奥数中的和差问题

合集下载

三年级奥数题和差问题及答案

三年级奥数题和差问题及答案

三年级奥数题及答案:和差问题1.和差问题大强体重比小强体重多3公斤,他们俩的体重之和是77公斤,问大强的体重是多少公斤?解答:让小强长胖3公斤,这时候两人一样重,这时候两人体重之和是3+77=80公斤。

所以大强体重也是80÷2=40公斤,小强长胖3公斤后体重也是40公斤,所以小强体重40-3=37公斤。

【小结】在解决和差问题时,假设法是常用的方法。

2.逆推问题三个鱼缸里共有金鱼60条,现在从第一个鱼缸里取出5条放入第二个鱼缸里,再从第二个鱼缸里取出10条放入第三个鱼缸中,现在三个鱼缸里的金鱼一样多,求原来每个鱼缸里各有多少条金鱼?解答:最后每个鱼缸里有鱼60÷3=20条。

在从第二个鱼缸里取鱼放入第三个鱼缸之前,第一个、第二个、第三个鱼缸分别有鱼20条,30条,10条;在从第一个鱼缸里取鱼放入第二个鱼缸之前,第一个、第二个、第三个鱼缸分别有鱼25条,25条,10条。

所以原来第一个、第二个、第三个鱼缸里分别有鱼25条,25条,10条。

三年级奥数:和差分倍问题一1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。

铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

和差问题解题方法

和差问题解题方法

和差问题的四种解法一、问题描述和差问题就是已知两数的和与差,求这两个数。

作为常见的奥数类型题,许多同学张口就能说出和差问题的公式:(和+差)÷2=大数,(和-差)÷2=小数但是公式到底是怎么来的?万一忘了公式怎么办?还有其它解法吗?二、公式由来和差问题可以通过画图或是列关系式的方法来得出。

例1、八戒和沙僧一共吃了253个馒头,八戒比沙僧多吃了67个,八戒和沙僧各吃了几个馒头?方法一:画图法从线段图可以看出,直接求八戒或沙僧吃了几个馒头是有困难的,但是如果先求2个八戒或2个沙僧吃了几个馒头就比较简单了!①先求2个八戒吃了几个馒头给沙僧加上67个馒头,就和八戒一样多了,这时馒头总数变成了253+67=320(个)然后再除以2,就得出了八戒吃了几个馒头八戒:320÷2=160(个)沙僧:253-160=93(个)或160-67=93(个)验算一下和:160+93=253(个),差:160-93=67(个)答案正确。

②先求2个沙僧吃了几个馒头给八戒减去67个馒头,就和沙僧一样多了,这时馒头总数变成了253-67=186(个)然后再除以2,就得出了沙僧吃了几个馒头沙僧:186÷2=93(个)八戒:253-93=160(个)或93+67=160(个)方法二:关系式法八戒+沙僧=253八戒-沙僧=67两式相加,就可以得到2个八戒吃了几个馒头;两式相减,就可以得到2个沙僧吃了几个馒头。

列式和上面是一样的。

三、其它解法方法三:方程解法如果不知道公式,又不会画图或列关系式求解,还可以用方程来解。

需要注意的是“设”和“列”要用不同的关系式,用“和”设,用“差”列;或用“差”设,用“和”列。

①用“和”设,用“差”列解:设八戒吃了x个馒头,则沙僧吃了253-x个馒头。

x-(253-x)=672x-253=67x=160253-x=93答:八戒吃了160个馒头,沙僧吃了93个馒头。

②用“差”设,用“和”列解:设八戒吃了x个馒头,则沙僧吃了x-67个馒头。

小学三年级奥数和差问题【三篇】

小学三年级奥数和差问题【三篇】

小学三年级奥数和差问题【三篇】
导读:本文小学三年级奥数和差问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇:数学成绩】练习题:小华、小林、小黄三人期末考试数学成绩总和为289分,已知小华比小林多8分。

小林比小黄少8分,三个人各得多少分?
解答:可以知道小华和小黄的分数相同,均比小林多8分,因此小华和小黄的分数为(289+8)÷3=99(分)小华的人数为91分【第二篇:耕地】【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
40÷5=8(公顷)
(2)需要多少小时?
72÷8=9(小时)
答:耕72公顷地需要9小时。

【第三篇:烧煤】【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?
【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要
知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?
1500×6=9000(千克)
(2)可以烧多少天?
9000÷1000=9(天)
(3)可以多烧多少天?
9-6=3(天)。

奥数精讲-和差问题

奥数精讲-和差问题

奥数精讲-和差问题1.和差问题的意义:已知大小两个数的和及它们的差,求这两个数各是多少的应用题,叫作和差应用题,简称和差问题。

2.和差问题的解题规律:解答和差问题通常用假设法,同时还可以结合线段图进行分析,解题时可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数减少到与小数同样多,先求小数,再求大数。

