运筹学-线性规划新算法:椭球法及karmarkar算法(名校讲义)

合集下载

运筹学中的线性规划算法

运筹学中的线性规划算法

运筹学中的线性规划算法运筹学是运筹学家在解决一些管理决策问题(通常是最优化问题)时开发出来的一类数学方法。

运筹学与现代计算机科学和算法理论密切相关。

这里我们主要讲述一种在运筹学中被广泛使用的算法——线性规划算法。

一、线性规划的定义及特点线性规划是运筹学中应用最广泛的一类优化问题,它是在一组线性等式和不等式的约束条件下,最小化或最大化某一线性函数的优化问题。

形式化地,一个线性规划(LP)问题可以表示为$$\begin{aligned}& \text{maximize } c^Tx \\& \text{subject to } Ax \le b \\& \ \ \ \ \ \ \ \ \ \ \ \ x \ge 0\end{aligned}$$其中 $c \in \mathbb{R}^n$ 和 $b \in \mathbb{R}^m$,矩阵 $A \in \mathbb{R}^{m\times n}$。

注意到这里的不等式约束均为“小于等于”形式,并且 $x$ 的每一个分量都不可以为负数。

线性规划具有如下重要特点:1. 线性规划问题必须有线性约束,即线性规划问题只考虑目标函数和约束条件都是线性函数的情况。

2. 一般情况下,线性规划问题的最优解必须满足最优性约束,即必须取到目标函数的最大(小)值的点必须满足所有的约束条件。

3. 线性规划问题的最优解只能出现在可行点集的顶点处,这样的点集被称为线性规划问题的基本可行解集。

二、线性规划求解的基本思路及方法线性规划求解的基本思路是:先将可行域化为一个凸多面体,找到其顶点(基本可行解集),然后逐一检查这些顶点,直到找到最优解。

线性规划算法有多种,常见的有单纯形法、内点法、分支定界法等。

其中最广泛应用的是单纯形法。

1. 单纯形法单纯形法是由美国运筹学家乔治·丹尼尔(George Dantzig)在20世纪40年代发明的。

其主要思想是:从一个初始可行点开始,对于不满足约束条件的变量(非基变量),通过一些变换(如高斯消元)寻找到下一个可行解(即将一个非基变量变成基变量),如果找到更优解,则继续上述寻找过程,直至无法找到更优解。

《运筹学线性规划》PPT课件

《运筹学线性规划》PPT课件
划问题化成如下的标准型:
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7 x1 x2 x4 x5 x7 2 3x1 x2 2x4 2x5 5 x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
(1.4)
标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线 性规划问题都可以通过上述手段把非标准 型的线性规划问题化成标准型。现举例如 下:
例1-4 试将如下线性规划问题化成标准型
多样性给讨论问题带来了不便。为了便于今后讨论,我 们规定线性规划问题的标准型为:
max Z c1x1 c2x2 cnxn
a11x1 a12x2 a21x1 a22x2
a1nxn b1 a2nxn b2
am1x1 am2x2 amnxn bm
x1, x2 , , xn 0
例1-1:(计划安排问题)某工厂在计划期内安排
生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的
设备A、B的台时、原材料的消耗及两种产品每件可
获利润见表所示:
I
II 资源总量
设备A(h)
0
3
15
设备B(h)
4
0
12
原材料(公斤)
2
2
14
利润(元)
2
3
问如何安排计划使该工厂获利最多?
解: 假设 x1、x2分别表示在计划期内生产
二、线性规划问题的图解法
对于简单的线性规划问题(只有两个决策变量的
线性规划问题),我们可以通过图解法对它进行求解

