湍流调研报告——高等流体力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等流体力学
湍流调研报告
学生姓名:**********
学号:**********
专业班级:**********
2015年 12月1日
前言
自1839年G.汉根在实验室中首次观察到由层流向湍流的转变现象以来,对湍流的研究已有近两百年历史,但由于湍流流动的复杂性,至今仍存在一些基本问题亟待解决。但从检索有关湍流文章过程中发现,绝大多数文章均是介绍有关湍流的数值模拟问题,鲜有文章报道关于湍流理论的基础研究。一方面的原因是由于湍流理论研究其固有的困难性,我想还有另一方面的原因便是当今学术界乃至整个社会风气的浮躁。物欲横流金钱至上的社会风气下,Paper至上的学术氛围下,基础学科的发展及基础理论的研究深受其害。基础研究学者得不到应有的精神上、物质上的尊重,青年科学家为了将来的发展避开基础学科,中年科学家为了避免家庭经济上的负担放弃理论研究,当今只有部分老一辈的科学家坚持着自己的原则和理想,我想这也是他们为什么仍是我国科学技术发展中流砥柱的原因吧。纵然如今之风气已被众多学者所诟病,但已根深蒂固,不可能将之迅速扭转,当下应从政策上给予基础研究支持和鼓励,予现行之风以纠正,方可促我民族之复兴。在前任上海交通大学校长谢绳武先生给杨本洛先生《湍流及理论流体力学的理性重构》[1]一书的序中以及施红辉先生《湍流初级教程》[2]的前言中均提到切实支持原创性基础研究的重要性。
本文首先查阅文献了解了湍流的定义,以及人们目前对湍流的认识;然后通过调研梳理了湍流理论的发展过程;最后,就湍流的数值模拟极其未来的发展方向做了简要介绍。
一、湍流的定义
什么是湍流?查阅相关书籍、论著,关于湍流的论述相当多的部分是从1883年Reynolds的圆管内流动实验引出的,通过实验观察,给出了湍流的描述性定义:湍流是复杂的、无规则的、随机的不定常运动。随后详细说明了湍流的一些主要特征,包括其扩散性、耗散性、大雷诺数、记忆性、间歇性等等,但对湍流严格意义的科学定义没有叙述,我想这也是湍流能成为跨世纪难题的一个反映吧。从各论著的叙述来看,随着湍流理论的发展,湍流的定义是不断修正和补充的,19世纪初,湍流被认为是完全不规则的随机运动,Reynolds称之为“波动”[3],首创统计平均法描述湍流运动;1937年,Taylor 和von Karman则认为湍流是一种不规则运动,于流体流过固壁或相邻不同速度流体层相互流过时产生;Hinze认为湍流除了不规则运动外,其各个量在空间、时间上具有随机性;我国著名科学家周培源先生则主张湍流为一种不规则的涡旋运动;自20世纪70年代开始,很多学者又指出湍流不是完全的随机运动,其存在一种可以被检测和显示的拟序结构。由清华大学出版社出版,林建忠等人编著的《流体力学》[4]一书中提到,目前大多数学者的观点是:湍流场有各种大小和涡量不同的漩涡叠加而成,其中最大涡尺度与流体环境密切相关,最小涡尺度则由粘性确定;流体在运动过程中,涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动与拟序运动并存。
值得一提的是,杨本洛先生所著的《湍流及理论流体力学的理性重构》一书中从形式逻辑考虑,对湍流的本质,包括其物理本质、物理机制、形式特征做了论述,并提出一切宏观物质总是粒子的(宏观力学中基本假设之一是连续介质假设),认为流体是大数粒子的集合,湍流研究困难的本质在于基于微分方程所表现的连续宏观表象与宏观流体的粒子本质之间存在的根本矛盾,著作中含有大量的逻辑讨论及哲学层次的思考。二、湍流理论发展简史
1839年,G.汉根在实验中首次观察到流动由层流到湍流的转变,这便揭开了湍流这一科学难题的第一幕。在其后百余年的理论发展中Reynolds、Prandtl、von Karman、Taylor、Kolmogorov、Landau、Heisenberg、Onsager、Chandrasekhar、Hopf、周培源、李政道、林家翘、谈镐生等如雷贯耳的大师们纷纷登上这一广阔的舞台,在湍流的金色大厅里演
绎他们的妙想奇思,上演了一场科学史上的神话。
1883年,Reynolds在圆管水流实验中找出了层流过渡到湍流的条件,即正确的从实验归纳出一个判别湍流和层流的无量纲特征数——雷诺数;1886年雷诺把瞬时风速分解为平均风速和叠加在上面的湍流脉动速度两部分,提出了Reynolds平均法和湍流粘性力(雷诺应力)的概念;1894年,Reynolds从Navier-Stokes方程出发得到了Reynolds方程。Boussinesp,湍流理论的另一位先驱,他与Reynolds的观点不同,认为湍流是一群杂乱无章的涡团运动的表现,并首先提出了涡旋粘性的概念。
1915年,Taylor提出了研究大气湍流微结构的统计理论,提出涡旋强度在湍流交换过程中在一定距离内保持不变。
1920年,数值天气预报的创始人Richardson研究了大气温度分布对湍流的影响。两年后他又发现了湍动能级串过程:大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。关于级串理论还流传着一首诗:
大涡用动能哺育小涡,小涡照此把儿女养活。
能量沿代代漩涡传递,但终于耗散在粘滞里。
1925年,Prandtl在这基础上提出了混合长度的概念,得出边界层内风速随高度变化的规律:在对数坐标中呈线性增长。在大气边界层中,此结果被许多实验所证实。
1927年,Dryden和Kuethe研制成功了世界上第一台有电子管补偿线路的热线风速仪,为湍流实验研究提供了有效的测量手段。
1930年,von Karman提出相似性假定理论[5],解决特征长度与时均流速场间的关系:①除了靠近壁面区域外,湍流机理与液体的粘滞性无关;②脉动流速场中各点附近的局部情况在统计上是彼此相似的,仅长度比尺和时间比尺不同。
1932年,Taylor提出涡量转移理论。Taylor认为,由于压强的脉动必然产生局部压差,在局部压差的影响下在湍流交换过程中动量很难保持不变,而涡旋强度可能保持不变。虽然这一假定基于二元紊流提出,但Taylor认为,假定涡旋强度不变要比假定动量不变要合理。