碱裂解法原理

合集下载

碱裂解发制备质粒DNA原理

碱裂解发制备质粒DNA原理

碱裂解发制备质粒DNA原理碱裂解发制备质粒DNA原理试验原理:碱裂解法是较常用的提取的方法。

其优点是收获率高,适于多数的菌株,所得产物经纯化后可满足多数的DNA重组操作。

十二烷基磺酸钠进行质粒的小量制备。

十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性(NaOH 对细胞的裂解作用强于SDS)。

用SDS处理细菌后,会导致细菌细胞破裂,释放出质粒DNA和染色体DNA,两种DNA在强碱环境都会变性。

由于质粒和主染色体的拓扑结构不同,变性时前者虽然两条链分离,却仍然缠绕在一起不分开;但后者完全变性分甚至出现断裂,因此,当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值恢复较低的近中性水平时,质粒的两条小分子单链可迅速复性恢复双链结构,但是主染色体DNA则难以复性。

在离心时,大部分主染色体与细胞碎片,杂质等缠绕一起被沉淀,而可溶性的质粒DNA留在上清夜中。

再由异丙醇沉淀、乙醇洗涤,可得到纯化的质粒DNA。

碱裂解法提取的质粒DNA可直接用于酶切、pcr扩增、银染序列分析等。

各试剂的作用:1、溶液I:pH8.0 GET缓冲液(50mmol葡萄糖,10mmol/LEDTA,25mmol/L Tris-HCl);溶液I可成批配制,在10 lbf/in2(6.895x104Pa)高压下蒸气灭菌15min,贮存于4℃。

葡萄糖的作用是使悬浮后的大肠杆菌不会很快沉积到管子的底部,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。

EDTA 是Ca2+和Mg2+等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉。

从而起到抑制DNase对DNA的降解和抑制微生物生长的作用。

2、溶液Ⅱ:0.2mol/LNaOH(内含1%的SDS),这个用的时候需现配。

要新配置溶液Ⅱ是为了避免NaOH接触空气中的CO2而减弱了碱性。

NaOH是最佳溶解细胞的试剂。

SDS-碱裂解法原理

SDS-碱裂解法原理

碱裂解法质粒提取的原理碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。

下面是该法的提取原理:碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。

溶液I的作用任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。

那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

所以说溶液I中葡萄糖是可缺的。

那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。

在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。

如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。

如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。

有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

溶液II的作用这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

质粒DNA的提取-碱裂解法实验原理及步骤

质粒DNA的提取-碱裂解法实验原理及步骤

实验二质粒DNA的提取-碱裂解法一、实验原理细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

一般分离质粒DNA的方法都包括3个步骤:①培养细菌,使质粒DNA大量扩增;②收集和裂解细菌;③分离和纯化质粒DNA。

分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。

在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。

本实验介绍碱裂解法提取质粒DNA。

碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。

在pH值介于12.0-12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。

当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,因为共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA 的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们相互缠绕形成不溶性网状结构,而复性的质粒DNA恢复原来构型,保持可溶性状态。

通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去,最后用酚氯仿抽提纯化上清液中的质粒DNA。

二、仪器及试剂1.仪器及耗材:37℃恒温摇床、冷冻离心机、台式离心机、微量移液器、50 ml离心管、1.5 ml离心管管、枪头、各种规格的量筒、接种环、试剂瓶、100 l或者250 ml三角瓶、玻棒等。

2.试剂及配制:LB培养液的配制:酵母浸提物 5.0 g;胰蛋白胨 10.0 g;NaCl 10.0 g;依次称量后加入800 ml去离子水后搅拌至完全溶解,用5 mol/L NaOH (约0.2 ml)调节培养液的pH值至7.0。

实验一-碱裂解法提取质粒DNA

实验一-碱裂解法提取质粒DNA

实验一、碱裂解法提取质粒DNA及检测一、实验目的与原理简介实验背景:质粒DNA的提取是基因工程操作中常用的基本技术。

质粒作为载体应具备下列四个特点:①有足够的容纳目的基因的幅度,并且对于携带的目的基因能够借助载体的复制和调控系统得到忠实的复制与增殖。

②在非必要的DNA克隆区有多种限制性核酸内切酶的单一识别位点,易于基因片段与载体的连接、重组与筛选。

③与宿主细胞有相同一个或多个遗传表型(如抗药性、营养缺陷型或显色表型反应等)。

④拷贝数多,易于宿主细胞的DNA分开,便于分离提纯。

分离质粒DNA的方法包括三个基本步骤:培养细胞使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA.实验原理:碱裂解法质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的的.在强碱性pH时,染色体线性DNA的氢键断裂,双螺旋结构解开而变性。

质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,调节pH值至中性时,变性的质粒DNA又恢复到原来的构型,而染色体DNA不能复性纠缠形成网状结构,经过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一直沉淀下来而被除去。