运筹学线性规划ppt课件

运筹学线性规划ppt课件

16
例3
化如下的线性规划问题模型
min z 3x1 2 x 2 x3 x1 2 x 2 3x3 2 2 x1 3x 2 2 x3 2 x 0, x 无约束, x 0 2 3 1
为标准形式。
(1 )变量 x1 是非正的,所以要将模型中的所有 x1 都用 x1 x1 0 代替,其中 x1
运筹学建模步骤:
识别问题
定义决策变量
建立约束条件
建立目标函数
6
2.2 线性规划模型的一般形式和标准形式
2.2.1 线性规划的一般模型
为了讨论一般的线性规划问题的求解。我们先给出线性规 划模型的一般形式如下: max( 或 min) z c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (或 ,或 )b1 a21x1 a22 x2 a2 n xn (或 ,或 )b2 s.t. a x a x a x (或 ,或 )b mn n m m 1 m2 2 x1 , x2 ,..., xn 0
(5)约束条件2是“”型的,因此需要在左边加上一个松弛变量
x5 使它化为等式: 2 x1 3x 2 2 x3 x5 2 也就是
3x2 3x2 2 x3 x5 2 2 x1
18
从而得到模型的标准形式为
2 x2 2 x2 x3 max z 3x1 2 x2 2 x 2 3x3 x 4 2 x1 3x2 3x2 2 x3 x5 2 2 x1 x , x , x , x , x , x 0 1 2 2 3 4 5

《运筹学》线性规划课件

《运筹学》线性规划课件

2021/2/22
Page 6
怎样辨别一个模型是线性规划模型?
其特征是: 1.解决问题的目标函数是多个决策变量的
线性函数,通常是求最大值或 最小值; 2.解决问题的约束条件是一组多个决策变量
的线性不等式或等式。
【例1-2】
1.1 线性规划的数学模型 Mathematical Model of LP
x1 2x3x4 4x63x72x8x9 1000
x2
2x4 3x5
x7 2x8 4x9 5x101000
xj 0,j1,2, 10
求下料方案时应注意,余料不能超过最短毛坯的长度;最好将毛 坯长度按降的次序排列,即先切割长度最长的毛坯,再切割次长 的,最后切割最短的,不能遗漏了方案 。如果方案较多,用计 算机编程排方案,去掉余料较长的方案,进行初选。
《运筹学》线性规划课件
1.1 数学模型
Mathematical Model
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划
Linear Programming
2021/2/22
Page 3
线性规划(Linear Programming,缩写为LP)通常研究资源 的最优利用、设备最佳运行等问题。例如,当任务或目标 确定后,如何统筹兼顾,合理安排,用最少的资源 (如资
资金约束: x 1 x 2 x 3 x 4 x 5 x 6 5 0 0 0
国债投资额约束: x1x2 1000
平均评级约束:
x1x22x33x44x55x62 x1x2x3x4x5x6
平均到期年限约束:
8x110x24x36x43x54x65 x1x2x3x4x5x6

