人教版初一数学上册几何图形教案
人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例
1.教师将学生Байду номын сангаас成若干小组,每组选择一个立体图形进行研究,共同探讨图形的特征。
2.每个小组通过讨论、操作等方法,分析所选图形的性质,并制作PPT进行展示。
3.各小组分享研究成果,其他小组对其进行评价和提问,形成互动的学习氛围。
在小组合作环节中,我们注重培养学生的团队合作能力和沟通能力。教师将学生分成若干小组,每组选择一个立体图形进行研究。通过讨论、操作等方法,每个小组分析所选图形的性质,并制作PPT进行展示。在分享研究成果的过程中,其他小组对其进行评价和提问,形成互动的学习氛围。这样的教学策略能够激发学生的学习兴趣,提高他们的团队合作能力和沟通能力。
人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例
一、案例背景
本案例背景基于人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形。在教学过程中,我作为特级教师,深入研究教材,充分了解学生的认知水平和学习需求。本节课的主要内容是让学生初步认识立体图形和平面图形,培养学生对图形的空间想象能力和直观表达能力。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个立体图形进行研究,共同探讨图形的特征。
2.每个小组通过讨论、操作等方法,分析所选图形的性质,并制作PPT进行展示。
3.各小组分享研究成果,其他小组对其进行评价和提问,形成互动的学习氛围。
在学生小组讨论环节中,我们注重培养学生的团队合作能力和沟通能力。教师将学生分成若干小组,每组选择一个立体图形进行研究。通过讨论、操作等方法,每个小组分析所选图形的性质,并制作PPT进行展示。在分享研究成果的过程中,其他小组对其进行评价和提问,形成互动的学习氛围。这样的教学策略能够激发学生的学习兴趣,提高他们的团队合作能力和沟通能力。
人教版七年级上册数学第4章 几何图形初步 【教学设计】 认识几何图形
【当堂训练】
布置作业:教材P116练习.
当堂检测,及时反馈学习效果.
【知识网络】
提纲挈领,重点突出.
活动
四:
课堂
总结
反思
【教学反思】
①[授课流程反思]
②[讲授效果反思]
对常见几何体的特征的探究让学生感受不同几何体的特殊特征的同时将对几何体的感性认识升华为理性认识,更清晰、准确地理解所学知识.
处理方式:给学生充足的时间进行观察、交流、展示,在学生展示的基础上补充完善.并对几何体进行分析、总结.并给出答案.常见的几何体有:圆柱、圆锥、正方体、长方体、棱柱、棱锥、球等.
内容:引导学生分析圆柱、圆锥、正方体、长方体、棱柱、棱锥、球的特征.
2.根据几何体的特征进行分类
注意:在进行分类时要及时给学生强调分类的标准,让学生感受到分类标准不同,分类的结果也不一样.
3.棱柱及其特征
内容:认识棱柱的顶点、侧棱、侧面、底面,并思考以下问题:
(1)棱柱的侧棱、底面、侧面有何特点?
(2)长方体、正方体是棱柱吗?
(3)棱柱怎样分类?
处理方式:让学生在充分思考的基础上填写下表(教师课件展示表格).
学生活动:展示表格中的内容,并口述自己发现的规律:n棱柱面的个数为n+2,顶点个数为2n,棱的条数为3n.
总结:各部分都在同一平面内的几何图形,是平面图形.平面图形和立体图形是有联系的:立体图形的某些部分是平面图形,例如长方体的侧面是长方形.
知道几何体的特征是我们认识不同几何体、区别不同几何体的金钥匙,鼓励学生用自己的语言进行表述与交流,在交流中发现棱柱面的个数、顶点个数、棱的条数的规律.
活动
七年级上册数学《几何图形》精品教案范文5篇
七年级上册数学《几何图形》精品教案范文5篇教育是石,撞击生命的火花。
教育是灯,照亮夜行者踽踽独行的路。
教育是路,引领人类走向黎明。
因为有教育,一切才都那么美好,因为有教育,人类才有无穷的希望。
下面小编带大家了解一下七年级上册数学《几何图形》精品教案范文,希望可以帮助到大家。
七年级上册数学《几何图形》精品教案范文一1、内容结构分析《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.2、教学重点与难点:教学重点:⑴ 数学与我们的成长密切相关;⑵ 数学伴随着人类的进步与发展,人类离不开数学;⑶人人都能学会数学,激发学生学习数学的兴趣;⑷将实际问题转化为数学问题;⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.教学难点:⑴体会数学与我们的成长密切相关;⑵学生剪图拼图的具体操作;⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.3、教学目标:⑴知识与技能:直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.⑵过程与方法:通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.⑶情感、态度与价值观:在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.4、课时分配4.1几何图形 4课时4.2直线、射线、线段 3课时4.3角 2课时4.4课题学习 2课时小结 3课时单元测试与评讲 3课时七年级上册数学《几何图形》精品教案范文二教学目标:知识与技能:认识常见的几何图形,并能用自己的语言描述常见几何图形的特征过程与方法:1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念情感态度价值观:体验数学学习的乐趣,提高数学应用意识。
人教版七年级数学上册《几何图形》教案
4.1.1几何图形
一、教学目标
知识与技能通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.
过程与方法:(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.
(2)经历问题解决的过程,提高解决问题的能力.
情感态度与价值观:从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。
二、教学重点:识别简单几何体
三、教学难点:从具体事物中抽象出几何图形
四、教学过程
(一)自主探究
展示丰富多彩的图形世界.
你能再举出一些常见的图形吗?
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?