实验目的:提取基因工程中运载基因的载体,掌握最常用的提取质粒DNA的方法。

二.实验试剂1,SolⅠ100ml: 1M Tris-HCL(pH8.0)2。

5ml,0.5M EDTA 2ml, DDW 91ml, 20%葡萄糖4。

5ml( 葡萄糖单独灭,灭完后加入Sol I中),高压灭菌,4°保存.2,SolⅡ100ml:(新鲜配制,常温使用)10% SDS 50ml, 2M NaOH 50ml.使用前将两种溶液混合。

3,SolⅢ 500ml:KAc 147g, HAc57。

5ml,加300mlDDW搅拌,定容至500ml。

高压灭菌,4°保存。

4,70%乙醇无菌水DDW5,苯酚/氯仿/异戊醇(25:24:1)氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。

碱裂解法提取质粒原理和注意事项

碱裂解法提取质粒原理和注意事项

碱裂解法提取质粒原理和注意事项碱裂解法是一种用于提取质粒的常用方法,通过在碱性条件下使细菌细胞裂解,进而释放出质粒。

碱裂解法的原理是利用质粒与细菌细胞核酸的不同碱溶解性,使质粒保留在溶液中,而细菌细胞核酸被沉淀下来。

本文将详细介绍碱裂解法的原理和注意事项。

碱裂解法的原理:1.细菌细胞的预处理:首先,将含有质粒的细菌菌落接种到LB(琼脂)培养基中,经过适当时长的培养,使细菌菌落扩大到较大体积。

2.收获细菌细胞:将培养基中的细菌细胞收获下来,一般通过离心方法将菌液沉淀。

3.细菌细胞裂解:将细菌细胞沉淀后,将其重悬到高浓度的碱溶液中,使细菌细胞在碱性条件下裂解。

4.分离核酸:碱条件下,质粒DNA和线粒体DNA往往会溶于溶液中,而细菌细胞的染色体DNA不溶于溶液中,并随着碱度增加逐渐沉淀。

通过快速离心,将细菌细胞染色体DNA沉淀,而质粒DNA留在上清液中。

5.提取质粒:将上清液取出,通过乙醇沉淀方法使质粒DNA沉淀下来,通过离心收获质粒,即可得到纯化后的质粒DNA。

注意事项:1.使用无菌操作:为保证实验的准确性和重复性,实验过程中必须严格遵守无菌操作的要求。

例如,使用无菌器皿和无菌操作工具,避免细菌污染。

2.注意细菌菌落的培养条件和时长:细菌菌落的培养条件和时长会对实验结果产生影响。

培养条件应符合细菌所需的培养基成分和培养温度,时长应确保细菌菌落予以充足的生长和扩大。

3.使用高浓度的碱溶液:为充分裂解细菌细胞,需要使用高浓度的碱溶液,通常为pH12的溶液。

4.快速离心:由于细菌细胞裂解后的溶液中可能含有许多细菌细胞碎片和核酸碎片,为避免这些碎片沉淀到上清液中,需要进行快速离心,在最短时间内将质粒DNA沉淀下来。

5.质粒的纯化:通过乙醇沉淀方法提取质粒时,需要仔细控制乙醇的用量和沉淀时间,以避免损失待提取的质粒DNA。

总结:碱裂解法是提取质粒DNA的常用方法之一,其原理是利用质粒DNA与细菌细胞染色体DNA在碱性条件下的不同溶解性,通过沉淀法分离出质粒DNA。

质粒提取的原理及步骤

质粒提取的原理及步骤

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

一、试剂准备1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。

1M Tris-HCl[t1] (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。

在10 lbf/in2高压灭菌15min ,贮存于4℃。

溶液Ⅰ50mM 葡萄糖/ 10mM EDTA / 25mM Tris-HCl,pH=8.0葡萄糖增稠,使悬浮后的大肠杆菌不会快速沉积到管子的底部;EDTA 抑制DNase的活性。

这一步溶液中还可以加入RNase,不受EDTA影响,并且可以在后续步骤中被除去2. 溶液Ⅱ:0.2N NaOH,1% SDS。

2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。

使用前临时配置[t2]。

这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。

用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。

如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。

很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。

碱裂解法的原理

碱裂解法的原理

碱裂解法的原理碱裂解法是一种常用的化学分析方法,其原理是利用碱性溶液对样品中的化合物进行裂解,使其原子或离子形成溶液中的离子,从而实现化学分析。

碱裂解法的原理是基于化学反应的规律,即碱性溶液可以与许多化合物发生反应,将其分解成单质或离子。

这种反应通常是由于碱性溶液中含有氢氧根离子(OH-),它们可以将水分子中的氢离子(H+)取代,形成氢氧根离子(HO-),这种离子在碱性溶液中的浓度非常高,因此能够与样品中的化合物发生反应,将其转化为离子或单质。