运筹学课程讲义

运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。

桌子售价50 元/个,椅子售价30 元/个。

生产桌子和椅子需木工和油漆工两种工种。

生产一个桌子需要木工4 小时,油漆工2小时。

生产一个椅子需要木工3 小时,油漆工1 小时。

该厂每月可用木工工时为120 小时,油漆工工时为50 小时。

问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。

每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。

这些轴需用同一种圆钢制作,圆钢的长度为74m。

如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。

使用该法求解线性规划问题时,不必把原模型化为标准型。

一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。

运筹学讲义第4章

运筹学讲义第4章
2010/03
或为: f(xj) = kjyj+cjxj xj≤yjM yj≤xjM xj≥0, yj=0或1
--15--
--第4章 整数规划--
三、隐枚举法 步骤:
① 化标准形(隐枚举法): 1) 目标函数极小化;2) 约束条件化成≥ ; 3) 使目标函数系数皆为非负, 若xj系数为负值, 则令xj=1-xj′;4) 使 目标函数按变量系数由小→大顺序排列,约束条件变量排列的顺 序要与之对应。 ② 令所有变量xj=0,计算边界目标函数值z,检查是否满足所有约 束条件,若满足,即为最优解;否则,分枝计算。 ③ 分枝:按变量次序依次令各变量取“1”和“0”值,计算边界值, 然后 检查是否满足所有约束,若满足,转下步;否则继续分枝。 ④ 剪枝:在得到一个可行解后,分枝过程中要进行剪枝工作。 (a) 对可行解,保留边界值最小的一枝zmin,其余全剪掉; (b) >zmin分枝,剪掉; (c) 能判断出为无可行解的分枝,剪掉; (d) 非上述情况,继续分枝。
2010/03
--12--
--第4章 整数规划--
(a)当x8=1 当x8=0 ∴ x8 ≤ x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 ≤ 1
x3=0, x3 ≠1 x3=0, x3 =1
(c) x2 + x4 ≥ 1 (d) x8 = x7 (e) x1 + x4 + x6 + x9 ≤ 2
EXCEL求解:
2010/03
--8--
--第4章 整数规划--
4.2 0-1规划问题及模型
一、0-1规划问题的概念 • 在整数规划问题中,若变量取值为0或者1,则为0-1 规划问题。

线性规划的Karmarkar方法(续)

线性规划的Karmarkar方法(续)

线性规划的Karmarkar方法(续)
赖炎连
【期刊名称】《湖北科技学院学报》
【年(卷),期】2005(025)003
【摘要】线性规划的多项式算法--Karmarkar方法,是近期国际运筹学界的著名成果.它在理论与实用上都有重要意义.本文希望用比较通俗的方式介绍它,以便让更多的人们了解这一方法并将它应用于实际,产生更多的经济效益.
【总页数】4页(P1-4)
【作者】赖炎连
【作者单位】中国科学院,数学与系统科学研究院应用数学研究所,北京,100080【正文语种】中文
【中图分类】O221.1
【相关文献】
1.用线性分式规划的多项式算法改进线性规划的Karmarkar方法 [J], 关履泰;龚大平
2.线性规划的Karmarkar方法 [J], 赖炎连
3.线性规划Karmarkar方法的初始内点的求法 [J], 马红缨
4.线性规划的新的多项式算法──Karmarkar方法 [J], 刘庆邦
5.一种用于求解机械制造中线性规划问题的新算法———KarmarKar改进算法 [J], 献国;高建民;刘玉桐
因版权原因,仅展示原文概要,查看原文内容请购买。

