七年级数学上册有理数拓展提升练习试题
新人教版初一上数学有理数拓展提高练习题[1]
新人教版初一上数学有理数拓展提高练习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】初一上数学周练习题二 姓名一、填空1.52-的绝对值是 ,相反数是 ,倒数是 .2.某水库的水位下降1米,记作 -1米,那么 +米表示 ___ .3.有理数,-17,0,725-,-,-29,2003和-1中,负数有___个,其中负整数有___个,负分数有____个.4.数轴上表示有理数-与两点的距离是_____. 5.比较大小:(1)-2 2;(2)- 0;(3)43-___54-(填“>” 或“<” ) 6.在332⎪⎭⎫⎝⎛-中,指数是 ,底数是 ,幂是 .7.股民李金上星期六买进某公司的股票,每股27元,下表为本周内该股票的涨跌情况(单位:元)星期三收盘时.每股是____元;本周内最高价是每股_ __元;最低价是每股___元.8.将下面的四张扑克牌凑成14,结果是_________________=14. 9.李明与王伟在玩一个计算的游戏,计算的规则是bc ad db c a -=,李明轮到计算1253,根据规则1253=3×1-2×5=3-10=-7,现在轮到王伟计算5362,请你帮忙算一算,得_ ___.10.已知|a -3|+24)(+b =0,则2003)(b a +=____. 11.你能根据右图得出计算规律吗? 1+3+5+7+9+11=(_ _)2 请你猜想:1+3+5+…+2003=( )2 二、选择:13.下列各式的值等于5的是( )(A) |-9|+|+4|; (B) |(-9)+(+4)|; (C) |(+9)―(―4)|; (D) |-9|+|-4|.14.正整数中各位数字的立方和与其本身相等的数称为自恋数.例如153,13+53+33=153,因此,153被称为自恋数,下列各数中为自恋数的是( ) ①370; ②407; ③371; ④546.(A) ①②③; (B) ①②④; (C) ②③④; (D) ①②③④.15.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第________次后可拉出64根细面条.( ) (A) 5; (B) 6; (C) 7; (D) 8.16、已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a+b=( )A .3或7 B .﹣3或﹣7C .﹣3D .﹣717.四位同学画数轴如下图所示,你认为正确的是( )18.两个负数的和一定是________( )(A )负数; (B )非正数; (C )非负数; (D )正数.19.下列各对数中,数值相等的是________( )(A )-32与-23; (B )(-3)2与-32; (C )-23与(-2)3; (D )(-3×2)3与-3×23.20.式子(21-103+52)×4×25=(21-103+52)×100=50-30+40中用的运算律是( )(A )乘法交换律及乘法结合律; (B )乘法交换律及分配律; (C )加法结合律及分配律; (D )乘法结合律及分配律. 21、现规定一种新运算“*”:a *b =b a ,如3*2=23=9,则(21)*3=( ) A 、61 B 、8 C 、81 D 、23三、在数轴上表示下列各数,并把它们用小于符号连接起来.并写出这些数的相反数和倒数3,-,213-,0,,-4.四、计算题:1、(– 143) - (+631)-+310 2.(-21)×(-32)×(-43) 3、-6+(-3)×(+25) 4、-374÷(-132)×(-432)4、 91716×(-34) 5、2223116(1)(3)(1)(3)22-⨯---÷-⨯-6、251()()0.6(1)( 4.9)563-+-----+7、199711(1)(10.5)()312----⨯÷-8、636(5)312(2)3757-⨯-+-⨯ 9、 -374÷(-132)×(-432)10、91716×(-34) 11、 )721()361()94(-÷⎥⎦⎤⎢⎣⎡--+ 12、 (+74)×(-1280)+74×1140+(-74)×(-141) 13、(-2476)÷6 14、(-8)(-)(-)(+125) 15、 13×32+×72+31×13+75×16、(97-65+367)×36-×6+×6 17、 -1×⎭⎬⎫⎩⎨⎧--÷⎥⎦⎤⎢⎣⎡-⨯-+-÷2)32()4.0()411()4(32418、 (-172)×75÷(-43)×÷(-)×52×231÷(-75)19、-51-()()[]55.24.0-⨯- 20、 -27+2×()23-+(-6)÷()231-21、 -41+(1-)×31×[2×()23-] 22、2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦23、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦24、)()()(241211433221911927-⨯--+-÷- 25、-51-()()[]55.24.0-⨯- 26、 -27+2×()23-+(-6)÷()231-五、(1)已知|a|=7,|b|=3,求a+b 的值。
数学7上:有理数30道培优拓展题,同学们可以抄下来练习,有答案
数学7上:有理数30道培优拓展题,同学们可以抄下来练习,有答案新初一的孩子,现在你们都是老生了。
开学一个月,初中生活过得还习惯不?初中数学感觉怎么样?学了一个月的有理数,正数负数,相反数,绝对值,数轴,乘方,加减乘除,名堂怎么有这么多?只要每天扎实做好功课,解决每天的问题,初中数学,你会觉得越来越有趣。
30道有理数培优拓展题,都是考试常见题型,不偏不怪,难度适中,要不要?这7道题,大家在学校天天做,在方老师数学课堂,也天天讲。
你说哪道题有点难?有理数的认识和分类、数轴,绝对值,大小比较,科学计数法,非负数的和等于零,是不是常考题?这9道题,精挑细选,有难有易,但是囊括了大多数常见考试题型。
特别是那几道观察规律的题型,新定义运算的题型,请认真思考。
还有4道填空题,你能不能答案秒出?肯定可以!还有6道有理数混合计算题,你能不能全部做对?应该没有问题!第22题,你要是还做不对,你应该去面壁思过10分钟。
第23题,绝对值的几何意义,非常重要的一个内容,同学们,认真练习和推敲,借助数轴,透彻理解,扎实基础,初中数学就没有难题。
第24题、正、负数简单应用题,初一第一次月考,必考之题型。
第25题、有理数理解培优拓展题,等比数列怎么求和?阅读理解,学解题技巧。
方老师说过很多次,数学学习从教材着手,从作业提升,那么阅读理解题就是提升数学能力的非常重要的阵地。
第26题,根据数轴上的点,化简绝对值。
经典考试题型,视频里发过很多,大家可以点我头像,视频列表,每天都有更新和分享。
第27题,数轴上的动点问题。
一个原则,化动为静,转化成一般的行程问题,就非常简单,是同学们考试拉开分数差距的重要题型之一。
第28题,新定义运算,怎么破?数学计算题,常有考题。
第29题,又是阅读理解,裂项相消法。
这个考题,就讲解了裂项相消法。
你不仅仅这个题要搞懂,还要举一反三,触类旁通,提升数学能力。
第30题,观察下列各式,找出规律,你逐步的往下读,此题没有难度。
七年级数学上册有理数(提升篇)(Word版 含解析)(1)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。
【精品】初中数学七年级上册《有理数的乘法》拓展训练