碱裂解法的使用范围非常广泛,可以用于分析许多不同类型的样品,如金属、非金属、有机物、无机物等等。

其原理可以通过以下几个方面来解释:1. 碳酸盐类的裂解:碱性溶液可以将碳酸盐类物质裂解为二氧化碳和水,这种反应可以用于分析含碳酸盐的样品,如矿石、土壤等。

2. 金属氢氧化物的裂解:碱性溶液可以将金属氢氧化物分解为金属离子和氢氧根离子,这种反应可以用于分析含金属氢氧化物的样品,如金属盐、金属氢氧化物等。

3. 酸性氧化物的裂解:碱性溶液可以将酸性氧化物分解为氧化物和水,这种反应可以用于分析含酸性氧化物的样品,如硫酸、硝酸等。

4. 有机物的裂解:碱性溶液可以将有机物分解为离子或气体,这种反应可以用于分析含有机物的样品,如食品、药品等。

在进行碱裂解法分析时,需要选择合适的碱性溶液,并控制反应的温度、时间等参数,以确保反应的有效性和准确性。

此外,还需要对反应产物进行适当的处理和分离,以便进行后续的定量分析。

碱裂解法是一种常用的化学分析方法,其原理是利用碱性溶液对样品中的化合物进行裂解,将其分解为离子或单质,从而实现化学分析。

在进行分析时,需要选择合适的碱性溶液,并控制反应参数,以确保准确性和有效性。

碱裂解法原理及步骤总结

碱裂解法原理及步骤总结

碱裂解法原理及步骤总结碱裂解法是一种用碱性溶液将有机化合物切断成低分子量的碱式盐和碱相应的酸的方法。

主要适用于具有羧基、酰基、酮基或亚胺基等反应活性基团的有机化合物。

下面将对碱裂解法的原理及步骤做详细总结。

一、原理:碱裂解法通过与碱溶液反应将有机化合物的化学键切断,并生成碱式盐和碱相应的酸。

当有机化合物中存在可被碱性溶液中的碱捕获的反应活性基团时,碱裂解反应往往会发生。

碱裂解反应原理示例:RCOOH+NaOH→RCOONa+H2O二、步骤:1.准备实验物质:将待反应的有机化合物准备好,以及所需的碱性溶液、溶剂等。

2.溶解有机化合物:将有机化合物溶解于适合的溶剂中,以便与碱性溶液充分反应。

3.加入碱性溶液:将溶解好的有机化合物溶液缓慢地滴加到已经准备好的碱性溶液中,同时进行搅拌。

4.调节反应条件:根据具体的化合物和反应条件要求,可以调节反应的温度、时间、pH等参数。

5.反应完成后处理:反应结束后,可以采取不同的方法进行处理,如中和、等温或冷却结晶、萃取等操作。

6.产物分离与收集:根据需求,可将产物进行分离和收集,如过滤、蒸馏、提取等操作。

7.产物液相分析:对分离和收集的产物进行液相分析,可采用纸层析、薄层色谱等方法进行验证和鉴定。

8.产物固相分析:对于产物为固体的情况,可采用质谱、红外光谱等方法进行分析。

9.结果记录与总结:将实验结果进行记录,并进行总结和分析。

10.实验后处理:对实验设备进行清洗和消毒,将废弃物进行妥善处理。

总结:碱裂解法是通过碱性溶液将有机化合物的化学键切断,生成碱式盐和碱相应的酸的方法。

其原理是有机化合物中存在的反应活性基团与碱性溶液反应,从而发生裂解反应。

具体的步骤包括溶解有机化合物、加入碱性溶液、调节反应条件、处理反应产物、分离和收集产物、分析产物等。

碱裂解法在有机合成中具有重要的意义,常用于合成具有特定功能的有机化合物。

碱裂解法提取质粒实验报告

碱裂解法提取质粒实验报告

碱裂解法提取质粒实验报告碱裂解法提取质粒实验报告引言:质粒提取是分子生物学研究中常用的技术手段之一,它可以将目标质粒从细胞中分离出来,为后续的基因克隆、基因测序等实验提供了重要的前提条件。

本实验旨在通过碱裂解法提取质粒,探究其原理及操作步骤,并评估提取质粒的纯度和浓度。

一、实验原理碱裂解法是一种常用的质粒提取方法。

其原理是通过高浓度的碱溶液和高温的条件,使细胞膜破裂,蛋白质变性,DNA解旋,从而将质粒分离出来。

碱裂解法的主要步骤包括细胞收获、细胞溶解、蛋白质沉淀、DNA沉淀、洗涤和溶解。

二、实验材料与方法2.1 实验材料(1)大肠杆菌E.coli菌株(2)LB培养基(3)质粒DNA提取试剂盒(4)离心管、显微管、PCR管等实验器材2.2 实验方法(1)培养大肠杆菌E.coli菌株至对数生长期。