线性规划讲义

线性规划讲义

线性规划讲义一、引言线性规划是一种优化问题的数学建模工具,它可以帮助我们在给定的约束条件下,找到使目标函数达到最大或最小值的最优解。

本讲义将介绍线性规划的基本概念、常见的线性规划模型以及求解方法。

二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

通常用字母Z表示目标函数。

2. 约束条件:线性规划的解必须满足一系列约束条件,这些约束条件可以是等式或不等式。

约束条件可以限制决策变量的取值范围,也可以限制决策变量之间的关系。

3. 决策变量:决策变量是我们需要确定的变量,它们的取值将影响目标函数的值。

决策变量通常用字母x表示。

4. 可行解:满足所有约束条件的解被称为可行解。

可行解必须满足约束条件,并且在定义域内取值。

5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解被称为最优解。

最优解可能是唯一的,也可能有多个。

三、线性规划模型1. 单目标线性规划模型:单目标线性规划模型是指只有一个目标函数的线性规划模型。

常见的单目标线性规划模型包括生产计划、资源分配等问题。

2. 多目标线性规划模型:多目标线性规划模型是指有多个目标函数的线性规划模型。

多目标线性规划模型需要考虑多个目标之间的权衡和平衡。

四、线性规划的求解方法1. 图形法:图形法是一种直观的求解线性规划问题的方法,它适用于二维或三维的线性规划问题。

通过绘制约束条件的图形,可以找到最优解所在的区域。

2. 单纯形法:单纯形法是一种高效的求解线性规划问题的方法,它适用于多维的线性规划问题。

单纯形法通过迭代计算,逐步接近最优解。

3. 整数规划法:整数规划是线性规划的一种扩展,它要求决策变量只能取整数值。

整数规划问题的求解相对困难,可以使用分支定界法等方法求解。

五、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合、市场营销等。

线性规划可以帮助决策者优化资源利用,提高效益。

管理运筹学线性规划ppt课件

管理运筹学线性规划ppt课件

x1 +x2 =300
D
x1
x1 ≥0, x2 ≥0
ห้องสมุดไป่ตู้
O
100 200 300 400
• 五边形ABCDO内(含边界)的任意一点2x1(x+1x,2 =x402)0都是满足所有
约束条件的一个解,称之可行解 。 z=0= 50x1 +100 x2
11
经济管理学院
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第二节
线性规划的图解法
三 、解的可能性(续) • 无可行解:若约束条件相互矛盾,则可行域为空集
例如
maxZ= 3x1 +2 x2 -2x1 + x2 ≥2
2
经济管理学院
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第一节
线性规划一般模型
一、线性规划问题的三个要素

▪ 决策问题待定的量值称为决策变量。 ▪ 决策变量的取值要求非负。
• 约束条件
第三节
线性规划的标准型
一 、标准型
• 线性规划问题的数学模型有各种不同的形式,如
▪ 目标函数有极大化和极小化; ▪ 约束条件有“≤”、“≥”和“=”三种情况; ▪ 决策变量一般有非负性要求,有的则没有。

线性规划karmarkar方法的初始内点的求法

线性规划karmarkar方法的初始内点的求法

线性规划karmarkar方法的初始内点的求法线性规划Karmarkar方法是一种最优化算法,可以求解线性规划问题。

它于1984年由Karmarkar发表,被认为是一种重大突破。

Karmarkar方法以全局优化作为目标,建立了一种计算最优解的新方法。

通过求解初始内点,Karmarkar方法可以有效地求解线性规划问题。

二、定义Karmarkar方法是一种基于内点求解线性规划问题的algorithm。

点Interior Point)是指在一个满足线性不等式约束条件的线性函数的极值的计算过程中,其可行解区域内的一个点,这个点不在可行解变量的边界上。

其定义为:若存在矩阵A,则内点x*称为可行解(满足线性不等式约束条件)下的点,在它以及它周围的某一范围内,使得函数f(x)取极值,且满足所有线性不等式约束条件。

三、Karmarkar算法概述Karmarkar算法是一种基于内点的求解线性规划问题的algorithm,旨在求解满足线性不等式约束条件的线性函数的极值。

这种方法的目的是从满足线性不等式约束的潜在可行解空间中找出最优解。

Karmarkar算法以一系列的步骤来计算线性规划问题的最优解:首先,从初始解开始,将其与约束条件合并,然后计算该解的函数值,称为函数值分析;接着,在函数值分析的步骤中,对该初始内点进行增强,直到找到最优解为止。

四、Karmarkar算法的求解步骤1.解基本解:从原始问题中计算出一个可行解,称为基本解,是一个向量,它满足和所有线性不等式约束条件。

2.择初始内点:找出一个可行解,该解与基本解最接近,但不位于边界上,称为初始内点。

3.数值分析:以初始内点为基础,计算函数的函数值,然后通过改变内点来调整目标函数的值。

4.索步骤:将更新的内点和上述等式约束条件作为入口,搜索步骤将会求解最优解。

五、实例下面我们来看一个简单的例子。

约束条件为:Ax b求解的目标是: min f(x) = cTx首先,我们确定基本解: x_0 = (3,1,2)初始内点: x* = (2.5,0.5,1.5)此时,函数值为: f(x*) =10接下来,我们使用函数值分析方法,以计算出最优解。