3.和差问题的解题方法:小数加上两数差就是大数,两数和加上两数差便是大数的2倍;大数减去两数差就是小数,两数和减去两数差是小数点的2倍。

因此,用两数和加上两数差,再除以2,就可以求出其中的大数;用两数和减去两数差,再除以2,就可求出小数。

4.和差数量关系公式:大数=(和+差)÷2;小数=(和-差)÷2冲关例题1:参加运动会的六年级学生共有326人,其中女生比男生多24人。

六年级男、女生各有多少人参加运动会?解: (326-24)÷2=151(人)151+24=175(人)或(326+24)÷2=175(人)175-24=151(人)答:六年级男生有151人,女生有175人参加运动会。

冲关例题2:兰兰和花花共有68元钱,如果兰兰给花花5元,则两人的钱数一样多。

原来两人各有多少钱?解:(68+5×2)÷2=39(元)(68-10)÷2=29(元)或68-39=29(元)或39-10=29(元)答:原来兰兰有39元钱,花花有29元钱。

冲关例题3:一个三层的书架共放了100本书,第二层比第一层多放了16本,第三层比第一层少放了18本。

这三层书架各放了多少本书?解:(100-16+18)÷3=34(本)34+16=50(本)34-18=16(本)答:第一层放了34本书,第二层放了50本书,第三层放了16本书。

六年级奥数-和倍、差倍、和差问题

六年级奥数-和倍、差倍、和差问题
4、甲书架有图书18本,乙书架有图书8本,班级图书管理员又买来图书16本,怎样分配才能使甲书架图书的本书是乙书架的2倍?
5、某专业户养鸡、鸭、鹅共有960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。这个专业户养鸡、鸭、鹅各多少只?
6、甲、乙、丙三个数之和是400,又知甲是乙的3倍,丙是甲的4倍。求这三个数。
例2、甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?
练习2、
1、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗.第三堆糖果有多少颗?
2.甲、乙、丙三个粮仓一共存有109吨粮食.其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍.问:甲粮仓比丙粮仓多存粮多少吨?
2、菜场运来的西红柿是黄瓜的3倍,卖出西红柿950千克,黄瓜120千克后,剩下的两种蔬菜重量相等,菜场运来西红柿和黄瓜各多少千克?
3、两袋盐的重量相等,甲袋取出24千克,乙袋装入28千克,这时乙袋的重量是甲袋的3倍,甲乙两袋原来各有盐多少千克?
4、甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?
11、被除数、除数与商的和是79,已知商是4。被除数和除数各是多少?
12、两数相除商是5,没有余数,已知被除数、除数与商的和是59。被除数和除数各是多少?
第二类:和差问题练习题
公式:(和-差)÷2=较小数(和+差)÷2=较大数
例1、王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。师徒二人一天各生产多少个零件?
7、三块钢板共重621千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍。三块钢板各是多少千克?

四年级奥数和差问题

四年级奥数和差问题

两筐水果共有150千克,如果从第一筐中取出8千克放入第二筐,两筐水果的质量就相等,那么两筐水果原来各有多少千克?变式题:1.爸爸买回苹果、橘子共30千克,已知苹果比橘子多4千克,苹果、橘子各买了多少千克?2.今年冬冬7岁,爸爸35岁,当两人年龄和是58岁时,两人各是多少岁?3.用锡和铝制成500千克的合金,铝的质量比锡多100千克,锡和铝各有多少千克?4.甲、乙两个仓库共存大米60吨,如果从甲仓库运6吨大米到乙仓库,两个仓库的大米吨数正好相等,求两个仓库原来各有大米多少吨。

一个书架分上、下两层,共放书34本,如果从上层取出8本图书放入下层,那么下层的图书比上层多2本,原来上、下两层各有图书多少本?变式题:1.体育场有篮球、足球共78个,借给四(1)班2个足球后,足球仍比篮球多16个,体育场原有篮球、足球各多少个?2.在一道减法算式里,被减数、减数和差的和是120,减数比差大4,求减数与差。

3.甲、乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放到乙仓库中,则甲仓库中的大米比乙仓库中的还多8袋,求两个仓库原来各有多少袋大米?4.有甲、乙两筐苹果,甲筐中的苹果比乙筐中的多19千克,要使乙筐中的苹果比甲筐中的多3千克,应从甲筐中取出多少千克苹果?学校合唱小组比书法小组多9人,比美术小组多2人,书法小组与美术小组共有47人,求合唱小组、书法小组、美术小组各有多少人。

变式题:1.在一道减法算式里,被减数、减数与差的和等于120,而减数比差多16,差是多少?2.甲筐里装有30千克桃,乙筐里装有一些杏,如从乙筐中取出12千克杏,桃就比杏多10千克,乙筐里原来有杏多少千克?3.食堂里有茄子、辣椒和黄瓜三种蔬菜,中茄子、辣椒共重50千克,辣椒、黄瓜共重70千克,茄子、黄瓜共重60千克,三种蔬菜各有多少千克?4.一套童话书分上、中、下三册,上册比中册贵3元,中册比下册贵6元,四套这样的书总价300元,上、中、下每册各多少钱?和、差、倍的综合应用(1)基础题:有一桶油重50千克,分三次用完,第二次比第一次少用4千克,第三次比第一次用的2倍多2千克,第二次用多少千克?变式题:1.小明、小红、小玲共有73块糖,如果小玲吃掉3块,那么小红与小玲的糖就一样多,如果小红给小明2块糖,那么小明的糖就是小红的2倍,三人原来各有多少块糖?2.将一堆苹果分别放在甲、乙两筐,甲筐的苹果比乙筐的多9个,如果把甲筐的苹果拿出18个放入乙筐,这时乙筐苹果的个数是甲筐的2倍,这堆苹果共有多少个?。