(二)尝试应用
3.下列几种图形:①长方形;②梯形;③正方体;④圆柱;
(三)补偿提高
(四)小结与作业
问题与情境活动设计
生组内小结,总结归纳(或者协助归纳)1.小结:。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
人教版数学七年级上册《 第四章 几何图形初步 》教学设计
人教版数学七年级上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是人教版数学七年级上册的重要内容,主要包括平面几何图形的性质和判定,以及几何图形的画法。
本章内容为学生提供了丰富的图形信息,培养学生的空间想象能力、逻辑思维能力和创新能力。
本章内容在日常生活中和后续学习中都有广泛的应用,对于学生形成完整的数学知识体系具有重要意义。
二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对数学有了一定的认识。
但七年级的学生刚刚接触几何图形,对几何图形的性质和判定可能感到抽象难懂。
因此,在教学过程中,教师需要关注学生的认知水平,采取适当的教学方法,激发学生的学习兴趣,帮助学生理解和掌握几何图形的初步知识。
三. 教学目标1.知识与技能:使学生了解平面几何图形的基本概念,掌握一些基本的几何性质和判定方法,学会用几何语言描述几何图形。
2.过程与方法:培养学生观察、分析、归纳和推理的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的创新意识和团队协作精神。
四. 教学重难点1.重点:平面几何图形的基本性质和判定方法。
2.难点:几何图形的性质和判定在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生理解和掌握几何图形的性质和判定。
2.互动教学法:教师与学生、学生与学生之间的讨论和交流,提高学生的参与度和积极性。
3.实践教学法:让学生动手操作,培养学生的实践能力和创新能力。
4.归纳教学法:引导学生通过观察、分析、归纳和推理,发现几何图形的性质和判定方法。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学活动和教学评价。
2.学生准备:预习教材,了解基本的几何图形概念。
3.教学资源:多媒体课件、几何模型、练习题等。
七. 教学过程1.导入(5分钟)教师通过生活实例或实际问题,引入几何图形的概念,激发学生的学习兴趣。
2024人教版数学七年级上册教案
2024人教版数学七年级上册教案第一章丰富的图形世界第1节几何图形一、教学目标1.了解几何图形的概念,能够识别生活中的几何图形。
2.培养学生的观察能力和空间想象能力。
3.激发学生对几何学的兴趣,提高学生的数学素养。
二、教学重难点重点:几何图形的基本概念和识别。
难点:空间想象能力的培养。
三、教学准备1.准备一些生活中常见的几何图形实物或图片。
2.准备教学课件。
四、教学过程1.导入新课师:同学们,我们日常生活中经常接触到各种各样的图形,你们能举例说明吗?生:例如三角形、正方形、圆形等。
师:很好,这些图形都属于几何图形,今天我们就来学习几何图形的基本概念。
2.讲解新课(1)几何图形的概念师:几何图形是数学中研究的一种基本对象,它包括点、线、面等元素。
请大家观察一下,我们教室里的物品,哪些是几何图形?生:黑板、窗户、课桌等。
(2)几何图形的分类师:几何图形可以分为平面图形和立体图形两大类。
平面图形包括三角形、四边形、圆等,立体图形包括圆柱、圆锥、球等。
请大家举例说明。
生:三角形、正方形、圆形是平面图形,圆柱、圆锥、球是立体图形。
(3)几何图形的性质师:几何图形具有一些基本性质,如三角形的三边关系、四边形的内角和等。
这些性质对于我们解决实际问题有很大的帮助。
3.实例分析师:下面我们来看一些实例,请大家分析这些实例中包含哪些几何图形。
(1)图片实例:展示一张包含多种几何图形的图片,如建筑、自然景观等。
(2)实物实例:展示一些生活中常见的几何图形实物,如球、立方体等。
4.课堂练习师:现在请大家来做一些练习,巩固我们刚刚学习的知识。
A.篮球B.课桌C.水杯A.正方形B.圆形C.球师:今天我们学习了几何图形的基本概念、分类和性质。
通过学习,我们知道了生活中的许多物品都可以用几何图形来表示。
希望大家能够在日常生活中多观察、多思考,发现更多的几何图形。
五、课后作业1.复习几何图形的基本概念、分类和性质。
2.完成课后练习题。
2022年人教版七年级上册数学第四章几何图形初步单元教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)
第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
人教版七年级数学上册《 第四章 几何图形初步 》教学设计
人教版七年级数学上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是初中数学人教版七年级上册的重要内容,主要包括平面图形的认识、线段的性质、角的概念、相交线和平行线等知识。
本章内容为学生提供了丰富的图形模型,有助于培养学生的空间想象能力和抽象思维能力。
通过本章的学习,学生能够掌握几何图形的基本概念和性质,为后续几何学习打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形有一定的了解。
但部分学生可能对几何图形的性质和概念理解不深,容易混淆。
因此,在教学过程中,教师需要关注学生的认知水平,善于引导学生在实践中发现规律,提升学生的几何素养。
三. 教学目标1.知识与技能:使学生掌握平面图形的基本概念和性质,学会用几何语言描述图形,提高空间想象能力。
2.过程与方法:培养学生通过观察、操作、思考、交流等方法解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队协作精神,使学生感受到数学与生活息息相关。
四. 教学重难点1.重点:平面图形的基本概念、性质和几何语言的表达。
2.难点:对几何图形的理解和运用,以及相交线和平行线的判断。
五. 教学方法1.情境教学法:通过生活实例和实物模型,引发学生的兴趣,提高学生的参与度。
2.启发式教学法:引导学生主动思考、发现问题、解决问题。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
4.反馈评价法:及时了解学生的学习情况,调整教学策略。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示图形。
2.实物模型:准备一些几何模型,如三角形、四边形等,方便学生直观理解。
3.练习题:准备适量的基础练习题和拓展题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入平面图形的概念,如教室的黑板、窗户等,引导学生关注身边的几何图形。
2.呈现(10分钟)展示课件,介绍平面图形的基本概念和性质,如线段、角、相交线和平行线等。
人教版七年级数学上册第四章几何图形初步教案
第四章几何图形初步4.1 几何图形4.1.1立体图形与平面图形第1课时认识几何图形01 教学目标1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.02 预习反馈阅读教材P114~116,完成下列内容.1.几何图形包括平面图形和立体图形.2.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.3.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.03 名校讲坛知识点1认识平面图形例1(教材P115“思考”)图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.解:答案见图中连线.【跟踪训练1】(《名校课堂》4.1.1第1课时习题)请写出图中的立体图形的名称.(1) (2) (3) (4)(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.知识点2认识平面图形例2(教材P116“思考”) 如图,下列各图中包含哪些简单平面图形?请再举出一些平面图形的例子.解:第①个图形包含长方形、五角星;第②个图形包含圆;第③个图形包含正方形、长方形、三角形、圆;第④个图形包含正方形、三角形;第⑤个图形包含长方形、正方形、三角形;第⑥个图形包含圆、长方形、正方形、梯形.