运筹学教学课件线性规划学习课件

运筹学教学课件线性规划学习课件

降低潜在损失
通过全面、有效的风险管理策略,降低潜 在损失。
06线性规划在ຫໍສະໝຸດ 通运输中的应用线性规划在货物运输中的应用
优化运输路径
通过线性规划方法,可以优化货物的运输 路径,从而降低运输成本和时间。
车辆装载优化
线性规划可以优化车辆的装载方案,使得 车辆的装载量达到最大,减少车辆使用数 量和运输成本。
04
线性规划问题的求解方法
图解法
总结词
直观、简单、易懂
详细描述
图解法是一种用几何图形来求解线性规划问题的简单直观的方法,它通过将不等式约束条件转换为图形的限制 条件,将线性规划问题转化为在图中寻找最优解的问题。该方法适用于小规模问题,方便理解,是求解线性规 划问题的基本方法之一。
单纯形法
总结词
03
线性规划问题的数学模型
线性规划问题的标准形式
确定线性规划问题的标准形式
标准形式是由一个线性目标函数和一个线性约束条件组成的数学模型。
将非标准形式转化为标准形式
在求解线性规划问题时,通常需要将非标准形式转化为标准形式,这可以通过引入变量、转换约束条件等方式 实现。
线性规划问题的扩展形式
多目标线性规划
05
线性规划在管理决策中的应用
线性规划在生产计划中的应用
总结词
高效、低成本
确定生产计划目标
通过线性规划方法确定最优质、低 成本的生产计划。
优化生产资源配置
将有限的资源,如人力、物料、设 备等,根据不同产品或部门的需要 ,进行合理分配和优化。
提高生产效率
通过优化生产流程和布局,减少生 产过程中的浪费和等待时间,提高 生产效率。
特点
运筹学注重定量分析、优化思想和系统方法,强调理论与实践相结合,具有广泛应用性和多学科交叉 性。

线性规划讲义

线性规划讲义

线性规划讲义一、什么是线性规划线性规划(Linear Programming,简称LP)是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它的目标是在给定的线性约束条件下,找到使目标函数达到最大或者最小值的变量取值。

二、线性规划的基本要素1. 决策变量:决策变量是指问题中需要决策的变量,用来表示问题的解。

通常用x1、x2、...、xn来表示。

2. 目标函数:目标函数是用来衡量问题的优劣的函数,通常是需要最大化或者最小化的函数。

通常用f(x)表示。

3. 约束条件:约束条件是问题中需要满足的条件,通常是一组线性等式或者不等式。

约束条件可以分为等式约束和不等式约束,分别用等式和不等式来表示。

三、线性规划的标准形式线性规划的标准形式可以表示为:最小化:f(x) = c1x1 + c2x2 + ... + cnxn约束条件:Ax ≤ bx ≥ 0其中,f(x)是目标函数,c1、c2、...、cn是目标函数的系数,x1、x2、 (x)是决策变量,A是约束条件的系数矩阵,b是约束条件的常数向量,x ≥ 0表示决策变量的非负约束。

四、线性规划的求解方法线性规划可以使用多种方法进行求解,常见的方法有:1. 图形法:适合于二维问题,通过绘制约束条件的直线和目标函数的等高线图来找到最优解。

2. 单纯形法:适合于多维问题,通过迭代计算顶点来找到最优解。

3. 对偶理论:通过构建对偶问题,将原问题转化为对偶问题进行求解。

4. 整数规划法:将决策变量限制为整数,通过枚举或者分支定界法来求解。

五、线性规划的应用领域线性规划广泛应用于各个领域,包括但不限于以下几个方面:1. 生产计划:通过优化资源分配和生产计划,最大化利润或者最小化成本。

2. 运输问题:通过最优化运输路线和货物分配,降低运输成本。

3. 供应链管理:通过优化供应链中的各个环节,提高效率和利润。

4. 金融投资:通过优化投资组合,最大化收益或者最小化风险。

5. 能源管理:通过优化能源生产和消耗,提高能源利用效率。

第二章线性规划(运筹学讲义)