小学二年级奥数题和差问题、定义新运算、数的整除

小学二年级奥数题和差问题、定义新运算、数的整除

小学二年级奥数题和差问题、定义新运算、数的整除1.小学二年级奥数题和差问题篇一1、张明在期末考试时,语文、数学两门功课的平均得分是95分,数学比语文多得8分,张明这两门功课的成绩各是多少分?解:95乘以2,就是数学与语文两门得分之和,又知道数学与语文得分之差是8。

因此数学得分=(95×2+8)÷2=99。

语文得分=(95×2-8)÷2=91。

答:张明数学得99分,语文得91分。

2、甲、乙两人同时打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字。

问甲、乙两人每分钟各打多少个?解答:甲(240÷2+10)÷2=65(个)乙65-10=55(个)【小结】首先要理解2分钟共打了240个字,那么甲、乙两人一分钟就打了240÷2=120(个)。

这样就转换成典型和差问题了。

方法一:甲(240÷2+10)÷2=65(个)乙65-10=55(个)方法二:乙(240÷2-10)÷2=55(个)甲55+10=65(个)2.小学二年级奥数题和差问题篇二1、妈妈买了一双鞋子和一件衣服一共花了500元。

已知衣服比鞋子贵100元,求衣服和鞋子的单价。

衣服:(500+100)÷2=300(元)鞋子:500-300=200(元)或300-100=200(元)2、甲、乙两个修路队4天修路240米。

已知甲队每天比乙队多修6米,甲、乙两个修路队每天各修多少米?解:甲:(240÷4+6)÷2=33(米)乙:33-6=27(米)3、在一个减法算式里,被减数、减数与差这三个数的和是200,减数比差大20。

被减数、减数、差各是多少?解:被减数:200÷2=100(也就是减数与差的和)减数:(100+20)÷2=60差:60-20=25或100-60=403.小学二年级奥数题定义新运算篇三1.规定:a※b=(b+a)×b,那么:(2※3)※5得多少?2.规定:a⊙b=a/b-b/a,则:2⊙(5⊙3)得多少?3.规定:a※b=(a+2b)/3,若6※x=22/3,则x是多少?4.如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,当a△5=30时,那么a是多少?5.已知a,b是任意有理数,我们规定:a⊙b=a+b-1,a⊙b=ab-2,那么4⊙【(6⊙8)(3⊙5)】是多少?7.A、b均为自然数,且a⊙b=a+2a+3a+……+ab,若x⊙10=110,那么x 是多少?8.规定新运算※:a※b=3a-2b,若x※(4※1)=7,则x是多少?9.对余数a、b、c、d规定<a,b,c,d>=2ab-c+d,如果<1,3,5,x >7,那么x是多少?10.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+111 1=1234,那么:7※5是多少?4.小学二年级奥数题数的整除篇四从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。

