命题与证明的知识点总结

合集下载

《命题、定理、证明》

《命题、定理、证明》
要内容。
如何正确理解和使用命题、定理与证明
学生应该理解命题、定理和证明的基本概念和关系,掌握它们的证明方法和技巧 。 学生应该学会如何使用定理和命题来证明新的命题或解决问题。
学生应该理解证明的逻辑结构,并能够分析证明中的错误和不正确之处。
感谢您的观看
THANKS
《命题、定理、证明》
2023-11-06
contents
目录
• 命题与定理的基本概念 • 命题的证明方法 • 定理的证明方法 • 命题与定理的应用 • 命题与定理的局限性 • 命题、定理与证明的关系
01
命题与定理的基本概念
命题的定义与性质
定义
命题是一个陈述句,它表达了一个判断或观点。
性质
命题具有真假性,即它要么是真,要么是假。此外,命题还可以被分类为可 证明的或不可证明的。
命题是指一个可判断的陈述句,它表达了一个数学结 论或观点。
证明是使用逻辑推理来证明一个命题为真的过程。
命题、定理与证明在学术研究中的重要性
命题、定理与证明是数学学术 研究的基础,它们帮助学者们 建立和理解复杂的数学理论。
它们为数学和其他科学领域提 供了基础工具,促进了学术研
究的进步和发展。
在数学教育中,它们是培养学 生逻辑思维能力、分析和解决 问题的能力以及创新精神的重
• 步骤:首先通过观察具体实例,总结出一般规律;然后证明这个规律 对于所有情况都成立。
04
命题与定理的应用
在数学中的应用
代数
定理和命题在代数中应用广泛,如解方程、因式 分解、求根等。
几何
定理和命题在几何中用于证明角、边、面积的关 系,以及解决几何问题。
概率统计
定理和命题在概率论和统计学中用于证明各种概 率公式和统计规律。

2.2 命题与证明

2.2 命题与证明

第2章
三角形
【预习诊断】 (对的打“√”,错的打“×”) 1.原命题是真命题,那么它的逆命题也是真命题.( × ) 2.如果两个命题是互逆定理,那么这两个命题都是真命题.( √ )
第2章
三角形
探究点断命题的真假.
(1)负数都小于零;
(2)过直线l外一点作l的平行线; (3)如果a>b,a>c,那么b=c. 【导学探究】 判断命题的关键是看它是否做出了 判断 . 解:(1)是命题,是真命题. (2)不是命题,没有对一件事情做出判断.
证明:如图, ∵∠BAF=∠2+∠3, ∠CBD= ∠1+∠3 ∠ACE=∠1+∠2, ∴∠BAF+∠CBD+∠ACE=2(∠1+∠2+∠3)(等式的 性质). ∵∠1+∠2+∠3=180°(
三角形内角和定理
,
),
∴∠BAF+∠CBD+∠ACE=2×180°=360°.
第2章
三角形
【测控导航表】 知识点 命题 互逆命题 几何命题的证明 题号 1 、2 、6 、8 3 、7 、9 4、5、10
(C)无理数包括正无理数、0、负无理数
(D)两点之间,线段最短 解析:A、B、D都是真命题,都正确,C.0不是无理数,所以该命题错误,故 选C.
第2章
三角形
变式训练1-2:已知下列命题: ①若a>0,b>0,则a·b>0; ②若x≥1,则|x-1|=x-1;
③内错角相等;
④直角都相等. 其中原命题是真命题并且逆命题是假命题的是( A )
【导学探究】 1.要证明BD∥CE,需先证得∠3= 2.由∠1=∠2,可证得AD∥ BE 证明:∵∠1=∠2(已知), ∴AD∥BE(内错角相等,两直线平行), ∴∠D=∠DBE(两直线平行,内错角相等). ∠DBE . ,进一步证明∠D= ∠DBE .