(2)收获细胞,通过离心将菌体沉淀。

(3)将菌体重悬于碱溶液中,轻轻混匀后在冰上静置一定时间。

(4)加入中和溶液,混匀后离心。

(5)将上清液转移至新离心管中,加入异丙醇,混匀后离心。

(6)将异丙醇上清液转移至新离心管中,加入洗涤缓冲液,混匀后离心。

(7)将上清液转移至新离心管中,加入TE溶液溶解。

(8)测定质粒DNA的浓度和纯度。

三、实验结果与分析通过实验操作,成功提取到质粒DNA。

测定质粒DNA的浓度和纯度,结果显示浓度为X μg/μl,纯度(A260/A280)为X。

质粒DNA的浓度和纯度是评估提取质粒质量的重要指标,其高低直接影响后续实验的结果。

四、实验讨论本实验采用碱裂解法提取质粒,该方法操作简单、成本低廉,适用于小规模提取。

但是,碱裂解法提取的质粒DNA可能存在一定的污染物,如蛋白质、RNA 等。

此外,碱裂解法对于某些特殊的质粒可能效果不佳,需要根据实际情况选择合适的提取方法。

五、实验总结通过本实验,我们了解了碱裂解法提取质粒的原理和操作步骤,并成功提取到质粒DNA。

质粒DNA的浓度和纯度评估结果表明提取质粒的质量较好。

碱裂解法抽提大肠杆菌质粒

碱裂解法抽提大肠杆菌质粒

移液器及吸头 漩涡混合器
03
实验步骤
菌体培养
菌体培养是碱裂解法抽提大肠杆菌质 粒的第一步,需要将大肠杆菌接种在 适量的培养基中,在适宜的温度下进 行培养,使菌体生长至对数生长期。
培养过程中,需要控制温度、pH和培 养时间,以确保菌体生长良好且无杂 菌污染。
菌体收集
当菌体生长至对数生长期后,需要将 菌体收集起来,以便进行后续的实验 步骤。
碱裂解法抽提大肠杆 菌质粒
目 录
• 实验原理 • 实验材料 • 实验步骤 • 结果与分析 • 结论与讨论
01
实验原理
碱裂解法介绍
碱裂解法是一种常用的质粒抽提 方法,通过改变细胞壁和细胞膜 的性质,使质粒DNA从染色体
DNA中分离出来。
在高pH值条件下,细胞膜和染 色体DNA的双螺旋结构被破坏,
聚丙烯酰胺凝胶电泳
对于较小片段的质粒,可采用聚丙烯 酰胺凝胶电泳进行检测,该方法分辨 率更高。
质粒结构与功能分析
01
质粒电泳图谱分析
通过比较标准质粒和提取质粒的 电泳图谱,分析提取质粒的分子 量大小及可能缺失的片段。
02
限制性内切酶分析
03
基因测序验证
利用限制性内切酶对质粒进行酶 切,通过电泳检测酶切产物,判 断质粒的结构。
形成不可逆的变性,而质粒 DNA则保持稳定。
通过离心分离,染色体DNA和 细胞膜等大分子物质被沉淀,而
质粒DNA则留在上清液中。
大肠杆菌质粒介绍
01
大肠杆菌质粒是一种小型环状DNA分子,可以自主 复制和遗传。
02
质粒携带特定的基因,赋予宿主细胞某些表型特征, 如抗生素抗性或代谢特性。
03
大肠杆菌质粒是基因工程中常用的载体,用于克隆 和表达目的基因。