小学生奥数和差问题练习题

小学生奥数和差问题练习题

【导语】已知两数的和及它们的差(⼀般指:⼤数-⼩数),求这两个数各是多少的应⽤题,叫做和差应⽤题,简称和差问题。

以下是⽆忧考整理的《⼩学⽣奥数和差问题练习题》相关资料,希望帮助到您。

⼩学⽣奥数和差问题练习题篇⼀ 1、两堆⽯⼦共有800吨,第⼀堆⽐第⼆堆多200吨。

两堆各有多少吨? 2、⽤锡和铝混合制成600千克的合⾦,铝的重量⽐锡多400千克。

锡和铝各是多少千克? 3、甲、⼄两⼈年龄的和是35岁,甲⽐⼄⼩5岁。

甲、⼄两⼈各多少岁? 4、红星⼩学三(1)班和三(2)班共有学⽣108⼈,从三(1)班转3⼈到三(2)班,则两班⼈数同样多。

两个班原来各有学⽣多少⼈? 5、某汽车公司两个车队共有汽车80辆,如果从第⼀车队调10辆到第⼆车队,两个车队的汽车辆数就相等。

两个车队原来各有汽车多少辆? 6、甲、⼄两笨共有⽔果60千克,如果从甲箱中取出5千克放到⼄箱中,则两箱⽔果⼀样重。

两箱原来各有⽔果多少千克? 7、今年⼩刚和⼩强俩⼈的年龄和是21岁,1年前,⼩刚⽐⼩强⼩3岁。

今年⼩刚和⼩强各多少岁? 8、黄茜和胡敏两⼈今年的年龄和是23岁,4年后,黄茜将⽐胡敏⼤3岁。

黄茜和胡敏今年各多少岁? 9、两年前,胡炜⽐陆飞⼤10岁;3年后,两⼈的年龄和将是42岁。

求胡炜和陆飞今年各多少岁。

10、甲、⼄两箱洗⾐粉共有90袋,如果从甲箱中取出4袋放到⼄箱中,则甲箱⽐⼄箱还多6袋。

两箱原来各有多少袋?⼩学⽣奥数和差问题练习题篇⼆ 1、两个数的和为36,差为22,则较⼤的数为多少? 2、A、B、C三个数,A加B等于252,B加C等于197,C加A等于149,则C是多少? 3、买⼀⽀⾃动铅笔与⼀⽀钢笔共⽤10元,已知铅笔⽐钢笔便宜6元,那么买铅笔花多少元? 4、学校做扫除,张娟和陈芳⼀共擦玻璃31块,⼜知张娟⽐陈芳少擦9块,陈芳擦玻璃多少块? 5、⼀个两位数是质数(除1与本⾝外,不能被其他数整除,这样的数叫质数)由两个数字组成,两个数字之和是8,两个数字之差是2,这个数是多少? 6、某⼯⼚去年与今年的平均值为92万元,今年⽐去年多10万元,今年的产值是多少万元? 7、三块布共长220公尺,第⼆块布长是第⼀块的3倍,第三块布长是第⼆块的2倍,第⼀块布长多少公尺? 8、甲筐⾥有苹果30公⽄,⼄筐⾥有橘⼦若⼲公⽄,如从⼄筐⾥取出12公⽄橘⼦,苹果就⽐橘⼦多10公⽄,⼄筐原有橘⼦多少公⽄? 9、甲⼄两船共载客623⼈,若甲船增加34⼈,⼄船减少57⼈,这时两船乘客同样多,甲船原有乘客⼏⼈? 10、张强⽤270元买了⼀件外⾐,⼀顶帽⼦和⼀双鞋⼦,外⾐⽐鞋⼦贵140元,买外⾐和鞋⼦⽐帽⼦多花210元,张强买这双鞋⼦花多少钱?⼩学⽣奥数和差问题练习题篇三 1、四年级有4个班,不算甲班其余三个班的总⼈数是131⼈;不算丁班其余三个班的总⼈数是134⼈;⼄、丙两班的总⼈数⽐甲、丁两班的总⼈数少1⼈,问这四个班共有多少⼈? 2、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最⼩的⼀个数是多少? 3、在⼀个两位数之间插⼊⼀个数字,就变成⼀个三位数。

奥数应用题-和差问题

奥数应用题-和差问题

(一)和差问题
1、有大小两数,两数的和是32,两数的差是6,求大数和小数?
2、姐妹两人储蓄的和是100元,如果姐姐给妹妹10元,则两人所有的钱正
好相等,姐妹两人各有储蓄多少?
3、有布一段,裁剪制服6套多12尺,如果裁剪8套则缺8尺,这段布长多
少尺?
4、俄文书一部包含上中下三册,上册比中册贵0.3元,中册比下册贵0.6
元,4部俄文书共值人民币30元,求上中下各册书的价格?
5、甲乙两人同时从南北两市镇出发.相向行走,经过3小时走到一座小桥上
相遇.如果甲加快速度每小时多走2里,乙提前0.5小时出发,则结果又在小桥上相遇.如果甲延迟0.5小时出发,乙减慢速度每小时少走2里,则甲乙两人仍在小桥上相遇.求:南北两市镇距离?。

小学二年级奥数:和差问题及参考答案

小学二年级奥数:和差问题及参考答案

和差问题参考答案一.学会补不足、减多余。

例1.参加体验夏令营的学生共有64人,其中男生比女生多22人。

男、女生各有多少人?方法一:(补不足):方法二(减多余):给女生补上22人,则男女生一样多。

把男生减去22人,则男女生一样多。

男生:(64+22)÷2=43(人) 女生:(64-22)÷2=21(人)女生:64-43=21(人) 或43-22=21(人) 男生:64-21=43(人) 或21+22=43(人)例2.两个数的和为36,差为22,则较大的数为多少?较小的数为多少?方法一:(补不足):方法二(减多余):给较小数补上22,则两个数相等。

把较大数减去22,则两个数相等。

较大数:(36+22)÷2=29 较小数:(36-22)÷2=7较小数:36-29=7 或29-22=7 较大数:36-7=29 或7+22=29练习题:1.甲、乙两车间共有工人120人。

甲车间比乙车间少30人,甲、乙两车间各有多少人?解法1:减多余。

甲:(120-30)÷2=45(人)乙:120-45=75(人) 或45+30=75(人)解法2:补不足。

乙:(120+30)÷2=75(人)甲:120-75=45(人) 或75-30=45(人)2.小燕今年8岁,小冬今年13岁。

当两人的年龄和是41岁时,两人各是多少岁?解法1:减多余。

年龄差:13-8=5(岁)小燕:(41-5)÷2=18(岁)小冬:41-18=23(岁) 或18+5=23(岁)解法2:补不足。

年龄差:13-8=5(岁)小冬:(41+5)÷2=23(岁)小燕:41-23=18(岁) 或23-5=18(岁)解法3:求经过的年数。

年数:(41-8-13)÷2=10(年)小燕:8+10=18(岁)小冬:13+10=23(岁)3.一个两位数,十位数字与个位数字的和是9,十位数字比个位数字大5。