第二章线性规划(运筹学讲义)

产品Ⅰ 产品Ⅱ
设备使用成本和单价
资源限制
设备
1
1
10元 / 时
300台时
原料A
2
1
12元 / kg
400kg
原料B
0
1
18元 / kg
250kg
销售单价(元)
84
140
单位产品利润(元)
50
100
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?
设工厂生产产品Ⅰ、Ⅱ分别为x1,x2单位, 则线性规划模型:
确定需求的约束,它们表示了一定数量的确定的需求,提供的数量等于要 求的数量。网络配送问题的共性就是它们的主要函数约束为一种特定形式 的确定需求的约束。
混合问题(mixed Problem)除以上三类以外的问题
建模过程
1.理解要解决的问题,了解解题的目标和条件;
2.定义决策变量( x1 ,x2 ,… ,xn ),每一组值表示一个方案;
因此,凸集用数学表示为:对任何X1 ∈C, X2 ∈C, 有α X1 +(1- α) X2 ∈C (其中0<α<1),则称道C为凸集。 规定:单点集 {X} 为凸集,空集为凸集。
A B
E
C
D
顶点:设C是凸集, X∈C;若X不能用不同的两点X1∈C和 X2∈C的线性组合表示为X= αX1+(1-α) X2 (其中 0<α<1),则称X为C的一个顶点
x2 49
z=10000=50x1+100x2
AB
250
C
z=27500=50x1+100x2 z=20000=50x1+100x2
z =0=50x1+100x2

线性规划讲义

线性规划讲义

线性规划讲义一、概述线性规划是一种数学优化方法,用于解决线性约束下的最优化问题。

它的目标是找到一组决策变量的最佳取值,使得目标函数达到最大或最小值。

线性规划广泛应用于经济学、工程学、管理学等领域,可以帮助决策者做出最优决策。

二、基本概念1. 决策变量:线性规划的决策变量是指需要决策者确定的变量,通常用x1,x2, ..., xn表示。

2. 目标函数:线性规划的目标函数是需要最大化或最小化的线性函数,通常用f(x)表示。

3. 约束条件:线性规划的约束条件是决策变量需要满足的一组线性等式或不等式,通常用g(x)≤b或g(x)≥b表示。

4. 可行解:满足所有约束条件的决策变量取值称为可行解。

5. 最优解:在所有可行解中,使得目标函数达到最大或最小值的解称为最优解。

三、标准形式线性规划问题可以通过将其转化为标准形式来求解。

标准形式的线性规划问题具有以下特点:1. 目标函数是最小化问题。

2. 所有约束条件均为等式。

3. 所有决策变量均为非负数。

标准形式的线性规划问题可以通过以下步骤进行转化:1. 将目标函数转化为最小化问题:如果目标函数是最大化问题,可以通过将目标函数乘以-1来转化为最小化问题。

2. 引入松弛变量:对于每个不等式约束条件,引入一个松弛变量将其转化为等式约束条件。

3. 引入非负变量:对于每个决策变量,引入一个非负变量。

四、线性规划求解方法线性规划问题可以使用多种方法求解,常见的方法包括:1. 图形法:适用于二维线性规划问题,通过绘制约束条件的直线和目标函数的等高线,找到最优解的图形位置。