《有理数的乘法》拓展训练一、选择题1.如图所示,下列判断正确的是()A.a+b>0B.a﹣b>0C.ab>0D.|b|<|a|2.已知|a|=3,|b|=2,且a+b<0,则ab的值是()A.6B.﹣6C.6和﹣6D.6或﹣63.下列说法正确的是()①一个数的绝对值一定是正数;②若ab<0,a+b>0,则a,b异号且正数的绝对值大;③当|a|=﹣a时,a一定是负数;④|﹣a3|=a3.A.①②③B.①③④C.②④D.②4.正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10B.18C.10D.265.如图,下列结论正确的个数是()①m+n>0;②m﹣n>0;③mn<0;④|m﹣n|=m﹣n.A.1个B.2个C.3个D.4个6.﹣是下列各算式中()的积.A.﹣3×(﹣)B.×(﹣)C.(﹣1)×D.×(﹣)7.若“!”是一种数学运算符号,并1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则的值为()A.0.2!B.2450C.D.49!8.在数轴上,点A向右移动1个单位得到点B,点B向右移动2个单位得到点C,点A、B、C分别表示有理数a、b、c.A、B、C三点在数轴上的位置如图所示,a、b、c三个数的乘积为负数.若这三个数的和与其中的一个数相等,则a的值为()A.﹣B.﹣C.﹣或﹣D.﹣或﹣2 9.已知有理数a,b,c满足++=1,则的值为()A.﹣1B.1C.0D.±110.对正整数n,记1×2×…×n=n!若M=1!×2!×…×10!,则M的正因数中共有完全立方数()个.A.468B.684C.846D.648二、填空题11.|a|=5,b=﹣2,且ab>0,则a+b等于.12.把40,44,45,63,65,78,99,105平均分成两组,并且使这两组数的乘积相等,直接写出分组情况:.13.乘积是6的两个负整数之和为.14.已知有理数a,b满足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,则的值为.15.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|的结果是.三、解答题16.已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.17.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?18.已知|a|=5,|b|=7.(1)若ab<0,求|a﹣b|的值.(2)若|a﹣b|=﹣(a﹣b),求a•b的值.19.观察:等式(1)2=1×2等式(2)2+4=2×3=6等式(3)2+4+6=3×4=12等式(4)2+4+6+8=4×5=20(1)仿此:请写出等式(5);…,等式(n).(2)按此规律计算:①2+4+6+…+34=;②求28+30+…+50的值.20.阅读下列材料:|x|=,即当x>0时,;当x<0时,.用这个结论可以解决下面问题:(1)已知a、b是有理数,当ab≠0时,求的值.(2)已知a、b是有理数,当abc≠0时,求+的值.(3)已知a、b、c是有理数,a+b+c=0,abc<0,求的值.《有理数的乘法》拓展训练参考答案与试题解析一、选择题1.如图所示,下列判断正确的是()A.a+b>0B.a﹣b>0C.ab>0D.|b|<|a|【分析】先根据数轴知b<0<a且|a|<|b|,再根据有理数的加法、减法和乘法法则逐一判断即可得.【解答】解:由数轴知b<0<a,且|a|<|b|,则A.a+b<0,此选项错误;B.a﹣b>0,此选项正确;C.ab<0,此选项错误;D.|a|<|b|,此选项错误;故选:B.【点评】本题主要考查有理数的乘法,解题的关键是掌握有理数的加法、减法和乘法法则及绝对值的定义.2.已知|a|=3,|b|=2,且a+b<0,则ab的值是()A.6B.﹣6C.6和﹣6D.6或﹣6【分析】根据绝对值的性质求出a、b,再根据有理数的加法判断出a、b的对应情况,然后相乘即可得解.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a+b<0,∴a=﹣3时,b=2或﹣2,ab=(﹣3)×2=﹣6,ab=(﹣3)×(﹣2)=6,a=3不符合.综上所述,ab的值为6或﹣6.故选:D.【点评】本题考查了有理数的乘法,绝对值的性质和有理数的加法,熟记运算法则是解题的关键.3.下列说法正确的是()①一个数的绝对值一定是正数;②若ab<0,a+b>0,则a,b异号且正数的绝对值大;③当|a|=﹣a时,a一定是负数;④|﹣a3|=a3.A.①②③B.①③④C.②④D.②【分析】根据绝对值的性质及加法法则判断可得.【解答】解:①一个数的绝对值一定是正数,也可能是0,此结论错误②若ab<0,a+b>0,则a,b异号且正数的绝对值大,正确;③当|a|=﹣a时,a一定是负数,也可能是0,此结论错误;④当a<0时,|﹣a3|=﹣a3,此结论错误;故选:D.【点评】本题主要考查有理数的加法和乘法及绝对值,解题的关键是掌握绝对值的定义、性质及加法的运算法则.4.正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10B.18C.10D.26【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选:A.【点评】本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.5.如图,下列结论正确的个数是()①m+n>0;②m﹣n>0;③mn<0;④|m﹣n|=m﹣n.A.1个B.2个C.3个D.4个【分析】根据数轴、有理数的加减、乘法以及绝对值进行选择即可.【解答】解:由数轴得,m<0<n,且|m|<|n|,∴①m+n>0,正确;②m﹣n>0,错误;③mn<0,正确;④|m﹣n|=m﹣n,错误;故正确的有2个,故选:B.【点评】本题考查了有理数的乘法,掌握数轴、有理数的加减、乘法以及绝对值是解题的关键.6.﹣是下列各算式中()的积.A.﹣3×(﹣)B.×(﹣)C.(﹣1)×D.×(﹣)【分析】直接利用有理数乘法运算法则进而化简求出答案.【解答】解:A、﹣3×(﹣)=×=,故此选项错误;B、×(﹣)=﹣,故此选项错误;C、(﹣1)×=﹣×=﹣,故此选项错误;D、×(﹣)=﹣,故此选项正确.故选:D.【点评】此题主要考查了有理数的乘法运算,正确掌握运算法则是解题关键.7.若“!”是一种数学运算符号,并1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则的值为()A.0.2!B.2450C.D.49!【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:原式==50×49=2450,故选:B.【点评】此题考查了有理数的乘法,弄清题中的新定义是解本题的关键.8.在数轴上,点A向右移动1个单位得到点B,点B向右移动2个单位得到点C,点A、B、C分别表示有理数a、b、c.A、B、C三点在数轴上的位置如图所示,a、b、c三个数的乘积为负数.若这三个数的和与其中的一个数相等,则a的值为()A.﹣B.﹣C.﹣或﹣D.﹣或﹣2【分析】根据数轴、结合题意设a的值为x,分情况列出方程,解方程即可.【解答】解:设a的值为x,则b的值为x+1,c的值为x+3,当x+x+1+x+3=x时,x=﹣2,a=﹣2,b=﹣1,c=1,abc>0,不合题意;当x+x+1+x+3=x+1时,x=﹣,a=﹣,b=﹣,c=,abc>0,不合题意;当x+x+1+x+3=x+3时,x=﹣,a=﹣,b=,c=,abc<0,符合题意,故选:B.【点评】本题考查的是有理数的乘法、数轴,掌握有理数的乘法法则、灵活运用分情况讨论思想是解题的关键.9.已知有理数a,b,c满足++=1,则的值为()A.﹣1B.1C.0D.±1【分析】先依据题意判断出a、b、c中负数的个数,然后依据绝对值的性质进行化简即可.【解答】解:∵有理数a,b,c满足++=1,∴a、b、c中必然有两个正数,一个负数,∴abc为负数,∴=﹣1.故选:A.【点评】本题主要考查的是绝对值的性质,有理数的加法和乘法,判断出a、b、c中负数的个数是解题的关键.10.对正整数n,记1×2×…×n=n!若M=1!×2!×…×10!,则M的正因数中共有完全立方数()个.A.468B.684C.846D.648【分析】首先把M写成M=230×313×55×73,然后分别讨论230、313、55和73含有的平方数约数,最后求出M含有平方数约数.【解答】解:∵M=1!×2!×3!×4!×5!×6!×7!×8!×9!×10!,∴M=1×29×38×47×56×65×74×83×92×10,M=238×317×57×74,因为每个平方数内含有的每种质因数的次数都是偶次的,如25=52,144=24×32,所以230含有的平方数约数有20、22、24…230共16个,313含有的平方数约数有30、32、34…312共7个,55含有的平方数约数有50、52、54共3个,73含有的平方数约数有70、72共2个,所以M含有平方数约数为16×7×3×2=672,故选:A.