小学二年级奥数_和差问题和参考题答案

小学二年级奥数_和差问题和参考题答案

小学二年级奥数_和差问题和参考题答案奥数,即奥林匹克数学竞赛,是一项旨在培养学生数学综合能力的活动。

在小学二年级的奥数中,和差问题是一个常见的题型。

本文将为大家介绍小学二年级奥数中的和差问题,并附上参考题目和答案供大家参考。

一、和差问题概述和差问题是指在给定条件下,通过计算求出一组数的和或差的过程。

在小学二年级的奥数中,和差问题通常涉及到整数的加减运算,旨在提高学生的运算能力和逻辑思维能力。

二、参考题目与答案1. 题目:有3只小鸟站在一排树枝上,第一只小鸟站在第3根树枝上,第二只小鸟站在第5根树枝上,第三只小鸟站在第7根树枝上。

这3只小鸟所站的树枝上共有多少根?答案:将三只小鸟所站的树枝数相加,即3+5+7=15。

2. 题目:小明有8块糖果,他吃掉了3块,小红给了他2块,小明还剩下几块糖果?答案:将小明剩下的糖果数减去小明吃掉的糖果数再加上小红给的糖果数,即8-3+2=7。

3. 题目:小王身上有10元钱,他花了2元买了一本书,又花了3元买了一只铅笔盒,他还剩下多少钱?答案:将小王剩下的钱数减去他买书的钱数再减去他买铅笔盒的钱数,即10-2-3=5。

4. 题目:班级有25个小朋友,其中男生有15个,女生有几个?答案:将班级中总人数减去男生人数,即25-15=10,所以班级中女生有10个。

5. 题目:小明和小明的妹妹一共有35个玩具,小明有17个玩具,两人共有几个玩具?答案:将小明的玩具数加上小明妹妹的玩具数,即17+(35-17)= 35,所以两人共有35个玩具。

三、总结通过以上参考题目和答案的解析,我们可以看出小学二年级奥数中的和差问题是通过加减运算求得一组数的和或差的过程。

这类题目要求学生熟练掌握加减法,并能够理解题目的要求,进行逻辑思考,给出正确的答案。

在平时的学习中,我们可以通过做类似的题目来提高自己的计算能力和问题解决能力。

同时,还可以通过和差问题的变形题目来拓展思维,提高数学综合能力。

五年级奥数和差和差倍问题

五年级奥数和差和差倍问题

▪ 4x—3+3 = x+9

3x=9

X=3
▪ 答:乙今年3岁。
练习2:今年母女年龄和是45岁,5 年后母亲的年龄正好是女儿的4倍, 今年女儿多少岁?
▪ 解:设5年后女儿x岁。

4 x+x= 45+5+5

5x=55

X=11

11—5=6(岁)
▪ 答:今年女儿6岁 。
练习3:今年父亲与儿子的年龄和是
▪ 和÷(倍数+1)=一倍数

(即较小数)
▪ 和—较小数=较大数,来自▪ 或较小数×倍数=较大数
例1:甲、乙两人共有168张画片, 甲的张数比乙的2倍多30张,两人 各有几张画片?
(168 -30) ÷ (2+1) =138 ÷ 3
=46 168 -46=122 答:甲有122张,乙有46张。
例2:水果店运来水果380千克, 其中苹果比梨的3倍还少40千克, 运来的苹果和梨各多少千克?

7X=280

x=40
▪ 答:买来公鸡40只。
例5:父亲今年比儿子大36岁,5 年后父亲的年龄是儿子的4倍,今 年儿子几岁?
▪ 36÷( 4-1 ) ▪ =36÷3
▪ =12 (岁) ▪ 12-5=7 (岁)
▪ 答:今年儿子7岁。
练习1:甲今年的年龄比乙的年龄 的4倍少3岁,甲在3年后的年龄
等于乙9年后的年龄,问乙今年几 岁▪?解:设乙今年x岁。
例4:小明用21.4元去买两种贺卡,甲卡 每张1.5元,乙卡每张0.7元,钱恰好用完。 可是售货员把甲卡张数算作乙卡张数,把 乙卡张数算作甲卡张数,要找还小明3.2
元。问:小明买了甲、乙卡各几张?