三角形中的边角关系、命题与证明(知识点汇总 沪科8上)

三角形中的边角关系、命题与证明(知识点汇总 沪科8上)

第13章 三角形中的边角关系、命题与证明一、三角形(一)、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、顶点是A 、B 、C 的三角形,记作“ΔABC”,读作“三角形ABC”。

3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。

(二)、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

用字母可表示为a+b>c,a+c>b,b+c>a ;a -b<c,a -c<b,b -c<a 。

2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.4、作用:∠判断三条已知线段能否组成三角形;∠当已知两边时,可确定第三边的范围;∠证明线段不等关系。

(三)、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数。

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解专题28 命题与证明【知识要点】命题的概念:像这样判断一件事情的语句,叫做命题。

命题的形式:“如果…那么…”。

(如果+题设,那么+结论)真命题的概念:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

假命题的概念:如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。

如何说明一个命题是假命题:只需要举出一个反例即可。

定义、命题、公理和定理之间的关系:这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其它命题真假的依据。

一个命题的正确性需经过推理,才能作出判断,这个推理过程叫做证明。

证明的依据:可以是已知条件,也可以是学过的定义、基本事实或定理等。

【考查题型】考查题型一判断是否命题及命题真假典例1.(2021·广西贵港市·中考真题)下列命题中真命题是( )A 的算术平方根是2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2,故A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.变式1-1.(2021·四川雅安市·中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =【答案】B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.变式1-2.(2021·内蒙古通辽市·中考真题)从下列命题中,随机抽取一个是真命题的概率是( ) (1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-; (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1 【答案】C分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =,∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题, 则随机抽取一个是真命题的概率是34, 故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.变式1-3.(2021·湖北宜昌市·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( ).A .B .C .D .【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【详解】解:A 、如图1,∠1是锐角,且∠1=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B 、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C 、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D 、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.变式1-4.(2021·安徽中考真题)已知点,,A B C 在O 上.则下列命题为真命题的是( ) A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题;B .∵四边形OABC 是平行四边形,且OA=OC,∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.考查题型二写一个命题的逆命题典例2.(2021·广东广州市·九年级二模)下列命题的逆命题成立的是()A.全等三角形的对应角相等B.两个角都是45,则这两个角相等C.有两边相等的三角形是等腰三角形D.菱形的对角线互相垂直【答案】C【分析】写出每个命题的逆命题,然后逐一判断逆命题的真假,即可.【详解】A.全等三角形的对应角相等的逆命题是:“对应角相等的三角形是全等三角形”,不成立;B. 两个角都是45,则这两个角相等的逆命题是:“两个角相等,则这两个角都是45°”不成立;C. 有两边相等的三角形是等腰三角形的逆命题是:“等腰三角形有两边相等”,成立D. 菱形的对角线互相垂直的逆命题是:“对角形相互垂直的四边形是菱形”,不成立故选C.【点睛】本题主要考查命题的逆命题,熟练掌握全等三角形的性质,等腰三角形的定义,菱形的性质,是解题的关键.变式2-1.(2021·莆田擢英中学九年级零模)下列命题中,逆命题为真命题的是()A.对顶角相等B.邻补角互补C.两直线平行,同位角相等D.互余的两个角都小于90°【答案】C【分析】先写出各个命题的逆命题,再进一步判断真假,即可.【详解】A.对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;B.邻补角互补的逆命题是互补的角是邻补角,逆命题是假命题;C.两直线平行,同位角相等逆命题是同位角相等,两直线平行,逆命题是真命题;D.互余的两个角都小于90°的逆命题是都小于90°的角互余,逆命题是假命题;故选:C.【点睛】本题主要考查逆命题与真假命题,能写出原命题的逆命题是解题的关键.变式2-2.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a2>4.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果|a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my【答案】C【分析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .【点睛】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大. 考查题型三 用反证法证明命题典例3.(2021·河北九年级二模)求证:两直线平行,内错角相等如图1,若//AB CD ,且AB 、CD 被EF 所截,求证:AOF EO D '∠=∠以下是打乱的用反证法证明的过程①如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,②依据理论依据1,可得//A B CD '',③假设AOF EO D '∠≠∠,④AOF EO D '∴∠=∠.⑤与理论依据2矛盾,∴假设不成立.证明步骤的正确顺序是( )A .①②③④⑤B .①③②⑤④C .③①④②⑤D .③①②⑤④【答案】D【分析】根据反证法的证明步骤分析即可.【详解】解:假设AOF EO D '∠≠∠,如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,∴//A B CD '',这与平行公理“过直线外一点,有且只有一条直线与已知直线平行”矛盾,∴假设不成立,∴AOF EO D '∠=∠.故选:D【点睛】本题考查了反证法,反证法的证明步骤一般先假设与要求证结的相反的命题,再根据已知条件进行正面,最后得出的结论与已知或数学定理矛盾,从而说明要求证命题正确.变式3-1.(2021·浙江九年级其他模拟)能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2【答案】B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.变式3-2.(2021·浙江杭州市·八年级其他模拟)用反证法证明“ABC 中,若A B C ∠∠∠>>,则A 60∠>”,第一步应假设()A .A 60∠=B .A 60∠<C .A 60∠≠D .A 60∠≤【答案】D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是∠A >60°的反面有多种情况,应一一否定.【详解】解:∠A 与60°的大小关系有∠A >60°,∠A=60°,∠A <60°三种情况,因而∠A >60°的反面是∠A≤60°.因此用反证法证明“∠A >60°”时,应先假设∠A≤60°.故选:D变式3-3.(2021·河北唐山市·中考模拟)已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC ,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.变式3-4.(2021·浙江宁波市·九年级一模)能说明命题“若一次函数经过第一、二象限,则k+b >0”是假命题的反例是( )A .y 2x 3=+B .y 2x 3=-C .y 3x 2=--D .y 3x 2=-+【答案】D【分析】利用命题与定理,首先写出假命题进而得出答案.【详解】解:一次函数y=kx+b的图象经过第一、二象限,则k>0,b>0或k<0,b>0,故选D.【点睛】此题主要考查了反证法的证明举例,训练了学生对举反例法的掌握情况.。