【点评】本题主要考查完全平方数的知识点,解答本题的关键是把M分解成M=230×313×55×73的形式,此题难度较大.二、填空题11.|a|=5,b=﹣2,且ab>0,则a+b等于﹣7.【分析】根据绝对值的性质及有理数的乘法法则:同号得正,异号得负,求出a 的值,再计算即可.【解答】解:由题意,得:a=±5,∵ab>0,b=﹣2,∴a=﹣5,∴a+b=﹣7,故答案为:﹣7.【点评】本题综合考查了有理数的乘法、绝对值、有理数的减法,解决此题时,能根据绝对值的性质及有理数的乘法确定a的值是解题的关键.12.把40,44,45,63,65,78,99,105平均分成两组,并且使这两组数的乘积相等,直接写出分组情况:40,99,65,63;44,78,45,105.【分析】分别把题干中的8个数字分成奇数组和偶数组进行分解质因数,偶数组:40=2×2×2×5,44=2×2×11,78=2×3×13;奇数组:45=3×3×5,63=3×3×7,65=5×13,99=3×3×11,105=3×5×7,根据两组数据中所含的质因数个数分别相等,即可进行解答.【解答】解:偶数组:40=2×2×2×5,44=2×2×11,78=2×3×13;奇数组:45=3×3×5,63=3×3×7,65=5×13,99=3×3×11,105=3×5×7,(1)先看偶数组,40第一组,44和78第二组(因为40分解出3个2;44有2个2,78有1个2);(2)44中含有11,则99为第一组;78中含有13,则65为第一组;另外两个分解出含有5的数是45,105,其中105为第二组,答:第一组有40,99,65,63;第二组为44,78,45,105.故答案为:40,99,65,63;44,78,45,105.【点评】此题考查了合数分解质因数的灵活应用,此题关键是正确理解“每组四个数的乘积相等”,那么“每组数据中所含的质因数的个数分别相等”.13.乘积是6的两个负整数之和为﹣7或﹣5.【分析】利用有理数的乘法法则确定出两个负整数,求出之和即可.【解答】解:乘积是6的两个负整数为﹣1和﹣6或﹣2与﹣3,之和为﹣7或﹣5,故答案为:﹣7或﹣5【点评】此题考查了有理数的乘法,有理数的加法,熟练掌握运算法则是解本题的关键.14.已知有理数a,b满足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,则的值为﹣(9a+1)2或0.【分析】分情况讨论a、b的符号和大小,化简7a+2b+1=﹣|b﹣a|,用a表示b,代入求解的表达式即可求解.【解答】解:由题意得:(1)若a>0,则b<0,则7a+2b+1=﹣|b﹣a|=﹣(a﹣b),化简得:b=﹣8a ﹣1,把b=﹣8a﹣1,代入求解的表达式得:=﹣(9a+1)(9a+1)=﹣(9a+1)2;(2)同理若a<0,则b>0,可得:=0.故答案为﹣(9a+1)2或0.【点评】本题考查的是有理数的运算、绝对值化简得内容,通常根据给出的条件,用一个字母代替另外一个字母,代入表达式即可化简,本题难度较大.15.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|的结果是﹣2b或2a.【分析】分清a,﹣2b,3b﹣2a三个数的正负性是解决本题的关键.已知实数a,b满足|a|=b,|ab|+ab=0,可得出b≥0,|ab|=﹣ab,则a≤0,b=﹣a.所以﹣2b<0,3b﹣2a>0,从而得出|a|+|﹣2b|﹣|3b﹣2a|的值.【解答】解:∵|a|=b,|a|≥0,∴b≥0,又∵|ab|+ab=0,∴|ab|=﹣ab,∵|ab|≥0,∴﹣ab≥0,∴ab≤0,即a≤0,∴a与b互为相反数,即b=﹣a.∴﹣2b≤0,3b﹣2a≥0,∴|a|+|﹣2b|﹣|3b﹣2a|=﹣a+2b﹣(3b﹣2a)=a﹣b=﹣2b或2a.故答案为:﹣2b或2a.【点评】此题主要考查了绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.三、解答题16.已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.【分析】(1)根据题意,利用绝对值的代数意义求出x与y的值,代入原式计算即可得到结果;(2)根据题意,利用绝对值的代数意义求出x与y的值,代入原式计算即可得到结果;(3)根据题意,利用绝对值的代数意义求出x与y的值,代入原式计算即可得到结果.【解答】解:∵|x|=5,∴x=5或﹣5,∵|y|=3,∴y=3或﹣3,(1)当x﹣y>0时,x=5,y=3或x=5,y=﹣3,此时x+y=5+3=8或x+y=5+(﹣3)=2,即x+y的值为:8或2;(2)当xy<0,x=5,y=﹣3或x=﹣5,y=3,此时|x﹣y|=8或|x﹣y|=8,即|x﹣y|的值为:8;(3)①x=5时,y=3时,x﹣y=5﹣3=2;②x=5时,y=﹣3时,x﹣y=5+3=8;③x=﹣5时,y=3时,x﹣y=﹣5﹣3=﹣8;④x=﹣5时,y=﹣3时,x﹣y=﹣5+3=﹣2,综上:x﹣y=±2或±8.【点评】此题考查了有理数的加减法以及绝对值,熟练掌握运算法则及绝对值的代数意义是解本题的关键.17.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?【分析】(1)根据题意可以a、b的符号相反、可得a=﹣10,根据a+b=80可得b的值,本题得以解决;(2)①根据题意可以求得两只电子蚂蚁在数轴上的点C相遇是点C对应的数值;②根据题意和分类讨论的数学思想可以解答本题.【解答】解:(1)∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0,∴a=﹣10,b=90,即a的值是﹣10,b的值是90;(2)①由题意可得,点C对应的数是:90﹣[90﹣(﹣10)]÷(3+2)×2=90﹣100÷5×2=90﹣40=50,即点C对应的数为:50;②设相遇前,经过m秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)﹣20]÷(3+2)=80÷5=16(秒),设相遇后,经过n秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)+20]÷(3+2)=120÷5=24(秒),由上可得,经过16秒或24秒的时间两只电子蚂蚁在数轴上相距20个单位长度.【点评】本题考查有理数的乘法、绝对值、数轴、有理数的加法,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.18.已知|a|=5,|b|=7.(1)若ab<0,求|a﹣b|的值.(2)若|a﹣b|=﹣(a﹣b),求a•b的值.【分析】(1)直接利用绝对值的性质得出a,b的值,进而得出答案;(2)直接利用绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7,(1)若ab<0,所以a,b异号,当a=5,b=﹣7时,|a﹣b|=|5﹣(﹣7)|=12,当a=﹣5,b=7时,|a﹣b|=|﹣5﹣7|=12,综上,|a﹣b|=12;(2)若|a﹣b|=﹣(a﹣b),则a﹣b≤0,当a=5,b=7时,a•b=5×7=35,当a=﹣5,b=7时,a•b=﹣5×7=﹣35,综上,ab=±35.【点评】此题主要考查了绝对值以及有理数的乘法,正确分类讨论是解题关键.19.观察:等式(1)2=1×2等式(2)2+4=2×3=6等式(3)2+4+6=3×4=12等式(4)2+4+6+8=4×5=20(1)仿此:请写出等式(5)2+4+6+8+10=5×6=30;…,等式(n)2+4+6+8+…+2n=n(n+1).(2)按此规律计算:①2+4+6+…+34=306;②求28+30+…+50的值.【分析】(1)仿照已知等式,得出规律,写出等式(5)和等式(n)即可;(2)利用得出的规律计算各式即可.【解答】解:(1)等式(5)为2+4+6+8+10=5×6=30;等式(n)为2+4+6+8+…+2n=n(n+1);故答案为:2+4+6+8+10=5×6=30;2+4+6+8+…+2n=n(n+1);(2)①原式=17×18=306;故答案为:306;②原式=(2+4+6+8+…+50)﹣(2+4+6+…+26)=25×26﹣13×14=468.