小学奥数 和差问题

小学奥数   和差问题

• 此题还可以假设把第二筐减少4千克,可以
先求出第一筐的质量,再求出第二筐的质 量。你能试一试吗?
解:第一筐重量:(128-4)÷2=62千克
第二筐重量: 128-62=66千克
让奥数成为你们的朋友-Gill
• 练一练:
(1)小明妈妈给小明买了一套衣服,共花 了144元,裤子比衣服便宜24元。衣服和裤 子各多少元?
让奥数成为你们的朋友-Gill
• 练一练
(1)A、B两袋有水果糖共200颗,如果从A袋中取 10颗放到B袋,这时A袋比B袋还多8颗。求A、B两 袋原来各有多少颗水果糖?
解:A袋比B袋多的颗数:10×2+8=28颗 A袋: (200+28)÷2=114颗
B袋:200-114=86颗
(2)甲、乙两个车间原来共有106人加工零件现在 甲车间抽出6人,乙车间抽出8人,这时甲车间比乙 车间多4人。甲、乙车间现在各有多少人?
解:两校原来相差人数:30+10+8=48(人) 实验小学:(210+48)÷2=129(人) 育才小学:210-129=81(人)
让奥数成为你们的朋友-Gill
• 题3
爸爸、妈妈和小刚去商店买东西,他们一共花了 90元,爸爸比妈妈多花10元,小刚比妈妈少花4 元。他们三个人各花了多少元?
让奥数成为你们的朋友-Gill
170分 语文 英语
【185-(175-170)】 ÷2=90分 数学成绩:185-90=95分
语文
数学
语文成绩:175-95=80分
175分
让奥数成为你们的朋友-Gill
• 练一练
春节王阿姨买了南瓜子、葵花籽和西瓜子,南瓜 子和葵花籽共重3400克,南瓜子和西瓜子共重 2800克,葵花籽和西瓜子共重3000克。问三种 瓜子各多少克?

二年级奥数和差

二年级奥数和差

二年级奥数辅导和差问题小红养小鸡和小鸭共10只,小鸡比小鸭多4只。

问:小红养的小鸡和小鸭各是多少只?这个应用题告诉我们小鸡和小鸭的和是10只,小鸡和小鸭的差是4只,根据和与差来求得数,这就是和差问题。

例一:小72班有有学生54人,男生的人数比女生的人数多8人。

问:小72班有男、女生各多少人?8人分析:从线段图上可以看出,男生的人数减男生:少8人,就与女生人数同样多,也就是从全女生:班总人数中减去8人,就是2倍的男生人数。

方法一:54-8=46(人)方法二:54+8=62(人)46÷2=23(人)女生人数62÷2=31(人)男生人数54-23=31(人)男生人数54-31=23(人)女生人数答:小72班有男生31人,女生23人。

小结:和差问题的解题公式是:(和+差)÷2=大数,(和-差)÷2=小数例二:公园里有月季花和菊花共927朵,月季花比菊花朵97朵,问:公园里有月季花和菊花各多少朵?分析:(先把左边的图补充完整,再思考!)月季:菊花:方法一:方法二:练习:1、停车场有小汽车和面包车共128辆,其中小汽车比面包车朵34辆,问:小汽车和面包车各有多少辆?2、一套课桌椅的售价共250元,已知桌子比椅子贵100元,问:桌子和椅子售价分别是多少元?方法一:方法二:3、兔妈妈共采了180个蘑菇,让小白兔和小灰兔各拿一半蘑菇,顽皮的小白兔多拿了一些,假如小白兔少拿10个,小灰兔多拿10个,它们的蘑菇就一样多了,问:小白兔和小灰兔实际上各拿了多少个?4、今年植树节,果园里新栽了苹果树和梨树共294棵,由于天气原因,有28棵梨树没有成活,现在新栽成活的苹果树和梨树一样多,问:今年栽的苹果树有多少棵?方法一:方法二:5、甲、乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨?方法一:方法二:。

奥数--和差问题

奥数--和差问题

和差问题和差问题要画线段图帮助思考,主要抓住以下两个关系式。

(和-差)÷2=小数(和+差)÷2=大数例1、学校有排球、足球50个,排球比足球多4个,排球、足球各多少个?例2、甲、乙两车发车时共有乘客160人,从A站经B站开往C站,在B站甲车增加了17人,乙车减少了23人,开往C站时,两车乘客人数恰好相等,两车原来乘客各有多少人?例3、一班和二班共有学生82人,如果从一班调4名学生到二班,那么两班学生同样多,问两个班原来各有学生多少人?例4、育英幼儿园买来49千克苹果分给大、中、小三个班。

大班比中班多分4千克,中班又比小班多6千克,小班分得多少千克?例5、师傅、徒弟两人合做零件2小时,共生产零件110个。

如果分别工作5小时,师傅比徒弟多生产25个。

求师傅、徒弟每小时各做零件多少。

例6、甲、乙两人收藏的图书共3200本,乙、丙两人共收藏2400本,甲、丙共收藏2800本。

他们各收藏多少本?练习:1、王宏和张亮共有连环画30本,王宏比张亮少4本,两人各有多少本?2、甲筐装着桃,乙筐装着杏,甲、乙两筐共重80千克,如果从乙筐里取出2千克杏,往甲筐中放入6千克桃,两筐就一样重。

问乙筐原来有杏多少千克/3、小明和小红共有邮票50张,如果小明给小红1张,则两个人的张数相等,问他们原来各有多少张邮票?4、有99千克梨分给甲、乙、丙三个组,甲组比乙组多分4千克,乙组比丙组多分4千克,三个组各分得多少千克?5、甲、乙两个打字员合打2小时,共打字840个,如果分别打三个小时,甲比乙多打180个。

求甲、乙两个打字员每小时各打多少个字?6、学校有篮球、足球、排球若干个,篮球和排球共58个,排球和足球共45个,足球和篮球共77个。

篮球、足球、排球各多少个?。

小学奥数21类难题之“和差问题”应用题(专项训练30题)

小学奥数21类难题之“和差问题”应用题(专项训练30题)