举例:【跟踪训练2】(《名校课堂》4.1.1第1课时习题)下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.04 巩固训练1.下面几种几何图形中,属于平面图形的是(A)①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥2.下面的几何体中,属于棱柱的有(C)A.1个B.2个C.3个D.4个3.如图是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形第3题图第4题图4.如图所示,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是圆柱体,六棱柱.5.观察图中的立体图形,分别写出它们的名称.,球) ,圆锥) ,正方体) ,圆柱体) ,长方体)05 课堂小结1.知道常见的立体图形,平面图形.2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形01 教学目标1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.02 预习反馈阅读教材P117~118,思完成列内容.1.从三个方向看立体图形包括哪三种?解:从三个方向看立体图形:从正面看,从左面看,从上面看.2.什么是立体图形的展开图?解:将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.03 名校讲坛知识点1从不同方向观察立体图形例1(教材P117“探究”)如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?解:从正面看从左面看从上面看【跟踪训练1】(《名校课堂》 4.1.1第2课时习题)下列基本几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2立体图形的展开与折叠例2(教材P118“探究”)你还记得长方体和圆柱的展开图吗?下图是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.解:第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).【跟踪训练2】(《名校课堂》4.1.1第2课时习题)下列图形中,不可以作为一个正方体的展开图的是(C)A B C D04 巩固训练1.如图是书桌上放的一本书,则从上面看得到的平面图形是(A)A B C D2.在下面的四个几何体中,从左面和正面看得到的图形不相同的几何体是(B)A B C D3.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是(C)A B C D4.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中,和“值”字相对的字是(A)A.记B.观C.心D.间5.请分别指出与图中表面展开图相应的立体图形的名称.(1) (2) (3) (4)解:(1)三棱柱.(2)圆柱.(3)四棱锥.(4)圆锥.05 课堂小结1.知道常见立体图形从三个方向看得到的图形.2.学会简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会动手实践,与同学合作.4.不是所有立体图形都有平面展开图.4.1.2点、线、面、体01 教学目标1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面.2.了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.3.激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.02 预习反馈阅读教材P119~120,完成下列问题.1.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.体是由面组成,面与面相交成线,线与线相交成点.3.点没有大小之分,线没有粗细之分.03 名校讲坛知识点1点、线、面、体例1(《名校课堂》4.1.2习题)如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.【跟踪训练1】给出下列结论:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个面是平的,1个面是曲的;③球仅由1个面围成,这个面是曲的;④长方体由6个面围成,这6个面都是平的.其中正确的是(B)A.①②③B.②③④C.①③④D.①②④知识点2由平面图形旋转而成的立体图形例2(教材P120练习T2)如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.解:答案见图中连线.【跟踪训练2】下列图形绕着它的一边所在的直线旋转一周,能得到圆柱的是(B)A.三角形B.长方形C.五边形D.半圆04 巩固训练1.笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.2.如图的几何体有4个面,6条棱,4个顶点.3.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?解:球的表面、圆柱和圆锥的侧面都是曲面.其余的面都是平面.4.用第一行的平面图形绕轴旋转一周,便得到第二行中的某个几何体,用线连一连.解:如图.05 课堂小结1.多姿多彩的图形是由点、线、面、体组成.点是构成图形的基本元素.2.点无大小,线有直线和曲线,面有平面和曲面.3.体由面围成,面与面相交成线,线与线相交成点.4.点动成线,线动成面,面动成体.4.2 直线、射线、线段第1课时直线、射线、线段01 教学目标1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质.2.会用字母表示直线、射线、线段,会根据语言描述画出图形.掌握三者的联系和区别.3.培养学生的基本画图能力.02 预习反馈阅读教材P125~126,回忆直线、射线、线段的一些基本概念和基本知识,并认真总结下列问题,体会直线的公理.1.直线、射线、线段的联系与区别.图形表示方法端点个数延伸方向线段线段AB或线段a 两个不向任何一方延伸射线射线AB或射线a 一个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线公理:两点确定一条直线.【点拨】(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.03 名校讲坛例1(教材P126练习T2)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a,b,c;(4)线段AB,CD相交于点B.解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【跟踪训练】(《名校课堂》4.2第1课时习题)下列表示方法正确的是(B)A.①②B.②④C.③④D.①④04 巩固训练1.下列语句:①点a在直线l上;②直线的一半就是射线;③延长直线AB到C;④射线OA与射线AO是同一条射线. 其中正确的语句有(A)A.0句B.1句C.2句 D.3句2.如图给出的直线、射线、线段,根据各自的性质,能相交的是(D)A B C D3.下列事实可以用“经过两点有且只有一条直线”来说明的是(B)A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线4.线段有2个端点,射线有1个端点,直线没有端点.5.如图,图中共有6条线段,8条射线.6.平面上有三点A、B、C,①连接其中任意两点,共可得线段3条;②经过任意两点画直线,共可得到直线1条或3条.7.如图,已知平面上四点A、B、C、D.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.解:略05 课堂小结1.掌握直线、射线、线段的表示方法.2.理解直线、射线、线段的联系和区别.3.知道直线的性质.4.经过两点有一条直线,并且只有一条直线.第2课时比较线段的长短及线段的性质01 教学目标1.掌握线段比较的两种方法,会表示线段的和差.2.