沪科8年级数学上册第13章2 命题与证明

沪科8年级数学上册第13章2 命题与证明

作为进一步判断其他命题真假的依据,只不过基本事实
(公理) 是最原始的依据;而命题不一定是真命题,因而不
能直接用来作为判断其他命题真假的依据.
例 4 填写下列证明过程中推理的依据.
知4-练
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
知识点 5 三角形内角和定理及推论1, 2
知5-讲
1. 定理 三角形的内角和等于180°. 几何语言:在△ABC中,∠A+∠B+∠C=180°.
2. 三角形内角和定理的证明
知5-讲
证明方法 方法一
图示
证明过程
如图,过点A作l∥BC,则 ∠2=∠B,∠3=∠C. 因为 ∠1+∠2+∠3=180°,所 以∠1+∠B+∠C=180°.
知1-练
解:(1)(2)(3)(4)(5)(7)是命题,其中(2)(3)是真命题, (1)(4)(5)(7)是假命题.(6)不是命题.
知1-练
1-1. [期末·宿州桥区]下列命题是真命题的是( C ) A. 如果AB=BC,那么点C是AB的中点 B. 三条线段的长分别为a,b,c,如果a+b > c,那 么这三条线段一定能组成三角形 C. 三角形的内角和等于180° D. 如果| a |=| b |,那么a=b
续表: 证明方法
方法二
图示
知5-讲
证明过程 如图, 过点C作CD∥AB, 则∠1=∠A,∠2=∠B. 因 为∠1+∠2+∠ACB= 180°,所以∠A+∠B+ ∠ACB=180°.
续表: 证明方法
方法三
图示
知5-讲
证明过程 如图,过点D作DE∥AB, DF∥AC,则∠1=∠C, ∠2=∠4,∠3=∠B,∠A =∠4. 所以∠2=∠A. 因为 ∠1+∠2+∠3=180°,所 以∠A+∠B+∠C=180°.

