(x f '; (2)讨论)(x f '在),(+∞-∞上的连续性。

六、(本题8分)
设函数)(x f 在[]b a ,上可导,证明:存在)(b a ,∈ξ,使得 [])()()()(22
2
ξξf a b a f b f '-=-。

(8分)。

相关文档
最新文档