小学奥数21类难题之“和差问题”应用题(专项训练30题)【和差问题含义】已知两个数量的和与差,求这两个数量各是多少。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。

例:甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:直接套用公式甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)30道和差问题练习题1.两个足球队进行友谊赛,红队和蓝队的球员总数是45人,红队比蓝队多3人,问两队各有多少人?-解:红队人数=(45+3)÷2=24人,蓝队人数=(45-3)÷2=21人。

2.学校图书馆买了一些故事书和科普书,总共有90本,故事书比科普书多8本,问两种书各有多少本?-解:故事书本数=(90+8)÷2=49本,科普书本数=(90-8)÷2=41本。

3.两个果园一共收获了120千克苹果,如果从第一个果园拿走20千克苹果到第二个果园,两个果园的苹果就一样多,问两个果园原来各有多少千克苹果?-解:原来第一个果园苹果=(120+20)÷2=70千克,第二个果园苹果=(120-20)÷2=50千克。

4.甲乙两个工厂合作生产了一批玩具,总共生产了200个,甲工厂比乙工厂多生产10个,问两个工厂各生产了多少个?-解:甲工厂生产数=(200+10)÷2=105个,乙工厂生产数=(200-10)÷2=95个。

5.两个班级进行植树活动,一共植了72棵树,如果从第一班拿走6棵树给第二班,两班植的树就一样多,问两个班级各植了多少棵树?-解:第一班植树数=(72+6)÷2=39棵树,第二班植树数=(72-6)÷2=33棵树。

6.两个游泳池,一个游泳池的水量是另一个的2倍,如果从这个游泳池中取出30吨水放到另一个游泳池,两个游泳池的水量就相等了,问两个游泳池原来各有多少吨水?-解:大游泳池水量=(30×2+30)÷2=45吨,小游泳池水量=(30×2-30)÷2=15吨。

奥数中的和差问题

奥数中的和差问题

和差问题、和倍问题、差倍问题一、和差问题:两个数的和及差,求出这两个数各是多少的应用题,叫做和差应用题。

根本数量关系是:〔和+差〕÷2=大数〔和-差〕÷2=小数解答和差应用题的关键是选择适宜的数作为标准,设法把假设干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和及差,可以通过转化求它们的和及差,再按照和差问题的解法来解答。

例1:有甲乙两堆煤,共重52吨,甲比乙多4吨,两堆煤各重多少吨?分析:根据公式,我们要找出两个数的和及差,就能解决问题。

由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。

甲的煤多,甲是大数,乙是小数。

故解法如下:甲:〔52+4〕÷2=28〔吨〕乙:28-4=24〔吨〕例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。

甲:〔15+5〕÷2=10〔只〕乙: 15-10=5〔只〕练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。

长和宽各是多少厘米?二、和倍问题两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的根本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。

根本数量关系:小数=和÷〔n+1〕大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。

乙:160÷(3+1)=40〔本〕甲:160-40=120〔本〕例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。

小学奥数趣味学习《和差问题》典型例题及解答

小学奥数趣味学习《和差问题》典型例题及解答

小学奥数趣味学习《和差问题》典型例题及解答已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

和差问题的数量关系:大数=(和+差)÷2小数=(和-差)÷2解题思路和方法:简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例题1:两筐水果共重150千克,第一筐比第二筐多18千克,第一筐水果重 _____ 千克,第二筐水果重 _____ 千克。

解:因为第一筐比第二筐重1、根据大大数=(和+差)÷2的数量关系,可以求出第一筐水果重(150+18)÷2=84(千克)。

2、根据小数=(和-差)÷2的数量关系,可以求出第二筐水果重(150-18)÷2=66(千克)。

例题2:登月行动地面控制室的成员由两组专家组成,两组共有专家120名,原来第一组人太多,所以从第一组调了20人到第二组,这时第一组和第二组人数一样多,那么原来第二组有()名专家。

解:1、原来从第一组调了20人到第二组,这时第一组和第二组人数一样多,说明原来第一组比第二组多20+20=40(人)2、根据小数=(和-差)÷2的数量关系,第二组人数应该为(120-40)÷2=40(人)。

例题3:某工厂第一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人,三个车间各有多少人?解:1、第一车间比第二车间多10人,第二车间比第三车间多15人,那么第一车间就比第三车间多25人,因此第三车间的人数是(280-25-15)÷3=80(人)。