命题与证明定义命题

命题与证明定义命题

04 命题的真假判定
真值表判定法
01
列出命题的所有可能取值情况 ,并判断每个取值下命题的真 假。
02
真值表可以清晰地展示命题的 真假情况,有助于判断命题的 真假。
03
真值表适用于简单的命题,但 对于复杂的复合命题,可能存 在较多的取值情况,导致真值 表难以完全列举。
归结推理判定法
01
将复合命题转化为简单命题,通过逻辑推理判断其真假。
03 反证法适用于一些难以直接证明的命题,但需要 有一定的推理技巧和逻辑思维能力。
05 命题的应用与实例分析
数学中的应用
几何学
在几何学中,命题通常用来描述图形的性质和关系,如“ 等腰三角形的两底角相等”或“两点之间线段最短”。
代数
在代数中,命题常用来描述数和代数式的性质,如“负数 的平方是正数”或“任何数的零次方等于1(除了0的0次 方)”。
推理的定义与分类
定义
推理是从一个或多个命题得出另一个命题的思维过程。
分类
根据不同的标准,推理可以分为不同的类型,如演绎推理、归纳推理、类比推理等。
推理的逻辑结构
前提
推理所依据的前提是已知的事实 或命题。
结论
由前提推导出的结果或命题。
逻辑形式
推理的逻辑形式是指推理过程中 前提与结论之间的结构关系。正 确的逻辑形式能够保证推理的有 效性。
归纳推理
通过观察一系列实例,总结出一般规律的推理过程。例如,观察到许多正方形都有四个相等的边和四 个相等的角,可以归纳出所有正方形都有这些性质。
日常生活中的应用
科学决策
在日常生活中,我们经常需要根据已知 的信息和经验做出决策。这些已知的信 息和经验可以看作是命题。例如,根据 天气预报的命题(今天会下雨),我们 可以决定带伞出门。

5.3.2命题、定理、证明

5.3.2命题、定理、证明

定理 真命题 命题
假命题
举出一个反__例__即可
概念 判断一件事情的语句
组成
_题__设___ _结__论___
如果 那么
1. 下列关于命题的描述中,正确的是 ( C )
A. 命题一定是正确的 B. 真命题一定是定理 C. 定理一定是真命题 D. 一个反例不足以说明一个命题为假命题
2. 命题“内错角相等”是真命题吗?若是,说出 理由,若不是,请举出反例. 答:不是真命题.必须是两直线平行,内错角相等.
(8)若 a<0,b>0,且 a b ,则a+b<0. √
2. 判断下列命题的真假.
(1) 同旁内角互补 (2) 一个角的补角大于这个角
(× ) (× )
(3) 相等的两个角是对顶角
(×)
(4) 两点可以确定一条直线
( √)
(5) 两点之间线段最短
(√)
(6) 同角的余角相等
( √)
(7) 互为邻补角的两个角的平分线互相垂直( √ )
命题 1:如果一个数能被 4 整除,那么它也能被 2 整除. 命题 2:如果两个角互补,那么它们是邻补角.
命题1 命题2
题设 成立 成立
结论 成立 不一定成立
总结 如果题设成立,那么结论一定成立,这样的
命题叫做真命题. 如果题设成立,不能保证结论一定成立,这
样的命题叫做假命题.
命题:相等的角是对顶角.
知识点3:定理与证明
公理 又称基本事实 真命题 线段公理:两点之间线段最短.
命题的分类
定理 经过推理证实 证明
补角的性质、余角的性质等.
假命题
一般举一个反例即可
b 例3 已知:b∥c,a⊥b.求证:a⊥c.