理解线段中点的意义及表示方法,理解两点的距离的意义.3.会运用“两点之间,线段最短”的性质解决生活中的实际问题.02 预习反馈阅读教材P126~129,完成下列内容.1.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.2.点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.3.两点的所有连线中,线段最短,简单说成:两点之间,线段最短.4.连接两点间的线段的长度,叫做这两点的距离.03 名校讲坛知识点1 线段的中点及等分点例1(《名校课堂》4.2第2课时习题)如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长;(2)若AC =30,BD =10,求AB 的长.解:(1)因为点D 是线段BC 的中点,所以CD =12BC. 因为AB =10,AC =6,所以BC =AB -AC =10-6=4.所以CD =12BC =2. (2)因为点D 是线段BC 的中点,所以BC =2BD.因为BD =10,所以BC =2×10=20.因为AB =AC +BC ,所以AB =30+20=50.【跟踪训练1】 如图,在直线上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长度.解:因为AB =4 cm ,BC =3 cm ,所以AC =AB +BC =7 cm.因为点O 是线段AC 的中点,所以OC =12AC =3.5 cm. 所以OB =OC -BC =3.5-3=0.5(cm).知识点2 线段的性质例2 如图,这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出,并说明你的理由.解:如图所示,连接AB.理由:两点的所有连线中,线段最短.【跟踪训练2】如图,平面上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC、BD的交点即为P点的位置,如图.04 巩固训练1.下列说法正确的是(D)A.连接两点的线段就叫做两点间的距离B.在所有连接两点的线中直线一定最短C.线段AB就是表示点A到点B的距离D.线段AB的长度是点A到点B的距离2.如图,下列关系式中与图不符合的式子是(C)A.AD-CD=AB+BC B.AC-BC=AD-BDC.AC-BC=AC+BD D.AD-AC=BD-BC3.为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则(B)A.AB<CD B.AB>CDC.AB=CD D.以上都有可能4.如图,从A到B有4条路径,最短的路径是③,理由是(D)A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间线段最短5.已知线段AB=6,若C为AB的中点,则AC=3.6.若线段AB=5 cm,BC=2 cm,且A,B,C三点在同一条直线上,则点C可能在AB上,也可能在AB的延长线上,则AC的长等于3__cm或7__cm.7.如图,已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a+b.解:图略.8.已知,如图,AB =16 cm ,C 是AB 上一点,且AC =10 cm ,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.解:因为D 是AC 的中点,AC =10 cm ,所以DC =12AC =5 cm. 又因为AB =16 cm ,所以BC =AB -AC =6 cm.因为E 是BC 的中点,所以CE =12BC =3 cm. 所以DE =DC +CE =8 cm.05 课堂小结线段⎩⎪⎨⎪⎧线段的大小比较⎩⎨⎧度量法叠合法线段的中点线段的性质:两点之间,线段最短4.3 角4.3.1 角01 教学目标1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.02 预习反馈阅读教材P132,知道角的定义、角的表示方法、周角、平角,完成下列内容.1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.(4)度、分、秒是角的基本度量单位:1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160)°,1′=60″,1″=(160)′,1°=3__600″.【点拨】度、分、秒是60进制的.03 名校讲坛知识点1角的定义和表示方法例1(《名校课堂》 4.3.1习题)如图,∠1,∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【跟踪训练1】如图,能用∠1,∠ACB ,∠C三种方法表示同一个角的是(C)A B C D知识点2角的度量例2(教材P134练习T2)(1)35°等于多少分?等于多少秒?(2)38°15′和38.15°相等吗?如不相等,哪一个大?解:(1)35°=35×60=2 100分=2 100×60=126 000秒.(2)38.15°=38.15×60=2 289分.38°15′=38×60+15=2 295分.所以38°15′>38.15°.【跟踪训练2】已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A)A.∠1=∠3 B.∠1=∠2C.∠1<∠2 D.∠2=∠304 巩固训练1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点D ;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A .1B .2 C.3 D .42.若∠A =20°20′,∠B =20.20°,∠C =20.5°,则下面的结论正确的是(D)A .∠A =∠B B.∠A =∠CC .∠C =∠B D.∠A ,∠B ,∠C 两两不等3.如图,能用一个字母表示的角有∠B ,用三个大写字母表示∠1为∠MCB ,∠2为∠AMC.第3题图第4题图4.如图,A ,O ,D 三点在一条直线上,写出图中小于平角的角:∠AOC ,∠AOE ,∠COE ,∠C OD ,∠EOD .5.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于135°.6.如图:(1)以B 为顶点的角有几个?把它们表示出来;(2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的锐角有几个?分别表示出来.解:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC.(2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC.(3)以D 为顶点,DC 为一边的锐角有1个,是∠CDE.7.如图,在∠AOB 的内部,从顶点O 引出1条射线,此图中共有几个角?如果引出2条?引出3条呢?依此规律,引出n 条可得到多少个角?解:从顶点O 引出1条射线,图中共有3个角;引出2条射线,图中共有6个角;引出3条射线,图中共有10个角;引出n 条射线,可得到(n +1)(n +2)2个角. 05 课堂小结角⎩⎪⎨⎪⎧角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算01 教学目标1.会用量角器度量角,并会比较两个角的大小.2.会根据图形判断角的和差倍分.3.记住角平分线的定义.02 预习反馈阅读教材P134~136,完成下列内容.1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把它们叠合在一起比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如:如图,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC . 03 名校讲坛知识点1 角的大小比较例1(教材补充例题)如图,点A ,O ,B 在一条直线上,OD 平分∠AOB ,回答下列问题:(1)试比较∠AOB 、∠AOD 、∠AOE 、∠AOC 的大小;(2)找出图中的三个等量关系.解:(1)因为点A ,O ,B 在一条直线上,所以∠AOB 是平角.