基因工程实验

基因工程实验
打开紫外灯,可以看到橙红色核酸条带, 根据条带的粗细和荧光强度,可粗略估 计样品DNA的浓度。同时根据已知的分 子量的标准DNA--,通过线性DNA条带 的想对位置初步估计样品分子量
24
五、实验注意事项
1 用微波煮胶时,胶液的量不应超过三角瓶容量的 1/3,否则易溢出
2 煮好的胶应冷却至50℃左右时再倒,以免制胶板变 形,并减少漏胶的机会
加入等体积的氯仿, 12000rpm,离心5分钟,取上清
加入1/10体积的3MNaAc,加2倍体积的预冷的无水乙 醇,混匀。
置于-70℃冰箱约10min以上或者-20℃冰箱30min至 数个小时
11
12000rpm离心15分钟(4℃),倒掉酒精,离心几秒,
用移液枪尽可能除去酒精
用0.5ml70 %酒精洗DNA沉淀一次,离心2分钟,倒掉 酒精
3
当加入中性缓冲液调和时,变性的质粒 DNA又恢复到原来的构型,而染色体DNA 不能复性,它们之间交联形成不溶性网状 结构,并与细胞碎片、蛋白质、SDS等结 合沉淀下来。
通过离心沉淀,细胞碎片、染色体DNA 及大部分蛋白质等可被除去,而质粒DNA 及小分子量的RNA则留在上清液中。混杂 的RNA可用RNaseA消除。再用酚/氯仿 处理,可除残留蛋白质
真核生物的基因组DNA为双螺旋结构,在在碱性溶 液中,双链DNA氢键断裂,双螺旋结构遭破坏而发生 变形,而基因组DNA分子量相对较大,在碱性PH条 件下其线性的大分子量基因组DNA不能复性,而形成 缠连的网状结构与蛋白质等共沉淀。
15
2 异丙醇和无水乙醇对核酸沉淀的优缺点 答:异丙醇和乙醇都能与与任意比例的水相混合。异 丙醇比较疏水,能很更好地沉淀核酸,乙醇可以去 盐,它比异丙醇更亲水,所以能去掉一些盐离子。 异丙醇沉淀量多,但杂质也多,增加了后续实 验风险。其优点为:所需容积小且速度快,适用于 浓度低,而体积大的DNA样品的沉淀。一般不需要 在低温条件下长时间放置。缺点为:易使盐类(如 NaCl、蔗糖)与DNA共沉淀;在DNA沉淀中异丙 醇难以挥发除去 乙醇是沉淀DNA乙醇是首选的有机溶剂,对盐 类沉淀少,DNA沉淀中所含的衡量乙醇易蒸发去处, 不影响以后的实验。在适当的盐浓度下,2倍样品 容积的95%乙醇可有效沉淀DNA。其缺点是总体积 较大。需在-20放置很长时间,30分钟-1小时,同 时DNA微溶于乙醇,使用乙醇沉淀会使部分DNA溶 解损失

碱裂解法提取dna

碱裂解法提取dna

碱裂解法提取dna
DNA 可以被定义为“类状分子”,因为它有单线螺旋结构并且具有机械强度。

DNA 是
一种只能在细胞内发现的未被加入任何外来结构的化学物质。

它在某些农业和工业应用中
被用做原料。

要提取DNA,就需要采用不同的方法。

其中一种方法是叫做碱裂解法。

碱裂解法是一种常见的提取 DNA 的方法。

这种技术的基本原理是,通过运用高浓度
的碱性物质来破坏细胞结构以释放DNA,破坏细胞成份里的膜结构,使其包含的 DNA 可以被释放出来。

通过使用碱性物质,原本嵌入在细胞中的DNA将得到释放,而不被特定的细
胞结构所结合。

首先,采用速溶碱来悬浮样本,比如人体细胞或细菌。

然后,加入抗性染料,以防止DNA和染料结合,赋予染料光学性质,这样便于后续分拣。

接着,加入高浓度的碱性物质
进行破坏膜,使DNA可以释放出来。

碱性物质会将DNA从其原始嵌入的细胞中抽出,形成
一液状溶液。

最后,使用冷冻凝固来将 DNA 陆续从液体中物理抽提出来,并确认 DNA 的
几何结构、纯度和其他特性以完成 DNA 的提取。

碱裂解法被广泛应用到细胞和细菌的 DNA 提取,因为它是一种高效、可靠、经济、
安全可操作性强的 DNA 提取技术。

然而,由于有时碱性物质会与 DNA 本身发生氢键结合,可能会使 DNA 的活性受到影响,因此必须引起重视。

另外,由于 DNA 结合的流体的物理
性质和碱性物质的性质都有影响,因此必须要进行精确测试才能得到比较精确的结果。

碱裂解法提取质粒DNA

碱裂解法提取质粒DNA

碱裂解法提取质粒DNA细菌质粒是一类双链、闭环的DNA,大小范围从1kb~200kb以上不等。

存在于细胞之中,独立于细胞染色体之外的自主复制的遗传成分。

碱裂解法是一种应用最为广泛的制备质粒DNA的一种方法,它利用染色体DNA与质粒DNA 的变性与复性的差异来达到分离的目的。

其基本原理为:当菌体在NaOH和SDS溶液中(PH12.6)裂解时,染色体DNA的氢键断裂,双螺旋结构解开而变性,质粒DNA的氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补连不会完全打开,当加入KAc(PH4.8)中和后,质粒DNA分子能够迅速复性,成溶解状态,离心时留在上清中,蛋白质与染色体DNA难于复性而成絮状,离心时可与细胞碎片一起沉淀下来。

试剂:1.溶液I:50mmol/L 葡萄糖(使悬浮的大肠杆菌不会快速沉积到底部,其次调节渗透压)25 mmol/L Tris.HCl (PH8.0) (缓冲体系)10 mmol/L EDTA (PH8.0)(Ca离子、Mg离子等二价阳离子的螯合剂,抑制DNase活性)2.溶液II: 使用前临时配制0.2 mmol/L NaOH (溶解细胞)1% SDS (使细胞膜崩解)与此同时,提高溶液PH,使染色体DNA、蛋白质及质粒均变性。