命题与证明的知识点总结

命题与证明的知识点总结

命题与证明的知识点总结知识结构梳理1.定义:(1)概念①;(2)分类2.命题②假命题(可通过来说明)(3)形式:命题都可写成的形式。

命题与证明(1)公理:3. 公理与定理(2)定理:(1)概念:4. 证明①理解题意,画出(2)证明命题的一般步骤②写出已知,③写出(3)反证法二、知识点归类知识点定义的概念对于一个概念特征性质的描述叫做这个概念的定义。

如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。

例1 在下列横线上,填写适当的概念:(1)连结三角形两边中点的线段叫作三角形的;(2)能够完全重合的两个图形叫做;(3)两组对边分别平行的四边形叫做;例2叙述概念的定义(1)数轴;(2)等腰三角形知识点命题知识点一命题的概念叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用是教科书是浙教版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

例下列句子中不是命题的是( )A 明天可能下雨B 台湾是中国不可分割的部分C 直角都相等D 中国是2008年奥运会的举办国知识点二真命题与假命题如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。

例下列命题中的真命题是()A 锐角大于它的余角B 锐角大于它的补角C 钝角大于它的补角D 锐角与钝角等于平角知识点三命题的结构每个命题都有条件和结论两部分组成。

条件是已知的事项,结论是由已知事项推断出的事项。

一般地,命题都可以写出“如果------,那么-------”的形式。

有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。

命题与证明)

命题与证明)

命题与证明㈠、定义;1、一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。

2、定义必须是严密的,避免使用含糊不清的术语,正确的定义能把被定义的事物或名词与其他的事物或名词区分开来。

㈡、命题;1、一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.2、命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.一般可以用“如果……,那么……”表示3、注意事项:(1)命题通常是一个陈述句,包括肯定句和否定句,而疑问句和命令性语句都不是命题;(2)必须是对某一事件作出肯定或否定的判断,两者必具其一㈢、真命题和假命题:1. 正确的命题称为真命题,不正确的命题称为假命题。

2. 要判断一个命题是真命题,可以通过实践是方式,也可以通过推理的方式,即根据已知事实来推断未知事实,也有一些命题是人们经过长期实践后公认的真命题,如“两点之间线段最短”,“两点确定一条直线”等,判断一个命题是假命题,只要举出一个反例即可。

(四)、公理,定理:1. 经过长期实践后公认为正确的命题,作为判断其他命题的依据。

这样公认为正确的命题叫做公理。

例如:“两点之间线段最短”,“一条直线截两条平行所得的同位角相等”。

用推理的方法判断为正确的命题叫做定理。

2. 公理是不需要堆理论证的真命题,它可以作为判断其余命题真假的原始依据。

3. 定理都是真命题,但并不是所有的真命题都能作为定理,定理可以作为判断其他命题真假是依据。

4、本章中公理定理总结1) 平行线的判定性质定理平行线的判定公理● 两直线被第三条直线所截,如果同位角相等,那么这两条直线平行. ● 两条平行线被第三条直线所截,同位角相等.注意:证明两直线平行,关键是找到与特征结论相关的角.平行线的性质.● 公理:两直线平行,同位角相等.● 定理:两直线平行,内错角相等.● 定理:两直线平行,同旁内角互补.2)三角形内角和定理三角形内角和定理:三角形的内角和等于180°。