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.20.阅读下列材料:|x|=,即当x>0时,;当x<0时,.用这个结论可以解决下面问题:(1)已知a、b是有理数,当ab≠0时,求的值.(2)已知a、b是有理数,当abc≠0时,求+的值.(3)已知a、b、c是有理数,a+b+c=0,abc<0,求的值.【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,进一步计算即可求解.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,=﹣1﹣1=﹣2;②a>0,b>0,=1+1=2;③a、b异号,=0.故=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,+=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,+=1+1+1=3;③a、b、c两负一正,+=﹣1﹣1+1=﹣1;④a、b、c两正一负,+=﹣1+1+1=1.故+=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.【点评】此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.。
新人教版初一上数学有理数拓展提高练习题
1
(
1 )
3 12
8 、 ( 5)
6 3
3 12
( 2)
6 3
75
7
9
、 -3 4 ÷(- 1 2 )×(-
7
3
42) 3
10、9 16 ×(- 34) 17
11
、
4 ()
(
1 )
( 1)
9
36
72
12、 (+74)×(- 1280)+74× 1140+(- 74)×(- 141)
13
、(- 24 6 )÷6
1 +3+ 5+7+9+ 11=(_ _) 2 请你猜想: 1+ 3+5
二、选择:
13.下列各式的值等于 5 的是(
)
(A) | -9| +| + 4| ; (B) |( -9) +( + 4)| ; (C) |( +9) ― ( ― 4)| ; (D) | -
9| +| -4| . 14.正整数中各位数字的立方和与其本身相等的数称为自恋数.
例如 153,13+53+33= 153,
因此,153 被称为自恋数,下列各数中为自恋数的是 (
)
①370; ② 407; ③
371; ④ 546.
(A) ①②③; (B) ①②④; (C) ②③④; (D) ①②③④.
15.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏
初一 上 数学 周 练习题 二
姓名
一、填空
1.
2 的绝对值是
,相反数是
,倒数是
.
5
2.某水库的水位下降 1 米,记作 - 1 米,那么 + 1.2 米表示 ___
.
最新七年级数学上册有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.5.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
苏科版七年级上第二章有理数拓展提优试卷(有答案) (数学)
苏科版七年级上第二章有理数拓展提优试卷(有答案)(数学)----16466a2d-6ebb-11ec-81d7-7cb59b590d7d苏科版七年级上第二章有理数拓展提优试卷(有答案)-(数学)第二章是有理数的扩充与改进【单元综合】1.以下语句的正确数目为()①一个有理数不是整数就是分数;②无限循环小数是无理数;③ 整数可以是正的,也可以是负的;④ 分数不是正面就是负面a.1b.2c.3d.42.已知n为正整数,则(?1)2n?(?1)2n?1?()A.2b。
?1c。
0d。
23.?? 1的对立面是()611A b。
?c、 6d。
?6664.以下等式成立()a.?8?8b.?(?1)??1c.1?(?3)?1d.?2?3?6355.某市为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止共有60000户家庭建立了“低“碳节能减排家庭档案”,则60000可表示为()a.60?10b.6?10c.6?10d.0.6?106.数学家们发明了一个神奇的盒子。
当任意一对有理数(a,b)输入时,它们将得到一个新的有理数:a?B1+b-。
例如,把(3,?2)放入其中,就会得到32?(?2)?1?6.现将有理数对(?1,3)放入其中,得到有理数m,再将有理数对(m,1)放入其中后,得到的有理数是()a、 3b。
6c。
9d。
127.遵守图中正方形四个顶点上标记的数字的规则。
可以看出2022号应该标记在()2464a.第504个正方形的左下角b.第504个正方形的右下角c.第505个正方形的左上角d.第505个正方形的右下角8.倒数0.2的绝对值为9.在数轴上,大于?2.5且小于3.2的整数有.10.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示:输入12345? 输出1225310417526?那么当输入的数据是8时,输出的数据是.11.如图所示,数轴的单位长度为1,p,a,b,q是数轴上的4个点,其中点a,b表示的数互为相反数.(1)点P表示的数字为,点q表示的数字为;(2)若点p向数轴的正方向运动到点b右侧,且以线段bp的长度为边长作正方形,当该正方形的周当长度为12时,数字轴上点P表示的数字为;(3)若点a以每秒1个单位长度的速度向数轴的正方向运动,点b也以每秒1个单位长度的速度向数轴沿负方向移动,两点同时开始移动,当移动时间为秒时,a和B之间的距离正好为112.计算:(1)? 3.(?)? 4.(1?)? 8.()(2)(?8)?(?23223232153??)?156121013.首先简化,然后在数字轴上表示以下数字,并使用“1?24??3,02021,?32,?(?2)3,?(?2),2.八14.小军在计算(?42)?6时,使用运算律解题过程如下:解决方案:(?42)?6.(?42?)? 676767116116?? 42????? 7.他的解决问题的过程正确吗?如果不正确,请帮他改正15.小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为a,b,c,d,学校位于小明家西150米,邮局在小明家以东100米,图书馆在小明家以西400米(1)用数字轴代表a、B、C和D(以小明家为原点);(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了约8分钟,试问这时小明在哪儿?离图书馆和学校有多少米?16.某灯具厂计划一天生产300盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数字之间存在差异下表显示了一周的生产情况(产量增加记录为正,产量减少记录为负):星期一增加还是减少,23456?3.5.2.9? 7.12? 3(1)找出工厂本周实际生产的景观灯数量;(2)寻求输出最多的一天生产的景观灯数量,而不是输出最少的一天生产的景观灯数量;(3)该厂实行每日计件工资制,每生产一盏景观灯可得60元,若超额完成任务,则超过部分每盏另奖励是20元。
人教版数学七年级上册第1章有理数拓展练习(含答案)