3.溶液III:100mL5mol/LKAc 60mL (Na被K置换成十二烷基磺酸钾PDS,PDS结合蛋白质沉淀,同时牵连染色体发生沉淀)冰醋酸11.5 mL(中和NaOH,长时间的碱性条件会打断DNA,所以要中和。

基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了)ddH2O 28.5 mL注意:①NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

要新从浓NaOH稀释制备0.2M的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

质粒DNA的提取(碱裂解法)

质粒DNA的提取(碱裂解法)

质粒DNA的提取(碱裂解法)实验原理:碱裂解法提取质粒利用的是共价闭合环状质粒DNA与线状的染色体DNA片段在拓扑学上的差异来分离它们。

在pH 值介于12.0-12.5这个狭窄的范围内,线状的DNA双螺旋结构解开变性,在这样的条件下,共价闭环质粒DNA的氢键虽然断裂,但两条互补链彼此依然相互盘绕而紧密地结合在一起。

当加入pH4.8的醋酸钾高盐缓冲液使pH降低后,共价闭合环状的质粒DNA的两条互补链迅速而准确地复性,而线状的染色体DNA的两条互补链彼此已完全分开,不能迅速而准确地复性,它们缠绕形成网状结构。

通过离心,染色体DNA 与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,而质粒DNA却留在上清液中。

提取步骤:1.吸取1.5mL菌液于1.5mL离心管中,4℃下12000rpm离心2min,吸干上清液,使细菌沉淀尽可能干燥2.加入100μLSolutionⅠ,枪头充分打匀,使细胞重新悬浮。

此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率3.加入200μL新配制的SolutionⅡ,轻柔颠倒混匀(千万不要振荡),冰上放置至清亮(小于5min)。

这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

4.加入150μL solutionⅢ,颠倒混匀(温和振荡10秒),使溶液Ⅲ在粘稠的细菌裂解物中分散均匀冰浴10min,使杂质充分沉淀5.4℃下12000rpm离心15min,小心将上清转至新的1.5mL离心管中6.加入6μL 10μgl/μL的RaseA,混匀,37℃温浴30min。

7.等体积TriS饱和酚:氯仿:异戊醇(25:24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中8.等体积氯仿:异戊醇(24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中9.加入2.5倍体积的冰冻无水乙醇,冰浴0.5-1h,沉淀双链 DNA。

碱裂解法抽提质粒的原理

碱裂解法抽提质粒的原理

碱裂解法抽提质粒的原理SDS碱裂解法制备质粒DNA的原理:细菌悬浮液暴露于高pH的强阴离子洗涤剂中,会使细胞壁破裂,染色体DNA和蛋白质变性,相互缠绕成大型复合物,被十二烷基硫酸盐包盖,当用钾离子取代钠离子时,复合物会从溶液中有效沉淀下来,离心去除后,就可从上清液中回收质粒DNA。

1.试剂(1)溶液Ⅰ:Tris-HCL(pH8.0)25mmol/L,EDTA(pH8.0)10mmol/L,葡萄糖50mmol/L,溶菌酶(临用时加)5mg/ml(2)溶液Ⅱ(新鲜配制):NaOH 0.2mol/L,SDS 1﹪(W/V)(3)溶液Ⅲ(100ml):5mol/L乙酸钾60ml,冰乙酸11.5ml(pH4.8),水28.5ml(4)酚-氯仿-异戊醇(25:24:1)(5)无水乙醇和70﹪乙醇(6)无DNA酶的胰RNA酶(7)TE2.实验流程(1)挑取一些独立的转化菌落进行小规模培养,用无菌牙签或挑种环挑取单菌落于20ml 含有相应抗生素的LB液体培养基中,于37℃剧烈震摇下培养过夜。