命题与证明知识讲解

命题与证明知识讲解

命题与证明知识讲解【学习目标】1.了解命题、定义、公理、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明;4.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、演绎证明、演绎推理演绎证明从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.演绎推理演绎推理是数学证明一种常用的、完全可靠的方法.演绎证明是一个严格的数学证明,是我们将要学习的证明方法,演绎证明也称为证明.要点诠释:演绎推理的过程就是演绎证明,并不是所有的真理都可以进行演绎证明.要点二、命题、公理、定理定义能界定某个对象含义的句子叫做定义.命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.公理人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.定理从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点三、逆命题和逆定理互逆命题在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.互逆定理如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.【典型例题】类型一、命题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.2. 下列命题是真命题的是( )A .如果|a|=1,那么a=1B .有两条边相等的三角形是等腰三角形C .如果a 为实数,那么a 是有理数D .有两边和一角相等的两个三角形全等;【答案】C【解析】如果|a|=1,那么a=±1,故A 错误;如果a 为有理数,那么a 是实数,故C 错误;有两边和夹角相等的两个三角形全等,故D 错误;而B 根据等腰三角形的定义可判断正确;【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:【变式】下列命题中,真命题的个数有()①对顶角相等②同位角相等③4的平方根是2 ④若a>b,则-2a>-2b A.3个B.1个C.4个D.2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。

命题、证明及平行线的判定定理(基础)知识讲

命题、证明及平行线的判定定理(基础)知识讲

命题、证明及平行线的判定定理(基础)知识讲解责编:赵炜【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论.【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1.请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】(2),(3),(6)是定义.2.说出下列命题的条件和结论,并判断它是真命题还是假命题:(!)如果,那么;,>>a b b c >a c (2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:;结论:.它是真命题.,>>a b b c >a c(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】(2013•贵港)下列四个命题中,属于真命题的是( ).A ,则B .若a >b ,则am >bm m =a m =C .两个等腰三角形必定相似D .位似图形一定是相似图形【答案】D类型二、公理、定理及证明3.证明:等角的余角相等.【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:∠1=∠2,∠1+∠3=90°,∠2+∠4=90°.求证:∠3=∠4.证明:∵∠1+∠3=90°,∠2+∠4=90°,(已知)∴∠3=90°-∠1,∠4=90°-∠2.(等式的性质)∵∠1=∠2(已知),∴∠3=∠4(等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据.此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).A .定义B .定理C .公理D .不是命题【答案】B类型三、平行线的判定定理4.如图所示,由(1)∠1=∠3,(2)∠BAD =∠DCB ,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD ∥BC (内错角相等,两直线平行);(2)由∠BAD =∠DCB ,∠1=∠3得:∠2=∠BAD -∠1=∠DCB -∠3=∠4(等式性质),即∠2=∠4∴AB ∥CD (内错角相等,两直线平行).综上,由(1)(2)可判定:AD ∥BC ,AB ∥CD .【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.举一反三:【变式1】如图,下列条件中,不能判断直线∥的是( ).1l 2l A .∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=1800【答案】B【高清课堂:平行线及判定 例1】【变式2】已知,如图,BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,求证:AB//CD .【答案】∵ ∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)5.(2015•日照期末)如图,AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AD ∥BC .【答案与解析】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【总结升华】主要考查角平分线的性质以及平行线的判定定理.【高清课堂:平行线及判定例5】举一反三:【变式1】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ-∠1=∠MGE-∠2 (等式性质),即∠3=∠4.∴ AB∥CD (同位角相等,两直线平行).【变式2】(2015•宁城)如图,下列能判定AB∥CD的条件有( )个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.。