因为OD 平分∠AOB ,所以∠AOD =12∠AOB =90°. 由图知∠AOC 是钝角、∠AOD 是直角、∠AOE 是锐角,所以∠AOB >∠AOC >∠AOD >∠AOE.(2)等量关系有:∠COE =∠EOD +∠COD ,∠AOB =2∠AOD =∠AOE +∠BOE ,∠DOB =∠COD +∠BOC.【点拨】 角的大小比较的方法:(1)如果已知角是锐角、直角、周角、平角、钝角,就可以直接由它们之间的关系比较大小;(2)可以通过量角器量角度来比较大小;(3)可以根据各角在同一图中的位置关系比较角的大小.【跟踪训练1】在∠AOB的内部任取一点C,作射线OC,则一定存在(A)A.∠AOB>∠AOC B.∠AOB<∠BOCC.∠BOC>∠AOC D.∠AOC>∠BOC知识点2角度的运算例2计算:(1)90°-36°12′15″(2)32°17′53″+42°42′7″(3)25°12′35″×5;(4)53°÷6.解:(1)90°-36°12′15″=53°47′45″.(2)32°17′53″+42°42′7″=74°59′60″=75°.(3)25°12′35″×5=125°60′175″=126°2′55″.(4)53°÷6=8°50′.【点拨】度、分、秒的运算方法:(1)在进行角度的加法运算时,先算秒,再算分,最后算度,满60″时,把60″化为1′,满60′时,把60′化为1°;(2)进行角度的减法时,不够减,借1°化为60′,借1′化为60″;(3)关于度、分、秒的乘法运算,把度、分、秒分别乘乘数,满60″时,把60″化为1′,满60′时,把60′化为1°;(4)关于度、分、秒的除法运算,把度的余数化成分或把分的余数化为秒后再进行除法运算.知识点3与角平分线有关的计算例3如图,OC是∠AOD的平分线,OE是∠DOB的平分线.(1)如果∠AOB=130°,那么∠COE是多少度?(2)在(1)的条件下,如果∠COD=20°,那么∠BOE是多少度?解:(1)因为OC 是∠AOD 的平分线,所以∠COD =12∠AOD. 因为OE 是∠BOD 的平分线,所以∠DOE =12∠BOD. 所以∠COD +∠DOE =12∠AOD +12∠BOD =12(∠AOD +∠BOD). 因为∠COD +∠DOE =∠COE ,∠AOD +∠BOD =∠AOB ,所以∠COE =12∠AOB. 因为∠AOB =130゚,所以∠COE =65°.(2)因为∠COE =65°,∠COD =20°,所以∠DOE =∠COE -∠COD =45°.又因为OE 平分∠DOB ,所以∠BOE =∠DOE =45°.【跟踪训练2】如图所示,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于135°.04 巩固训练1.射线OC 在∠AOB 内部,下列四个选项不能判定OC 是∠AOB 的平分线的是(C)A .∠AOB =2∠AOC B .∠AOC =12∠AOB C .∠AOC +∠BOC =∠AOB D .∠AOC =∠BOC2.如图,在横线上填上适当的角:(1)∠BOD =∠BOC +∠COD =∠AOD -∠AOB ;(2)∠AOB =∠AOC -∠COB =∠AOD -∠BOD ;(3)∠BOC =∠AOC -∠AOB =∠AOD -∠COD -∠AOB.第2题图第3题图3.如图,若OC 平分∠AOB ,∠AOB =60°,则∠1=30°.4.已知∠AOB =80°,∠AOC =40°,则∠BOC 的度数为120°或40°.5.计算:(1)15°37′+42°51′; (2)90°-68°17′50″;(3)5°26′×3; (4)178°53′÷5.解:(1)原式=58°28′.(2)原式=21°42′10″.(3)原式=16°18′.(4)原式=35°46′36″.6.如图,已知O 是直线CD 上的点,OA 平分∠BOC ,∠AOC =35°,求∠BOD 的度数.解:因为O 是直线CD 上的点,OA 平分∠BOC ,∠AOC =35°,所以∠BOC =2∠AOC =70°.所以∠BOD =180°-∠BOC =110°.05 课堂小结 角的大小比较和运算⎩⎪⎨⎪⎧角的大小比较⎩⎨⎧度量法叠合法角的运算角平分线4.3.3 余角和补角01 教学目标 1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等,同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.02 预习反馈阅读教材P137~138,完成下列内容.1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角(同角)的余角相等,等角(同角)的补角相等.4.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.(×)(3)如果一个角有补角,那么这个角一定是钝角.(×)(4)互补的两个角不可能相等.(×)(5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×)(7)如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.(×)(8)如果∠A=x°,∠B=(90-x)°,那么∠A与∠B互余.(√)03 名校讲坛知识点1余角、补角例1如图,点O在直线AB上,OD平分∠COA,OE平分∠COB.(1)∠COB+∠AOC=180°,∠EOD=90°;(2)图中互余的角有4对,互补的角有5对.【跟踪训练】1.若∠1+∠2=180°,∠2+∠3=180°,则∠1=∠3.理由是同角的补角相等.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°-x,余角为90°-x,所以3(90°-x)=180°-x,整理,得2x=90°,解得x=45°,即这个角的度数为45°.知识点2方位角例2如图1,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.图1 图2画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB的方向就是北偏东40°(图2),即客轮B所在的方向.请你在图2上画出表示货轮C和海岛D方向的射线.解:略.【跟踪训练】3.(《名校课堂》习题)如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA表示东北方向;(2)射线OB表示北偏西30°;(3)射线OC表示南偏西60°;(4)射线OD表示正南方向;(5)射线OE表示南偏东50°.04 巩固训练1.若∠1=40°,则∠1的余角的度数是(C)A.20°B.40°C.50°D.60°2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为(C)A.69°B.111°C.141°D.159°3.下列结论正确的个数为(C)①互余且相等的两个角是45°;②锐角的补角是钝角;③锐角没有余角,钝角没有补角;④两个钝角不可能互补.A.1 B.2 C.3 D.44.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°.(2)∠DOC=12∠BOC=35°,∠AOE=12∠AOC=25°.∠DOE与∠AOB互补.理由:∠DOE=∠DOC+∠COE=35°+25°=60°,∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.05 课堂小结1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角(同角)的余角相等;(2)等角(同角)的补角相等.。
新人教版七年级上册数学第4章几何图形初步全章教案
第四章几何图形初步屯脚中学:李治民4.1 几何图形§ 4.1.1 立体图形与平面图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程1.创设情境,导入新课.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获?5.作业设计课本第123页习题4.1第1、2题;第125页习题4.1第7、8题。
数学人教版2024版七年级初一上册 6.1 几何图形 教学教案03
第六章几何图形初步
6.1 几何图形
从古老简朴的青砖黛瓦到恢宏大气的现代建筑.