七年级上册第1章拓展练习(三)一.选择题(共10小题)1.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y2.下列运算错误的是()A.﹣3﹣(﹣3+)=﹣3+3﹣B.5×[(﹣7)+(﹣4)]=5×(﹣7)+5×(﹣4)C.[1×(﹣3)]×(﹣4)=(﹣3)×[1×(﹣4)]D.﹣7÷2×(﹣1)=﹣7÷[2×(﹣1)]3.一个大于1的正整数a ,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a <≤a B.﹣a <<a C .>a>﹣a D.﹣a≤a ≤4.在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是()A.﹣5B.﹣0.9C.0D.﹣0.015.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣106.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy 7.在一条数轴上有A,B两点,其中点A表示的数是2x+2,点B表示的数是﹣x2,则这两点在数轴上的位置是()第1页(共10页)A.A在B的左边B.A在B的右边C.A,B重合D.它们的位置关系与x的值有关8.如图,在数轴上,点B在点A的右侧.已知点A对应的数为﹣1,点B对应的数为m.若在AB之间有一点C,点C到原点的距离为2,且AC﹣BC=2,则m的值为()A.4B.3C.2D.19.下列说法中,正确的有()①0是最小的整数;②若|a|=|b|,则a=b;③互为相反数的两数之和为零;④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个10.定义一种新运算:(x1,y1)(x2,y2)=x1x2+y1y2,如(2,5)(1,3)=2×1+5×3=17,若(1,x)(2,﹣5)=7,则x=()A.﹣1B.0C.1D.2二.填空题(共5小题)11.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.第2页(共10页)12.甲数的与乙数的相等(甲、乙两数均不为0),则甲数:乙数=.13.(﹣1)2020+(﹣1)2021=.14.若a2=16,|b|=3,则a+b所有可能的值为.15.下列四组有理数的比较大小:①﹣1<﹣2,②﹣(﹣1)>﹣(﹣2),③+(﹣)<﹣|﹣|,④|﹣|<|﹣|,正确的序号是.三.解答题(共5小题)16.计算:(1)2+(﹣1)+|﹣3﹣2|﹣5(2)[(﹣4)2﹣(1﹣32)×2]÷2217.如图是一张不完整的数轴,请将它补画完整,并在数轴上标出下列各数所代表的点,并将对应字母标在数轴上方的相应位置点A:;点B:0.25;点C:1点D:300%18.某登山队3名队员,以1号位置为基地,开始向海拔距基地300m的顶峰冲击,设他们向上走为正,行程记录如下(单位:m):+150,﹣35,﹣42,﹣35,+128,﹣26,﹣5,+30,+75(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?第3页(共10页)(2)登山时,3名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?19.有个写运算符号的游戏:在“3□(2□3)□□2“中的每个□内.填入+,﹣,x,÷中的某一个(可重复使用),然后计算结果(1)请计算琪琪填入符号后得到的算式:3×(2÷3)﹣÷22;(2)嘉嘉填入符号后得到的算式是3÷(2×3)×□22,一不小心擦掉了□里的运算符号,但她知道结果是﹣,请推算□内的符号.20.定义新运算@”与“⊕”:a@b =,a⊕b =.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.第4页(共10页)参考答案一.选择题(共10小题)1.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.2.解:∵﹣3﹣(﹣3+)=﹣3+3﹣,故选项A正确;∵5×[(﹣7)+(﹣4)]=5×(﹣7)+5×(﹣4),故选项B正确;∵[1×(﹣3)]×(﹣4)=(﹣3)×[1×(﹣4)],故选项C正确;∵﹣7÷2×(﹣1)=﹣7××(﹣1)=﹣7×[×(﹣1)],故选项D错误;故选:D.3.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a <<a.故选:B.4.解:∵|﹣5|>|﹣0.9|>|﹣0.01|,∴﹣5<﹣0.9<﹣0.01,∴在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是﹣0.01.故选:D.第5页(共10页)5.解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.6.解:根据题中的新定义得:原式=(x+y)(x﹣y)+(x+y)2﹣(x﹣y )2=x2﹣y2+(x+y+x﹣y)(x+y﹣x+y)=x2﹣y2+4xy.故选:D.7.解:∵2x+2﹣(﹣x2)=x2+2x+2=(x+1)2+1>0,∴A在B的右边.故选:B.8.解:由题意得,点C对应的数为2,∵点A对应的数为﹣1,点B对应的数为m,AC﹣BC=2,∴3﹣(m﹣2)=2,∴m=3,故选:B.9.解:①0是最小的整数,错误,没有最小的整数;第6页(共10页)②若|a|=|b|,则a=±b,故此选项错误;③互为相反数的两数之和为零,正确;④数轴上表示两个有理数的点,较大的数表示的点离原点较远,只有都是正数时较大的数表示的点离原点较远,故此选项错误.故选:B.10.解:∵(1,x)(2,﹣5)=7,∴1×2﹣5x=7,解得x=﹣1.故选:A.二.填空题(共5小题)11.解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.12.解:设甲数为x,乙数为y ,则,∴,∴甲数:乙数=10:9.故答案为:10:9.13.解:(﹣1)2020+(﹣1)2021=1+(﹣1)=0,第7页(共10页)故答案为:0.14.解:∵a2=16,|b|=3,∴a=±4,b=±3,当a=4,b=3时,a+b=4+3=7,当a=4,b=﹣3时,a+b=4+(﹣3)=1,当a=﹣4,b=3时,a+b=﹣4+3=﹣1,当a=﹣4,b=﹣3时,a+b=﹣3﹣4=﹣7,故答案为:7或1或﹣1或﹣7.15.解:①两个负数,绝对值大的反而小,所以﹣1>﹣2,故原比较错误;②因为﹣(﹣1)=1,﹣(﹣2)=2,所以﹣(﹣1)<﹣(﹣2),故原比较错误;③因为+(﹣)=﹣,﹣|﹣|=﹣,而<,所以+(﹣)>﹣|﹣|,故原比较错误;④因为|﹣|=,|﹣|=,而<,所以|﹣|<|﹣|,故原比较正确;正确的是④.故答案为:④.三.解答题(共5小题)16.解:(1)原式═2+(﹣1)+5﹣5=2﹣1+0=1;(2)原式=[16﹣(1﹣9)×2]÷4第8页(共10页)=[16﹣(﹣8)×2]÷4=(16+16)÷4=32÷4=8.17.解:如图所示:18.解:(1)根据题意得:+150﹣35﹣42﹣35+128﹣26﹣5+30+75=240(米),300﹣240=60(米).答:他们没能最终登上顶峰,离顶峰还有60米;(2)根据题意得:150+35+42+35+128+26+5+30+75=526(米),526×0.04×3=63.12(升),答:他们共使用了氧气63.12升.19.解:(1)原式=3×(2÷3)﹣×=3×﹣=2﹣=;(2)原式=3÷(2×3)×﹣22=3÷6×﹣4=﹣4=﹣,第9页(共10页)所以□里应是“﹣”号.20.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.第10页(共10页)。
人教版七年级数学上册 有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)在数轴上标示出-4、-3、-2、4、(2)结合数轴与绝对值的知识回答下列问题:①数轴上表示4和-2的两点之间的距离是________,表示-2和-4两点之间的距离是________.一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,即那么a=________②若数轴上表示数a的点位于-3和2之间,则的值是________;③当a取________时,|a+4|+|a-1-|+|a-4|的值最小,最小值是________.【答案】(1)解:如图所示:(2)6;2;1或-5;5;1;8.【解析】【解答】解:(2)①数轴上表示4和−2的两点之间的距离是4−(−2)=6,表示−2和−4两点之间的距离是−2−(−4)=2;∵|a−(−2)|=3,∴a−(−2)=±3,解得a=−5或1;②因为|a+3|+|a−2|表示数轴上数a和−3,2之间距离的和,又因为数a位于−3与2之间,所以|a+3|+|a−2|=5;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,所以当a=1时,式子的值最小,此时|a+4|+|a−1|+|a−4|的最小值是8.故答案为:6,2,−5或1;5;1,8.【分析】(1)数轴上原点表示正数,原点左边表示负数,原点右边表示正数,然后在数轴上找出表示各个数的点,用实心的小原点标记,并在实心小圆点上方写出该点所表示的数;(2)①根据数轴上任意两点的距离等于这两点所表示的数差的绝对值即可算出答案;解含绝对值的方程,根据绝对值的意义去掉绝对值符号,再解即可;②因为数a位于−3与2之间,故a+3>0,a−2<0,根据绝对值的意义去掉绝对值符号再合并他即可;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,根据两点之间线段最短即可得出当a=1时,式子的值最小,从而将a=1代入即可算出答案。