(2)将1.2ml培养物倒入微量离心管中,于4℃以5000g离心5分钟(两次),将剩余的培养物贮存于4℃。

(3)吸取并弃去培养液,使细菌沉淀尽可能干燥。

(4)将细菌沉淀重悬于100μl溶液Ⅰ中,剧烈振荡。

注:溶菌酶促使大肠杆菌细胞变得脆弱而易于裂解。

溶菌酶对反应液的pH有很大的依赖关系,当其低于8.0时,细胞裂解的效果就大为逊色。

因此,溶液Ⅰ不仅使用了Tris-HCL缓冲体系,同时好加入了适量的葡萄糖而有利于pH的调节。

乙二胺四乙酸(EDTA)因其是二价金属离子(如Mg2+等)的螯合剂,故少量地存在便可抑制核酸酶的活性,从而保护质粒DNA免被降解。

(5)加200μl溶液Ⅱ,盖紧管口,快速颠倒离心管5次,以混合内容物。

确保离心管的整个表面均与溶液Ⅱ接触。

注意不要振荡。

将离心管放置于冰上5分钟。

注:SDS的作用在于使细胞裂解,以释放出质粒及染色体的DNA。

大肠杆菌质粒提取 碱裂解法

大肠杆菌质粒提取 碱裂解法

大肠杆菌质粒提取碱裂解法大肠杆菌质粒提取是一种用于从大肠杆菌中提取质粒的方法。

碱裂解法是其中一种常用的方法,该方法利用碱性条件下DNA的不稳定性,将细胞壁溶解,并使质粒DNA从细胞中释放出来。

本文将介绍碱裂解法的步骤、原理以及优缺点。

碱裂解法的步骤如下:1.大肠杆菌培养:首先从保存在琼脂板上的大肠杆菌菌落中挑取一株菌,接种到含有适量抗生素的LB培养基中,培养过夜,直到菌液呈现较浓的悬浮液。

2.收取大肠杆菌:将培养液离心,除去上清。

用冷凉的纯水冲洗沉淀两次,将菌沉淀重悬于50 mM Tris-HCl缓冲液中,pH 8.0。

3.制备碱性溶液:在50 mM Tris-HCl缓冲液中加入0.2 M NaOH 和1% SDS,混匀制成碱性溶液。

4.碱性裂解:将菌悬液与等体积的碱性溶液混匀,使菌细胞在碱性条件下裂解。

孵育数分钟至十几分钟,直至溶液变为粘稠状。

5.酸性中和:加入等体积的3 M醋酸,酸性中和碱性溶液。

此步骤中,质粒DNA会从溶液中析出沉淀。

6.离心:用高速离心将沉淀离心下来,除去上清。

7.溶解:用适量的纯水将沉淀溶解,可以通过轻轻摇动溶液使其充分溶解。

8.纯化:通过离心或其他纯化方法,如柱层析、琼脂糖凝胶电泳等技术,纯化目标质粒DNA。

碱裂解法的原理是利用碱性条件下DNA的不稳定性。

当细胞处于高pH环境中时,碱性条件会破坏大肠杆菌的外膜,使细胞壁失去完整性。

此时,细胞内的DNA易于释放出来,包括质粒DNA。

然后,通过酸性中和反应将质粒DNA沉淀下来。

最后,通过纯化步骤,可以得到高纯度的质粒DNA。

碱裂解法的优点是简单易行,不需要较昂贵的设备和试剂,并且可以在相对短的时间内提取到目标质粒DNA。

此外,这个方法适用于大多数质粒类型和质粒大小。

碱裂解法适用于小规模提取或初步提取,用于大规模提取时效率较低,不推荐使用。

然而,碱裂解法也存在一些缺点。

首先,该方法提取到的DNA含有RNA、蛋白质和其他污染物。

碱裂解法提取质粒原理

碱裂解法提取质粒原理

碱裂解法提取质粒原理
PCR (聚合酶链反应,polymerase chain reaction) 是一种可以在体外放大特定DNA
片段的技术,也称为扩增(amplification)技术。

PCR法可以有效地检测和扩增DNA片段。

该方法被用来在受检实体中提取、检测、识别和检测DNA多样性。

质粒可以通过PCR线性化来提取,也就是说,可以使用多个特异性引物(特异性对特
定片段的DNA的结合)及特定的片段的DNA作为模板,以获得一条目标片段(目标片段)。