从四通八达的立交桥到街头巷尾的交通标志.
从传统的艺术剪纸到异域的城市建筑,今天我们就来探索几何图形的奥秘.
二、推进新课
知识点1 几何图形的定义
不同的物质具有不同的性质.
思考:几何的研究内容是什么?
物体的形状、大小和位置关系
思考:从这个纸盒中,我们可以看出哪些熟悉的图形?
归纳:
几何图形:我们把从形形色色的物体外形中抽象出来的各种图形叫做几何图形.
知识点2 立体图形与平面图形
观察下面这些几何图形有什么共同特点?
各部分都不在同一平面内.
归纳:
有些几何图形的各部分不都在同一平面内,它们是立体图形.
做一做把相应的实物与图形用线连接起来.
观察下面这些几何图形又有什么共同特点?
各部分都在同一平面内.
归纳:
有些几何图形的各部分都在同一平面内,它们是平面图形.
思考下面各图中包含哪些简单的平面图形?
长方形、圆、三角形、正方形……
思考立体图形和平面图形是同一类图形吗?它们之间有什么联系?
(1)立体图形与平面图形是两类不同的几何图形,但它们是互相联系的.
(2)立体图形中某些部分是平面图形,如正方体的每个面都是正方形.
三、随堂演练
1.观察下列图形,再写上相应名称.
四、课堂小结
有些几何图形的各部分不都在同一平面内,它们是立体图形.
有些几何图形的各部分都在同一平面内,它们是平面图形.。
人教版七年级数学上册《几何图形初步》全章教学案
第四章 几何图形初步(集体案)4.1 几何图形4.1.1 立体图形与平面图主备人: 复核:七年级数学备课组教学目标:1.初步了解立体图形和平面图形的概念.2.能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.教法:小组合作探究教学过程一、创设情境,导入新课.1.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)2.展示丰富多彩的图形世界(学观察课本114页图形)二、直观感知,识别图形1.对于各种各样的物体,数学中关注是它们的形状、大小和位置.2.展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.3.观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,长方体等图形.4.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形 ,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等. 有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.三、 实践探究.1. 引导学生观察帐篷,金字塔的图片,从面抽象出棱柱,棱锥.2.你能说说圆柱与棱柱,圆锥与棱锥的区别吗?3.你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?4.下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来(课本115页思考内容)四、课堂小结这节课你有什么收获?五、作业设计课本第121页习题4.1第1、2题;第125页习题4.1第7、8题。
六、教学反思:4.1.1 几何图形(二)(集体案)主备人:复核:七年级数学备课组教学目标1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.教学重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学方法:实验探究教学过程一、创设情景,引入新课1.请欣赏漫画并思考:为什么会出现争执?2. “横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?二、新课学习1.不同角度看直棱柱、圆柱、圆锥、球体.让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)2.猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.3. 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)4.(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)三、实践与探究1.课本第117页探究:上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?2.再试一试,画出它的三视图.3.怎样画得又快又准?4.用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?四、课堂练习1.课本p118练习1,2题。
七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件)
七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件)下面是收集的七年级上册数学《几何图形》教案共11篇(人教版七年级数学几何图形课件),供大家品鉴。
七年级上册数学《几何图形》教案共1第1课时认识立体图形与平面图形教学目标1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.教学过程一、情境导入观察实物及欣赏图片:我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.二、合作探究探究点一:立体图形【类型一】从实物图中抽象立体图形的认识例1 观察下列实物模型,其形状是圆柱体的是( )解析:圆柱的上下底面都是圆,所以正确的是D.方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.【类型二】立体图形的名称与分类例2 如图所示为8个立体图形.其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.方法总结:正确理解立体图形的定义是解题的关键.探究点二:平面图形的认识【类型一】平面图形的识别例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为( )A.5个B.4个C.3个D.2个解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选B.方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.【类型二】由平面图形组成的图形例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?解:(1)由5个图形组成;(2)由2个正方形和1个长方形组成;(3)由3个四边形组成.方法总结:解决这类问题的关键是正确区分图形的形状和名称.三、板书设计1.立体图形特征:几何图形的各部分不都在同一平面内.2.平面图形特征:几何图形的各部分都在同一平面内.教学反思本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.第2课时从不同的方向看立体图形和立体图形的展开图教学目标1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)教学过程一、情境导入《题西林壁》苏东坡横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?