人教版数学七年级上册第1章:有理数 综合拓展训练(一)
七年级上册第1章综合拓展训练(一)一.选择题1.(﹣1)2020等于()A.1B.﹣2020C.2020D.﹣12.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃3.已知:,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4B.3C.2D.14.计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2B.3C.7D.5.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确6.定义运算a★b=|ab﹣2a﹣b|,如1★3=|1×3﹣2×1﹣3|=2.若a=2,且a★b=3,则b的值为()A.7B.1C.1或7D.3或﹣37.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若OC=OB,则a的值为()A.﹣3B.﹣2C.﹣1D.28.已知a,b,c,d为非零实数,则的可能值的个数为()A.3B.4C.5D.69.下列各式x、x2、、x2+2、|x+2|中,值一定是正数的有()A.1个B.2个C.3个D.4个10.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.4038二.填空题11.计算:0﹣(﹣6)=.12.﹣1的倒数是,绝对值等于10的数是,平方等于4的数是.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=.15.若x4=81,则x的值是.三.解答题16.把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,﹣|﹣9|,﹣(﹣3.15).(1)整数集合{…};(2)分数集合{…};(3)非负数集合{…};(4)正数集合{…}.17.计算:(1)(﹣+﹣)×(﹣24)(2)﹣23﹣|﹣3|+4﹣(﹣)×(﹣3)18.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)﹣3﹣2﹣1.501 2.5筐数242336(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.6元,则出售这20筐白菜可卖多少元?(结果保留整数)19.计算:已知|x﹣1|=3,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.20.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(+﹣﹣).参考答案一.选择题1.解:(﹣1)2020=1,故选:A.2.解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.3.解:∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m=++∴分三种情况说明:当a<0,b<0,c>0时,m=﹣1﹣2+3=0,当a<0,c<0,b>0时,m=﹣1+2﹣3=﹣2,当a>0,b<0,c<0时,m=1﹣2﹣3=﹣4,∴m共有3个不同的值,﹣4,﹣2,0.最大的值为0.∴x=3,y=0,∴x+y=3.故选:B.4.解:原式=4+2+1=7,故选:C.5.解:∵a,b,c,d,e表示连续的五个整数,且a+e=0,∴a=﹣2,b=﹣1,c=0,d=1,e=2,于是①②④正确,而③不正确,故选:D.6.解:∵a★b=3,且a=2,∴|2b﹣4﹣b|=3,∴2b﹣4﹣b=3或2b﹣4﹣b=﹣3,解得b=7或b=1,故选:C.7.解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:B.8.解:①a,b,c,d四个数都是正数时,原式=1+1+1+1+1=5;②a,b,c,d中有a,b,c三个正数时,原式=1+1﹣1﹣1﹣1=﹣1;③a,b,c,d中有a,b或a,c两个正数时,原式=1﹣1+1﹣1+1=1或原式=﹣1﹣1﹣1﹣1+1=﹣3;④a,b,c,d中有a一个正数时,原式=﹣1+1+1﹣1﹣1=﹣1;⑤a,b,c,d都是负数时,原式=1+1+1+1+1=5.综上所述,的可能值的个数为4.故选:B.9.解:x不一定是正数;x2不一定是正数;一定是正数;x2+2一定是正数;|x+2|不一定是正数;所以值一定是正数的有2个,故选:B.10.解:∵a=﹣2018,∴|a2+2017a+1|+|a2+2019a﹣1|=|20182﹣2017×2018+1|+|20182﹣2019×2018﹣1|=|2018×(2018﹣2017)+1|+|2018×(2018﹣2019)﹣1|=|2018+1|+|﹣2018﹣1|=2019+2019=4038,故选:D.二.填空题11.解:原式=0+6=6.故答案为:6.12.解:﹣1的倒数是1÷(﹣1)=﹣,∵|±10|=10∴绝对值等于10的数是±10,∵(±2)2=4,∴平方等于4的数是±2,故答案为:;±10;±2.13.解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.14.解:(﹣4)2017×(﹣0.25)2019=(﹣4)2017×(﹣0.25)2017×(﹣0.25)2=[﹣4×(﹣0.25)]2017×(﹣0.25)2===;(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)200×(﹣2)=﹣(﹣2)200=﹣2200.故答案为:;﹣2200.15.解:因为(±3)4=81,所以x=±3.故答案为:±3.三.解答题16.解:由题可得:(1)整数集合{ 6,﹣3,0,﹣1,﹣|﹣9|…};(2)分数集合{ 2.5,﹣(﹣3.15)…};(3)非负数集合{ 6,2.5,0,﹣(﹣3.15)…};(4)正数集合{ 6,2.5,﹣(﹣3.15)…}.故答案为:(1)6,﹣3,0,﹣1,﹣|﹣9|;(2)2.5,﹣(﹣3.15);(3)6,2.5,0,﹣(﹣3.15);(4)6,2.5,﹣(﹣3.15).17.解:(1)(﹣+﹣)×(﹣24)=18﹣14+15=19;(2)﹣23﹣|﹣3|+4﹣(﹣)×(﹣3)=﹣8﹣3+4﹣=﹣8.18.解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×2+(﹣2)×4+(﹣1.5)×2+0×3+1×3+2.5×6=1(千克),答:20筐白菜总计超过1千克;(3)(25×20+1)×1.6=501×1.6≈802(元),答:白菜每千克售价1.6元,则出售这20筐白菜可卖802元.19.解:(1)∵|x﹣1|=3,|y|=2,∴x=4或﹣2,y=2或﹣2,∵xy<0,∴x=4,y=﹣2或x=﹣2,y=2,∴x+y=2或0;(2)∵|x﹣1|=3,|y|=2,∴x=4或﹣2,y=2或﹣2,∴x﹣y的最大值为4﹣(﹣2)=6.20.解:(1)根据题目中的解答方法,可知解法一是错误的,故答案为:一;(2)原式的倒数=(+﹣﹣)÷(﹣)=(+﹣﹣)×(﹣210)=×(﹣210)+×(﹣210)﹣×(﹣210)﹣×(﹣210)=(﹣90)+(﹣28)+63+50=﹣5,故(﹣)÷(+﹣﹣)=.11 / 11。
初一数学 有理数拓展提高