碱裂解特定质粒原理是利用酵素将核酸中几个碱基分解,从而模拟碱基降解,如激酶
能够代表核酸序列几个碱基中的某一碱基。

碱裂解法检测质粒的方法通常用PCR技术来实现,这是因为扩增的方式允许在给定片段的碱基顺序上获得更高的灵敏度和特异性。

碱裂解能够确定质粒的结构,利用一种叫做“碱裂解”的方式,这种方式可以将一段DNA拆分成其他的片段,从而了解其结构,增强检测能力。

碱裂解技术包括酶具(如酶切酶),这些对特定碱基序列特异性,可以用来解析特定质粒,检测出质粒中特定载荷裂解
了的区域片段,以及分析质粒的尺寸。

通过PCR与碱裂解技术,可以高效提取质粒,检测其结构,从而改善生物体的检测以
及疾病的治疗。

此外,碱裂解技术还可以进一步改善基因密码的加密状态,以及鉴定新的
质粒结构。

碱裂解法原理及电泳后可能出现的dna构象

碱裂解法原理及电泳后可能出现的dna构象

碱裂解法原理及电泳后可能出现的dna构象1. 引言1.1 概述碱裂解法是一种常用的实验方法,在分子生物学和遗传学领域中被广泛应用。

通过在碱性条件下将DNA链分离为两条单链,这种方法能够帮助研究人员了解DNA的结构、功能以及与其他生物过程的关联。

1.2 文章结构本文主要介绍了碱裂解法原理及其应用中可能出现的DNA构象变化。

具体而言,文章包括以下几个部分:引言、碱裂解法原理、电泳前DNA处理方法、电泳后DNA构象分析方法以及结论。

1.3 目的本文的目的是探讨碱裂解法在DNA研究中的重要性,并深入了解其对DNA结构及构象变化方面研究所产生的影响。

同时,对于电泳技术前后的实验处理方法以及相关构象分析技术进行介绍和比较,旨在为科研工作者提供一些关于使用碱裂解法时如何进行样品预处理和数据分析方面的指导。

最后,通过总结文章内容并讨论存在问题和改进空间,展望未来在该领域进一步开展的研究方向。

2. 碱裂解法原理:2.1 碱性条件下DNA的裂解:在碱性条件下,DNA分子可以被裂解成单链。

这是因为DNA分子由两条互补的链组成,而这两条链之间通过氢键相互连接。

当处于高碱性环境中时,碱性溶液中的羟基离子(OH-)会与DNA磷酸根离子结合,形成羟基根离子(O-)。

这种环境中,O-与DNA磷酸根离子结合的反应速率大于O-与水分子结合,从而导致大量的O-附着到DNA上。

2.2 碱裂解过程中的碱基酸性转变:随着碳酸氢盐浓度的升高,溶液碱度也会增加。

这种提高溶液pH值的方法称为缓冲作用。

碳酸氢盐可以将氢离子接收并释放以维持所在环境的pH值稳定。

而在电泳实验中,我们通常使用特殊设计的缓冲溶液来控制pH值。

在碱裂解过程中,溶液中存在剧烈变化的碳酸氢盐浓度和pH值。

因此,DNA 分子中的碱基也会发生酸性转变,从而影响DNA的结构和相关特性。

碱裂解过程中,DNA中含有大量的酸碱标志物,例如负荷磷酸根离子、OH-、O-等。

2.3 DNA碱裂解机制及其应用:碱裂解是一种常用的实验方法,在生物学研究中被广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质粒抽提经典中的经典--从质粒抽提谈起
2007-4-10 22:22:32信息来源:来源网络
质粒抽提经典中的经典--从质粒抽提谈起
生物谷网站
复旦大学生化与分子生物学实验室教授撰写
碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。

可以我收研究生十几年了,几乎毫无例外的是我那些给人感觉什么都知道的优秀学生却对碱法质粒抽提的原理知之甚少。

追其原因,我想大概是因为《分子克隆》里面只讲实验操作步骤,而没有对原理进行详细的论述。

这是导致我的学生误入歧途的主要原因。

后来我发现其实是整个中国的相关领域的研究生水平都差不多,甚至有很多“老师”也是这个状态。

这就不得不让人感到悲哀了。

我想这恐怕和我们的文化有点关系。

中国人崇尚读书,“学而优则仕”的观念深入人心。

经常听到的是父母对他们的独苗说,你只要专心读好书就可以了。

所以这读书的定义就是将教课书上的东西记住,考试的时候能拿高分……这就是现代科学没有在中国萌发的根本原因。

如果中国文化在这一点上不发生变化,那么科学是不能在中国真正扎根的,它只能蜕化成新的“八股学”。

生命科学是实验科学,它讲究动手。

如果实验科学只要看看书就可以了,那我想问有那位神仙看看书就会骑自行车了?或者听听体育老师的讲解就会滑冰了?
可是光动手不思考,不就成了一个工匠?一个合格的生命科学研究者,需要在这两方面完善自己。

一个杰出的科学工作者,是一个熟知科学原理并善于应用的“艺术家”。

每个曾经用碱法抽提过质粒的同学,希望你看本文后能有所思考,让中国的未来有希望。

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tri s-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M醋酸钾/ 2 M 醋酸。

让我们先来看看溶液I的作用。

任何生物化学反应,首先要控制好溶液的p H,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。

那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

所以说溶液I中葡萄糖是可缺的。

那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,
配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。

在溶液I中加入高达10 mM的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。

如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA.如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。

有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

轮到溶液II了。

这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。

如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。

很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。

有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。

这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。

基因组DNA的断裂会带来麻烦,后面我再详细说明。

每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。

最容易产生的误解是,当SDS碰到酸性后发生的沉淀。

如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。

大量沉淀的出现,显然与SDS的加入有关系。

如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。

既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。

因此高浓度的盐导致了SDS的沉淀。

但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。

这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potas sium dodecylsulfate,PDS),而PDS是水不溶的,因此发生了沉淀。

如此看来,溶液III加入后
的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。

大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DN A也一起被共沉淀了。

这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。

基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。

所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。

很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。

Na OH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。

溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。

不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。

这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。

酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),应此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。

至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。

回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。

这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。

高浓度的盐会水合大量的水分子,因此D NA分子之间就容易形成氢键而发生沉淀。

如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。

得到的质粒样品一般
用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。

琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。

碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。

其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。

如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb的大肠杆菌基因组DNA的片断。

非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。

这里暂不深究。

想说的,终于说完了。

谢谢你的耐心。

留下一个思考题,为什么真核生物的基因组DNA不能用碱法抽提?。

相关文档
最新文档