二、合作探究探究点一:从不同的方向观察立体图形【类型一】判断从不同的方向看到的图形例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )解析:从上面看依然可得到两个半圆的组合图形.故选D.方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.【类型二】画从不同的方向看到的图形例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.解:如图所示:方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.七年级上册数学《几何图形》教案共2整式人教版数学七年级上册教案1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.分析题目中的数量关系,用式子表示数量关系.(设计者:)一、创设情境明确目标青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.(1)2 h行驶的路程是多少?3 h呢?t h呢?(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?二、自主学习指向目标自学教材第54至55页,完成下列问题:1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:(1)列车2 h行驶的路程为__200__km.(2)列车3 h行驶的路程为__300__km.(3)列车t h行驶的路程为__100t__km.2.在含有字母的式子中如果出现乘号,通常将乘号写作__?__或__省略不写__.三、合作探究达成目标用字母表示数活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;(4)用式子表示数n的相反数.【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“?”或省略不写.如第(3)小题,就不能写成a2?h.【小组讨论】用字母表示数有什么意义?【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.【针对训练】见“学生用书”.用字母表示简单的数量关系活动二:阅读教科书例2中的四个问题,思考:顺水行驶时,船的速度=________+________;逆水行驶时,船的速度=________-________.解答过程见教材第55页例2的解答过程.【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的’乘号可以省略不写或用“?”表示;2.字母和数字相乘时,省略乘号,并把数字放到字母前;3.出现除式时,用分数的形式表示;4.结果含加减运算的,需要带单位时,式子要用“”;5.系数是带分数时,带分数要化成假分数.【针对训练】见“学生用书”.四、总结梳理内化目标1.用字母表示数的意义.2.用含有字母的式子表示数量关系的意义.3.用含有字母的式子表示数量关系时要注意的问题.实际问题D→用字母表示数D→用字母表示数量关系《2.1整式》同步练习含答案1. 其中长方形的长为a,宽为b.(1)阴影部分的面积是多少?(2)你能判断它是单项式或多项式吗?它的次数是多少?《2.1整式》课后练习含答案知识要点1.单项式:只含有数和字母的乘积的代数式叫做单项式.•单独的一个数或一个字母也是单项式.它的本质特征在于:(1)不含加减运算;(2)可以含乘、除、乘方运算,但分母中不能含有字母.2.单项式的次数、系数:一个单项式中,•所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.3.多项式:几个单项式的和叫做多项式.多项式中,•每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.4.整式:单项和多项式统称整式.七年级上册数学《几何图形》教案共3一、说教材分析1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
人教版七年级数学上册《 第四章 几何图形初步 》教案
人教版七年级数学上册《第四章几何图形初步》教案一. 教材分析《第四章几何图形初步》是人教版七年级数学上册的一章重要内容,主要介绍了平面几何图形的性质和分类,包括线段、角、三角形、四边形等基本几何图形的性质和判定。
本章内容是学生进一步学习几何的基础,对于培养学生的空间观念和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认知也有一定的了解。
但是,学生对于几何图形的性质和分类还不够清晰,对于证明和推理的能力还有待提高。
因此,在教学过程中,需要注重引导学生从直观到抽象的思维过程,培养学生的空间想象能力和逻辑推理能力。
三. 教学目标1.了解和掌握基本几何图形的性质和分类。
2.能够运用几何知识解决一些实际问题。
3.培养学生的空间观念和逻辑思维能力。
四. 教学重难点1.重点:基本几何图形的性质和分类。
2.难点:对于几何图形的证明和推理。
五. 教学方法1.情境教学法:通过实际问题,引导学生思考和探索,激发学生的学习兴趣。
2.直观教学法:通过实物模型和图形,帮助学生直观地理解几何图形的性质。
3.推理教学法:引导学生运用逻辑推理的方法,证明几何图形的性质。
六. 教学准备1.准备相关的实物模型和图形,如线段、角、三角形等。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量线段长度、计算角度等,引导学生思考和探索,激发学生的学习兴趣。
2.呈现(10分钟)教师通过实物模型和图形,向学生介绍线段、角、三角形等基本几何图形的性质。
引导学生通过观察和操作,发现和总结几何图形的性质。
3.操练(10分钟)教师给出一些练习题,让学生运用所学的几何知识进行解答。
教师可以通过多媒体教学设备,展示学生的解答过程,并进行讲解和指导。
4.巩固(10分钟)教师通过一些实际问题,让学生运用所学的几何知识进行解决。
教师可以引导学生进行小组讨论和交流,帮助学生巩固所学的知识。
数学人教版(2024版)七年级初一上册 6.3.3 余角和补角 教学教案 教学设计02