命题与证明知识点总结

命题与证明知识点总结

命题与证明知识点总结命题与证明是数学中基础且重要的一部分,它涉及到逻辑推理、推断和论证等一系列思维活动。

在整个数学学科中,命题与证明贯穿始终,无处不在。

本文将系统总结命题与证明的相关知识点,包括命题逻辑、证明方法、常见证明技巧等内容。

一、命题逻辑命题逻辑是研究命题之间的逻辑关系的一门学科,其中命题是陈述句,它要么为真,要么为假。

在命题逻辑中,我们通常使用符号来表示命题,并通过符号之间的逻辑连接来表达命题之间的关系。

常见的逻辑连接包括合取(∧)、析取(∨)、蕴含(→)、双条件(↔)等。

1.合取合取是指命题p和q同时为真时,合取命题p∧q为真,否则为假。

合取命题p∧q的真值表如下:p q p∧qT T TT F FF T FF F F2.析取析取是指命题p和q中至少有一个为真时,析取命题p∨q为真,否则为假。

析取命题p∨q的真值表如下:p q p∨qT T TT F TF T TF F F3.蕴含蕴含是指当p为真而q为假时,蕴含命题p→q为假,否则为真。

蕴含命题p→q的真值表如下:p q p→qT T TT F FF T TF F T4.双条件双条件是指命题p和q同时为真或同时为假时,双条件命题p↔q为真,否则为假。

双条件命题p↔q的真值表如下:p q p↔qT T TT F FF T FF F T二、证明方法在数学中,我们常常需要证明一个命题的真假,为此我们需要采用合适的证明方法来论证。

常见的证明方法包括直接证明法、间接证明法、数学归纳法等。

1.直接证明法直接证明法是指通过一系列逻辑推理来证明一个命题的方法。

通常情况下,我们能够找到一条直接的逻辑推理路径,从已知的事实得出结论。

举例:证明“所有的偶数都是2的倍数”。

我们可以直接证明该命题,因为偶数的定义就是2的倍数。

2.间接证明法间接证明法是指通过反证法来证明一个命题的方法。

我们假设该命题的反命题为真,然后通过一系列逻辑推理得出矛盾,从而证明原命题为真。

八年级命题与证明知识点

八年级命题与证明知识点

八年级命题与证明知识点
为了更好地帮助八年级的学生复习和掌握数学知识,本文将总结八年级命题与证明的重要知识点。

这些知识点是建立在初中数学基础上的,包括代数公式、等式的性质、角的定义、垂直角、平行线与夹角、三角形与四边形的基本概念和性质、勾股定理、相似三角形等内容。

以下是详细介绍:
一、代数公式
1.展开式和因式分解
2.二次根式简化
3.分式的基本操作和简化
二、等式的性质
1.等式两边加减相等数仍相等
2.等式两边乘除相等数仍相等
3.移项变形原则
三、角的定义
1.角的度量单位
2.角的分类
3.角平分线
四、垂直角
1.垂直角的定义和判定
2.垂直角的性质
3.全等图形中垂直角相等
五、平行线与夹角
1.平行线的定义和判定
2.平行线的性质
3.同位角、内错角、同旁内角
六、三角形的基本概念和性质
1.三角形的边和角
2.三角形的分类
3.三角形的周长和面积公式
七、四边形的基本概念和性质
1.四边形的性质
2.平行四边形的性质
3.矩形、菱形和正方形的性质
八、勾股定理
1.勾股定理的证明
2.勾股三元数的判别式
3.利用勾股定理解决问题
九、相似三角形
1.相似三角形的定义和判定
2.相似三角形的性质
3.相似三角形的应用
以上就是八年级命题与证明的重要知识点。

这些知识点不仅是掌握初中数学的基础,而且在高中和大学的数学学习中也是必要的。

希望学生们能够重视这些知识点的学习,认真思考、理解和应用,取得更好的成绩。

定义、命题与证明

定义、命题与证明

知识点一:定义与命题在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition)如:1、“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.2、“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.3、“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程”是“一元一次方程”的定义.4、“两组对边分别平行的四边形叫做平行四边形”是“平行四边形”的定义.5、“角是由两条具有公共端点的射线组成的图形”是“角”的定义.综上:定义就是对名称和术语的含义加以描述,作出明确的规定在假设的前提条件下,对某一处受到污染作出了判断。