2、据此可得出第一、二车间的人数。

三年级奥数和差问题40题详解

三年级奥数和差问题40题详解

灵灵芳芳原来各多少本? 16+16=32(千克)
答:灵灵芳芳原来各有32本.
白汀水
13、甲乙两仓存粮吨数相等。将甲仓运出 6吨,乙仓运
进14吨以后,乙仓存粮吨数是甲仓的 3倍,求甲乙两仓
原来各存粮多少吨?
甲仓 乙仓
6吨 1倍
14吨
3倍
现在乙仓比甲仓多多少吨?
6+14=20(吨)
现在乙仓比灵甲仓的多多少倍? 3-1=2(倍)
甲仓比乙仓多存粮多少吨? 260-60=200(吨)
乙仓有多少吨?
200 ÷ 2=100(吨)
甲仓有多少吨? 100 × 3=300(吨) 或 100+200=300(吨)
答:甲仓存粮300吨,乙仓存粮100吨。
白汀水
5、小明的存款数是小刚的 3倍,现在小明取出 8500元, 小刚取出 500元,两人的存款数变得一样多,求小明和 小刚原来各存款多少元?
小张
2000元
小李
4000元
如果小李多多存2000元,则小李比小张多存多少元? 4000+2000=6000(元)
此时小李比小张多几倍? 3-1=2(倍)
小张存多少元? 小李存多少元?
6000÷ 2=3000 30(00元×)3-2000=7000(元)
答:小李存7000元,小张存3000元。
白汀水
答:甲乙两桶原来各有油45千克。
白汀水
12、灵灵和芳芳的连环画本数相等。灵灵给芳芳 16本
后,芳芳的本数就是灵灵的 3倍。求灵灵和芳芳的连环
画原来各有多少本?
灵灵 芳芳
16本 1倍
16本
3倍
现在芳芳比灵灵多多少本?
16×2=32(本)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。

基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?分析:根据公式,我们要找出两个数的和与差,就能解决问题。

由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。

甲的煤多,甲是大数,乙是小数。

故解法如下:甲:(52+4)÷2=28(吨)乙:28-4=24(吨)例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。

甲:(15+5)÷2=10(只)乙: 15-10=5(只)练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。

长和宽各是多少厘米?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。

基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。

乙:160÷(3+1)=40(本)甲:160-40=120(本)例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。

梨树的棵数:171÷3=57,求桃树的棵数时要减去6棵。

桃树:171-57-6=108 梨树:(165)÷(2+1)=57(棵)桃树:171-57-6=108(棵)练习:1、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书多少本?2、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?3、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库?4、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?三、差倍问题已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。

解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。

基本数量关系:小数=差÷(n-1)大数=小数×n 或大数=差+小数例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。

问桌椅各多少元?分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:椅子的价格:60÷(3-1)=30(元)桌子的价格:30+60=90(元)例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。

两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2.乙筐现有苹果:(19-7)÷(3-1)=6(千克)乙筐原来有:6+19=25(千克)甲筐原来有25千克。

练习:1、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。

两桶酒原来各多少千克?2、六、一班有花盆的数量是六、二班的3倍,如果六、一班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?作业:1、甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好相等。

求两桶油原来各有多少千克?2、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。

求原来两箱洗衣粉各有多少袋?3、刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,问这个操场的面积是多少平方米?4、小强今年15岁,小亮今年9岁。

几年前小强的年龄是小亮的3倍?5、有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第一根剩下的3倍,两根绳子原来有多长?6、老猫和小猫去钓雨,老猫钓的鱼是小猫的3倍,如果老猫给小猫3条后,小猫比老猫还少2条。

两只猫各钓了多少条鱼?7、学校今年参加科技兴趣小组的人数比去年多41人,今年人数比去年的3倍少35人,今年有多少人?和倍问题和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题.为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

例1甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:解:乙班:160÷(3+1)=40(本)甲班:40×3=120(本)或 160-40=120(本)答:甲班有图书120本,乙班有图书40本。

这道应用题解答完了,怎样验算呢?可把求出的甲班本数和乙班本数相加,看和是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。

验算:120+40=160(本)120÷40=3(倍)。

例2甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?分析解这题的关键是找出哪个量是变量,哪个量是不变量.从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍.依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。

解:①甲、乙两班共有图书的本数是:30+120=150(本)②甲班给乙班若干本图书后,甲、乙两班共有的倍数是:2+1=3(倍)③乙班现有的图书本数是:150÷3=50(本)④甲班给乙班图书本数是:50-30=20(本)综合算式:(30+120)÷(2+1)=50(本)50-30=20(本)答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。

验算:(120-20)÷(30+20)=2(倍)(120-20)+(30+20)=150 (本)。

例3光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?分析把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。

解:①女生人数:(760+40)÷(3+1)=200(人)②男生人数:200×3-40=560(人)或 760-200=560(人)答:男生有560人,女生有200人。

验算:560+200=760(人)(560+40)÷200=3(倍)。

例4 果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?分析下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。

解:①梨树的棵数:(552+20-12)÷(1+1+2)=560÷4=140(棵)②桃树的棵数:140×2+12=292(棵)③苹果树的棵数: 140-20=120(棵)答:桃树、梨树、苹果树分别是292棵、140棵和120棵。

例5 549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?分析上图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。

解:①丙数是:(549+2-2)÷(2+2+1+4)=549÷9=61②甲数是:61×2-2=120③乙数是:61×2+2=124 ④丁数是:61×4=244验算:120+124+61+244=549 120+2=122 124-2=12261×2=122 244÷2=122答:甲、乙、丙、丁分别是120、124、61、244.差倍问题前面讲了应用线段图分析“和倍”应用题,这种方法使分析的问题具体、形象,使我们能比较顺利地解答此类应用题.下面我们再来研究与“和倍”问题有相似之处的“差倍”应用题。

“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。

差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题。

例1甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。

相关文档
最新文档