初一数学有理数拓展提高1.将下列各数填入相应的集合圈内:,﹣7,+2.6,﹣100,,9.2,0,1,0..2.将下列各数填入适当的括号内:π,5,﹣3,,8.9,,﹣3.14,﹣9,0,.(1)正数集合:{…}.(2)负数集合:{…}.(3)整数集合:{…}.(4)分数集合:{…}.(5)正整数集合:{…}.(6)负整数集合:{…}.3.计算:(1);(2);(简便运算)(3)2×(﹣6)﹣(﹣30)÷(﹣5);(4).4.小明与小红两位同学计算的过程如下:小明:原式=(第一步)=(第二步)=(第三步)小红:原式=(第一步)=(第二步)=16÷1(第三步)=16(第四步)(1)小明与小红在计算中均出现了错误,请指出小红出错的步骤;(2)写出正确的解答过程.5.小丽同学做一道计算题的解题过程如下:解:原式=第一步=第二步=﹣1+12﹣18第三步=﹣7第四步根据小丽的计算过程,回答下列问题:(1)她在计算中出现了错误,其中你认为在第步开始出错了;(2)请你给出正确的解答过程.6.根据绝对值的概念,我们在一些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.请根据以上规律解答:(1)比较大小:;(填“>”“<”或“=”)(2)填空:=;(3)计算:.7.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则的值为多少?8.对于有理数a、b,定义运算:a※b=a×b﹣a﹣b(1)分别计算(﹣2)※2与2※(﹣2)的值;(2)填空:5※(﹣3)(﹣3)※5(填“>”或“=”或“<”).9.规定[a]表示不超过有理数a的最大整数,例如:[1.2]=1,[﹣1.8]=﹣2.(1)填空:[3.7]=,=;(2)比大小:[0.8]+[﹣4.2][0.8﹣4.2];(填“>”“<”或“=”)(3)计算:.10.对于有理数x,y,定义新运算“※”,规定:x※y=x2﹣2xy,如:2※1=22﹣2×2×1=0.(1)求2※(﹣3)的值;(2)求(﹣5)※(3※2)的值.11.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)|4﹣(﹣3)|=.(2)利用数轴,解决下列问题:①若|x﹣(﹣1)|=2,则x=.②|x﹣1|=|x+3|,则x=.③若|x﹣2|+|x+5|=7,所有符合条件的整数x的和为.12.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示5与﹣1的两点之间的距离是;(2)①若|x﹣(﹣1)|=2,则x=;②若使x所表示的点到表示2和﹣3的点的距离之和为5,所有符合条件的整数的和为;【动手折一折】小明在草稿纸上画了一条数轴进行操作探究:(3)折叠纸面,若1表示的点和﹣1表示的点重合,则4表示的点和表示的点重合;(4)折叠纸面,若3表示的点和﹣5表示的点重合,①则10表示的点和表示的点重合;②这时如果A,B(A在B的左侧)两点之间的距离为2022,且A,B两点经折叠后重合,则点A表示的数是,点B表示的数是;【拓展】(5)若|x+2|+|x﹣3|=8,则x=.。
最新人教版数学七年级上册 有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。
人教版数学七年级上册第1章 有理数 拓展训练
七年级上册第1章拓展训练一.选择题1.在﹣5,,﹣3.5,﹣0.01,0,﹣215各数中,最大的数是()A.﹣12B .C.﹣0.01D.﹣52.新年伊始,湖北疫情牵动着全国人民的心.一方有难,八方驰援.据统计,2020年1月支援湖北医疗队共有42600人,将42600用科学记数法表示为()A.426×102B.4.26×105C.4.26×104D.0.426×1063.计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2B.3C.7D .4.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|5.如图,数轴上点A表示的数的绝对值是()A .B.±2C.2D.﹣26.规定:(↑30)表示零上30摄氏度,记作+30,(↓8)表示零下8摄氏度,记作()A.+8B.﹣8C.+D .﹣7.用一张纸表示1亩地,要求亩的是多少?下面有三种表示法,其中正确的是()第1页(共1页)A.①②B.①③C.②③D.①②③8.在17的后面添上百分号,则新的数()A.扩大到原来的100倍B .缩小到原来的C.与原来的大小相等D.无法判断9.三位同学在计算:(+﹣)×12,用了不同的方法:小小说:12的,,分别是3,2和6,所以结果应该是3+2﹣6=﹣1;聪聪说:先计算括号里面的数,+﹣=﹣,再乘以12得到﹣1;明明说:利用分配律,把12与,,﹣分别相乘得到结果是﹣1对于三个同学的计算方式,下面描述正确的是()A.三个同学都用了运算律B.聪聪使用了加法结合律C.明明使用了分配律D.小小使用了乘法交换律10.定义运算:a*b,当a≥b时,有a*b=a,当a<b时,有a*b=b,如果(x+3)*2x=x+3,那么x的取值范围是()A.1<x<3B.x≥3C.x<1D.x≤3二.填空题11.若a的相反数是7,则a的值是.第1页(共1页)12.如果增加50%记作+50%,那么减少20%记作%.13.如果abc>0且ab<0,那么+﹣=.14.若|5﹣x|=x﹣5,则x的取值范围是.15.若a是最大的负整数,b是绝对值最小的有理数,数c在数轴上对应的点与原点的距离为1,则a+b2+|c|=.三.解答题16.计算:(1);(2)4+(﹣2)2×5﹣|﹣2.5÷5|.17.对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:第1页(共1页)②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.18.王红有2000元钱,打算存入银行两年,有两种储蓄方式:一种是存两年期的,年利率是2.25%;另一种是先存一年期的,年利率是1.75%,第一年到期后连本带息继续存入一年.两年后,哪种储蓄方式得到的利息多一些?19.发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352;例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;第1页(共1页)(3)98×(﹣11)=.探究:一个两位数,十位上的数字是m,个位上的数字是n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出计算结果中十位上的数字.20.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=,(﹣2.4]=,(0.7]=;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.第1页(共1页)参考答案一.选择题1.解:根据有理数比较大小的方法,可得,∴最大的数是.故选:B.2.解:将数据42600用科学记数法表示为:4.26×104.故选:C.3.解:原式=4+2+1=7,故选:C.4.解:A、﹣9≠﹣,故本选项不符合题意;B、﹣|﹣9|=﹣9,﹣(﹣9)=9,﹣9≠9,故本选项不符合题意;C、|﹣9|=9,故本选项符合题意;D、|﹣9|=9,9≠﹣9,故本选项不符合题意.故选:C.5.解:由数轴可得,点A 表示的数是﹣1,第1页(共1页)∵|﹣2|=2,∴数轴上点A表示的数的绝对值为2.故选:C.6.解:规定:(↑30)表示零上30摄氏度,记作+30,(↓8)表示零下8摄氏度,记作﹣8.故选:B.7.解:根据题意可得①③正确,故选:B.8.解:在17后面添上一个百分号,这个数由17变成了17%,又因为17%=0.17,所以这个数缩小到原来的.故选:B.9.解:由题意可得,只有明明的方法是使用了乘法分配律,故选项C正确,选项A、B、D描述错误;故选:C.10.解:当x+3≥2x,即x≤3时,已知等式变形得:x+3=x+3,恒等式,此时x≤3;当x+3<2x,即x>3时,已知等式变形得:2x=x+3,即x=3,不符合题意,综上,x的取值范围是x≤3.故选:D.二.填空题第1页(共1页)11.解:a的相反数是7,则a的值是:﹣7.