第六章几何图形初步6.3.3 余角和补角【课标要求】理解余角、补角的概念,探索并掌握同角(或等角)的余角相等、同角(或等角)的补角相等的性质.【教学目标】1.在具体情境中认识余角和补角,会利用互余、互补关系求出角的度数.2.探索并掌握余角和补角的性质.3.通过互余与互补关系的应用,进一步提高学生的抽象概括能力和逻辑推理能力.【教学重难点】重点:理解余角、补角的概念及性质.难点:运用余角、补角的相关知识解题.【教学策略】1.通过动态课件演示引出概念,充分调动学生的学习兴趣,把学生吸引到课堂上来,使数学知识充满新鲜感,增强学生对几何图形的敏感性.2.在具体的教学过程中坚持“数形结合”,从学生熟悉的知识着手,讲解余角和补角的性质时,先以代数的形式出现,然后在练习中再强化从图形上形象地理解性质,激发学生的学习兴趣,促成好的学习方法,养成良好的学习习惯.【教学过程】(一)情境导入如图所示,坝底是由石块堆积而成,要测出∠1的度数,你有什么简单的方法吗?要解决这问题,我们先来学习余角和补角.(二)新知初探探究一余角和补角的概念1.如图所示,将一张长方形纸片,沿一个角折叠后,折痕与长方形的边形成了4个角.思考1.∠1与∠2有什么数量关系?解:∠1+∠2=90°.2.∠3与∠4有什么数量关系?解:∠3+∠4=180°.小结:(1)如果两个角的和等于90°(直角),就说这两个角互为余角(简称这两个角互余).(2)如果两个角的和等于180°(平角),就说这两个角互为补角(简称这两个角互补).练习(1)图中给出的各角,哪些互为余角?(2)图中给出的各角,哪些互为补角?解:(1)10°和80°,25°和65°,44°和45°互为余角.(2)10°和170°,30°和150°,60°和120°,80°和100°互为补角.任务一意图说明1.让学生从直观的角度去感受互为余(补)角的概念.并用语言去表达这个概念,培养学生的归纳总结能力和口头表达能力.2.学生回答后教师再进行说明,强调互为余角反映的是角的数量关系,而不是角的位置关系.探究二余角和补角的性质思考如图所示,∠1与∠2,∠3都互为补角,∠2与∠3的大小有什么关系?请说明理由.解:∠2=∠3.理由如下:因为∠1与∠2,∠3都互为补角,所以∠1+∠2=180°,∠1+∠3=180°.所以∠2=180°-∠1,∠3=180°-∠1.所以∠2=∠3.追问你能将这个结论用数学语言进行叙述吗?小结:同角(等角)的补角相等.类似地,可以得到同角(等角)的余角相等.任务二意图说明1.让学生先通过观察得到结论,再对结论进行推理说明,最后用数学语言归纳总结出性质,培养学生的推理能力与归纳总结能力.2.充分放手给学生,让学生自己得出结论,体验到探究的乐趣.探究三例题讲解1.若一个角的补角等于它的余角的4倍,求这个角的度数.解:设这个角为x°,则它的补角是(180-x)°,余角是(90-x)°.根据题意,得180-x=4(90-x).解得x=60.答:这个角的度数是60°.2.如图所示,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,图中哪些角互为余角?解:因为点A,O,B 在同一条直线上, 所以∠AOC 和∠BOC 互为补角.又因为射线OD 和射线OE 分别平分∠AOC 和∠BOC, 所以∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=90°.所以∠COD 和∠COE 互为余角.同理∠AOD 和∠BOE,∠AOD 和∠COE,∠COD 和∠BOE 也互为余角. 3.如图所示,点O 是直线AB 上一点,∠BOC=∠DOE=90°,请说明: (1)∠1=∠2; (2)∠COF=∠AOE.解:(1)因为∠BOC=∠DOE=90°, 所以∠COE+∠1=90°,∠COE+∠2=90°. 所以∠1=∠2.(2)因为∠1+∠COF=180°,∠2+∠AOE=180°,∠1=∠2, 所以∠COF=∠AOE. 任务三 意图说明1.通过例题的讲解使学生巩固互余和互补的概念,初步体会由定义求一个锐角的余角和一个角的补角的过程.2.通过应用余角和补角的性质解决问题,进一步培养学生的逻辑推理能力. (三)当堂达标 具体内容见同步课件 (四)课堂小结1.余角和补角的概念.2.余角和补角的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 几何图形
教学目标
【知识与技能】
1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形;
2、认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体;
3、理解立体图形与平面图形之间的联系与区别.
【过程与方法】
能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.
【情感态度与价值观】
从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识.
教学重点:识别简单几何体.
教学难点:从具体事物中抽象出几何图形
一创设情境,导入新课
1、欣赏下面图形:
现实世界充满了多姿多彩的图形. 我们怎样从数学的角度来认识图形呢?
2、几何的起源
(1)土地测量
在古埃及,由于尼罗河经常泛滥而需要不断修整土地,重新划定边界,由此测量土地的方法引起人们的重视.几何学的英文单词geometry就是由geo(土地)和metry(测量)组成的.我国古代对形的研究也与测量关系密切,夏禹治水时期就有规、矩、准、绳等测量工具.约公元前1000年的西周初期,人们已经知道了直角三角形的“勾三,股四、弦五”的事实.大量事实说明,测量活动是几何学形成的直接原因.
(2)制作和使用工具及制造器皿以及装饰和服饰
(3) 房屋建筑:
3、几何知识的总结
随着时间的推移,人们在大量的实践中不断扩大和加深对形的认
识,得到了许多关于形的知识和研究形的方法.约公元前300年,古
希腊数学家欧几里得广泛收集和研究前人的成果,将已有的关于数和
形的知识作了系统编排,写成了《原本》一书,这是几何发展史上的
一个里程碑.
4、几何知识的传播
二、合作交流,探究新知
1、几何图形的有关概念
(1)几何图形
下面物体抽象出什么图形?
出示实物
长方体、正方体、圆柱、球、点、线段、三角形、四边形等,它们都是从各式各样的物体外形中抽象出来的图形,我们把这种图形统称为几何图形.
说明:对于各种各样的物体,数学中关注的是它们的形状(如方的,圆的等),大小(如长度,面积等),位置(如垂直,相交等),而不管其他的性质(如颜色,重量,材料、味道等).
(2)几何图形的分类
思考:下面两组几何图形有什么区别?
第1组
第2组
第一组几何图形叫立体图形,第2组图形叫平面图形。
考考你:
(1)观察下列图形,它们分别与哪种立体图形对应?
(2)想一想,把下面的立体图形分类
?
(a) (b) (c) (d) (e) (f)
图a,d叫棱柱图e叫棱锥
⎧⎧⎨⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪⎩
圆锥图锥圆锥棱柱柱体柱棱立体形体球体 (3)如图所示的各交通标志中,分别包含有哪些平面图形?
2、平面图形和立体图形的关系
(1)导语:
虽然立体图形与平面图形是两类不同的几何图形,但它们是相互联系的,立体图形中某些部分是平面图形,如正方体的每个侧面都是正方形.
(2)立体图形与平面图形
如图,整体上看,我们看到的是长方体,看不同侧面,看到的是长方形或正方形;从长方形或正方形中,我们还可以看到点、线段.从不同方向看立体图形,往往会得到不同形状的平面图形.
从不同方向看立体图形,往往会得到不同形状的平面图形.
(3)平面图形与立体图形
是由一些平面图形围成的,将它们的表面适当剪开,可以
展开成平面图形.
【变式练习】
1、观察与猜想:它们能围成什么样的立体图形?
2、请你分别说出从下列实物中能抽象出的立体图形.
3、下图中的图案分别由哪些平面图形构成?请用不同的颜色描出来.
三、反思小结,拓展提高
1、几何图形:小学阶段,我们已经初步认识了长方体、正方体、圆柱、球、点、线段、三角形、四边形等,它们都是从各式各样的物体外形中抽象出来的图形,我们把这种图形统称为几何图形.
2、立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形.
3、平面图形:有些几何图形的各部分都在同一个平面内,它们是平面图形.
作业:P 115-116。