2. 单纯形法:适用于多维线性规划问题,通过迭代计算,不断改变基变量和非基变量的取值,直到找到最优解。

3. 对偶法:通过构建原始问题和对偶问题之间的对应关系,可以通过求解对偶问题来得到原始问题的最优解。

4. 整数规划法:适用于决策变量需要取整数值的线性规划问题,通过将问题转化为整数规划问题来求解。

五、应用案例线性规划在实际应用中有广泛的应用,以下是一个简单的应用案例:假设一个农场有100亩土地,种植小麦和玉米两种作物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1979年苏联哈奇扬(khachian)提出椭球法 计算量O(n6L2) 引起轰动,但不实用 ③ 1984年,印度科学家karmarkar(在美国贝尔实验室工作) 提出算法:计算量O(n3.5L2) 平均计算量统计: 单纯形算法O(n) karmarkar算法O(lgn)
§2 Karmrkar算法思路(1)
1.出发点:与单纯形法不同,不沿边走,而从内部寻优。 1995年Frisch曾构造函数为:
n 1 T min z C X log x j rk j 1
s.t AX=b 当xj→0,z→∞,而永不靠边走。但存在问题,收效慢 (中间点寻优方法属梯度法)
§2 椭球法思路 (1)
1.变换问题提法:
原问题 : min CT X AX b X 0 对偶问题 max Y T b Y T A CT Y 0 CT X Y T b
§2 椭球法思路 (2)
于是知,若有最优解,则构造的下述复合不等式必成立:
第十三讲 线性规划新算法:椭球法 及karmarkar算法
§1 新算法产生的背景 §2 椭球法思路 §3 Karmrkar算法思路
§1 新算法产生的背景 (1)
1.LP与单纯形——单纯形的黄金时代(二十世纪七十年 代前) P LP模型: x2 Min z =CTX s.t AX≥b X≥0 x1 单纯形算法把连续问题化离散问题 从一个基础可行点,沿边走到另一个更好可行点 单纯形算法为LP推广起到巨大推动作用 单纯形算法统治着LP,几乎LP等同于单纯形算法
T n j 1
C X log( ) xj j 1
n
T
§2 Karmrkar算法思路(3)
使变换中:f ( x k ) f ( x 0 ) k
②从Xk点找下一点Xk+1点的关键是投影变换。记:
x Ax b
P x x 0
P x P
xn 1
(a
j 1
n
1 xj
j
a
x1
) 1
B (i=1,2,…,n)
§2 Karmrkar算法思路(2)
2.Karmarkar解决2个大问题。 ①定义目标势函数,按几何级数收敛,(属P算法) 变换原规划的最优解为0,使之第k次迭代值为: 1 C T X k ( )k C T X 0 f 构造势函数为:
f ( x) f ( x,c) n log C X log x j
设a=(a1,a2,……an)T 是P中任一点(Karmarka算法中是 取某个可行点),设法把P+投影到n+1维空间的n维单纯 形去,且使a落到形心。
§2 Karmrkar算法思路(4)
对于任意X点,投到n维单纯形后的坐标为:
xi
(
j 1
n
xi ai xj aj
xn+1 A
) 1
a

形心 xn C
§1 新算法产生的背景 (3)
1972年,Klee构造1个反例,证明出现了指数算法
max s.t
xn
x1 1 x j 1 x j 1-x j 1
( j 2, , n )
当起始点取为x1时,将走遍所有顶点(2n个) 人们开始寻找LP的P算法,2条路:
改造单纯形方法(不成功) 寻找新算法
A X b X 0
ˆ X b 为 AX b 并试图求解。然后 ˆ ˆ ~~ ~ 2.变换上述不等式 A
构造一个大的球体,使其必包含不等式可行解(若存在的话) 对球心判断是否为可行解,若是,结束;否则,切割球 体,(切去肯定不包含可行解部分)直至找到可行解, 或证 明无可行解。
§1 新算法产生的背景 (2)
1972年前未遇到任何问题,人们也不想寻找其它方法 2.单纯形法遇到新挑战 ① 二十世纪七十年代,发现单纯形算法在理论上不是好 算法。 (i)算法分类: P(多项式)算法:计算量随时规模增大呈多项式增长 (幂 函数),例n2 NP(指数)算法:计算量呈指数增长,例2n 显然,P算法是好算法(这里指算法中的最坏情况) (ii)有人问LP的单纯形算法属何算法? 理论上一直未证明出来
相关文档
最新文档