故答案为:﹣7.12.解:根据正数和负数的定义可知:减少20%记作﹣20%,故答案为:﹣20.13.解:∵abc>0且ab<0,∴c<0,对a的值分类讨论如下:①设a>0,∵ab<0,∴b<0,bc>0,∴+﹣=++=1﹣2﹣=﹣;②设a<0,∵ab<0,∴b>0,bc<0,∴+﹣=++=﹣1+2+=;故答案为:﹣或.14.解:∵|5﹣x|=x﹣5,∴5﹣x≤0,∴x≥5,第1页(共1页)故答案为:x≥5.15.解:根据题意得:a=﹣1,b=0,c=1或﹣1,即|c|=1,则原式=﹣1+0+1=0.故答案为:0.三.解答题16.解:(1)原式=×﹣×=﹣=﹣6;(2)原式=4+4×5﹣|﹣|=4+20﹣0.5=23.5.17.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.18.解:第一种2000×2.25%×2=90(元),第二种2000×1.75%×1=35(元),(2000+35)×1.75%×1≈35.61(元),第1页(共1页)35+35.61=70.61(元),则90元>70.61元,答:存两年期的得到的利息多一些.19.解:尝试:(1)43×11=473;(2)69×11=759;(3)98×(﹣11)=﹣1078;探究:(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是m,m+n,n,验证:这个两位数为10m+n,根据题意得:(10m+n)×11=(10m+n)(10+1)=100m+10(m+n)+n,则若m+n<10,百位、十位、个位上的数字分别是m,m+n,n;(2)若m+n≥10,十位上数字为m+n﹣10.故答案为:尝试:(1)473;(2)759;(3)﹣1078.20.解:(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b第1页(共1页)=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.第1页(共1页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册有理数拓展提升练习试题
一、 选择题(每小题3分,共30分)
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )
A.-1
B.0
C.1
D.2
2、有理数a 等于它的倒数,则a 2020是----------------------------------------------------( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数
3、若0ab ≠,则a
b a b
+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-2
4、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )
A 、-23
B 、-17
C 、23
D 、17
5、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )
A 、1
B 、2
C 、3
D 、4
6、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).
A.2
B. -2
C. 6
D.2或6
7、 x 是任意有理数,则2|x |+x 的值( ).
A.大于零
B. 不大于零
C. 小于零
D.不小于零
8、观察这一列数:34-,57, 910-, 1713,3316
-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.6519
9、若1
4+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个
10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .2
1-
二、填空题(每小题4分,共32分)
11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式
(每个数有且只能用一次)_______________ ______ ;
12. (-3)2013×( -3
1)2014= ; 13.若|x-y+3|+()22013y x -+=0,则y
x x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.
15.设c b a ,,为有理数,则由c
c b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,
则 │b -a│+│a+c│+│c -b │=____ _ ___;
17.根据规律填上合适的数: 1,8,27,64, ,216;
18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为100
1n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为50
1(21);n n =-∑又如“333333333312345678910+++++++++”可表示为
10
31
n n =∑,同学们,通过以上材料的阅读,请解答下列问题:
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)
用求和符号可表示为 ;
(2)计算:5
21
(1)n n =-∑= (填写最后的计算结果)。
三、解答题
19、计算:⎪⎭⎫
⎝⎛--+-⎪⎭⎫ ⎝⎛---32775.2324523
(4分)
20、计算:5025249⨯⎪⎭⎫
⎝⎛- (4分)
21、已知02a 1b =-+-, 求()()()()()()200620061
2211111
+++⋅⋅⋅+++++++b a b a b a ab 的值 (7分)
22、(7分)阅读并解答问题
求2008322.......221++++的值,
解:可令S =2008322......221++++,
则2S =20094322......222++++ ,
因此2S-S =122009-,
所以2008322......221++++=122009-
仿照以上推理计算出2009325......551++++的值
23. (8分)三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为
0,a
b ,b 的形式,试求20212020b a +的值.
24、(8分)电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20,试求电子跳蚤的初始位置K 0点所表示的数。
参考答案
一、 选择题
1、B
2、D
3、B
4、A 5 、 A 6、D 7、D 8、D
9、D 10、D
二、填空题
11、(答案不唯一)、12、3
1- 13、670 14、702 15、1,-1,3,-3 16、-2c 17、125 18、(1)∑=50
1
n )n 2( (2)50
三、解答题
19、解:原式=15.175.56.4375.26.43
2775.23246.4-=-=--=---++ 20、解:原式=()49825005025150105025110-=--=⎪⎭
⎫ ⎝⎛⨯-⨯-=⨯⎪⎭⎫ ⎝⎛-- 21、2008
2007 22、4
2152010- 23、解:由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,a
b ,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a b 与中有一个是1,但若0=a ,会使a
b 无意义,∴0≠a ,只能0=+b a ,即b a -=,于是1-=a
b .只能是1=b ,于是a =-1。
∴原式=2. 24、解: 设K0点所表示的数为x ,则K1,K2,K3,…,K100所表示的数分别为1x -,12x -+,123x -+-,…,123499100x -+-+-+. 由题意知:1234
99100x -+-+-+=20所以x=- 30.。