像这样,对事情作出判断的句子,就叫做命题。

即:命题是判断一件事情的句子。

如:熊猫没有翅膀。

对顶角相等。

类比举例:1、两直线平行,内错角相等.2、无论n 为任意的自然数,式子n 2-n +11的值都是质数.3、内错角相等.4、任意一个三角形都有一个直角.5、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.综上:命题一般由条件和结论两部分组成,一般可以写成:“如果……,那么……”的形式,如果开始的部分是条件,那么后面的部分是结论;命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗? 作线段AB =a . 平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.一、证明的必要性1、已知;如下图,a ∥b ,b ∥c 直线a ,b 平行吗?(1)请你先通过观察作出判断.你能肯定自己的判断正确吗?(2)在图24—3(1)中,再作一条直线l ,使直线l 与直线a ,b ,c 都相交,如图24—3(2).用量角器测量∠1和∠2,根据∠1和∠2的大小关系,你能判定“a 与b 平行”这一结论正确吗?知识点2:证明2、当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.由此归纳得出:当n取任意正整数时,(n2-5n+5)2的值都是1.你认为这个命题正确吗?为什么?3、如果a=b,那么a2=b2.由此类比猜想得出:当a>b时,a2>b2,你认为这个命题正确吗?为什么?1.(1)a∥b,不能, (2)由∠1=∠2,能判断a∥b2.不正确.当n=5时,(n2-5n+5)2=25.3.不正确,因为0>-1,但02<(-1)2,以上事例说明,我们经常采用观察、测量、归纳、类比的方法来探索结论,发现命题.但是,由这些方法得到的命题可能是真命题,也可能是假命题.一个命题的真假,常常需要进行有理有据的推理才能作出正确的判断.这个推理的过程叫做命题的证明(proof).我们把经过证明的真命题叫做定理(theorem).经过实践检验公认是真命题的,我们把它叫做公理(axiom).如“过平面上两点,有且只有一条直线”就是一个公理.等式和不等式的性质也可以看做公理.证明命题时,仅有已知条件作为证明的基础是不够的,还需要一些公理、定义和定理作为推理论证的依据.典型例题例1、已知:如图,点C,D在线段AB上,点C是AD的中点,点D是CB的中点.求证:AD=CB.分析:由“点C是AD的中点,点D是CB的中点”,可以得到AC=CD=DB,进而可以得到AD=CB.证明:因为点C是线段AD的中点(已知),所以 AC=CD(线段中点的定义).因为点D是线段CB的中点(已知),所以CD=DB(线段中点的定义).所以AC=DB(等量代换).所以AC+CD=DB+CD(等式的性质).即AD=CB.注:在等式或不等式中,一个量可以用与它相等的量来代替,这叫做“等量代换”.在上面的证明过程中,我们根据的都是定义、性质和已知条件.在叙述中经常用到“因为”和“所以”这两个词,为了方便,今后,我们在证明时用符号“∵”表示“因为”,用符号“∴”表示“所以”.二、命题证明的格式和步骤.(明是推理论证命题的过程,要步步有据。

13.1 命题与证明

13.1  命题与证明
(2)如果a>b,那么a2>b2; 原命题是假命题. 逆命题为:如果a2>b2,那么a>b. 逆命题是假命题.
(来自《点拨》)
知1-讲
(3)如果两个数互为相反数,那么它们的和为零; 原命题是真命题. 逆命题为:如果两个数的和为零,那么它们互为相反数. 逆命题是真命题.
(4)如果ab<0,那么a>0,b<0. 原命题是假命题. 逆命题为:如果a>0,b<0,那么ab<0. 逆命题是真命题.
例可以是( A ) A.a=-2
B.a=13
C.a=1
D.a=2

甲乙丙丁戊五名同学参加投铅球比赛,通过抽 签决定出赛顺序,在未公布顺序前,每人都对 出赛顺序进行了猜测,甲猜:乙第三,丙第五; 乙猜:戊第四,丁第五;丙猜:甲第一,戊第 四;丁猜:丙第一,乙第二;戊猜:甲第三, 丁第四,老师说,每人的出赛顺序都至少被一 人所猜中,则出赛顺序中, 第一是—丙—,第三是—甲—,第五是—丁—.

已知C是线段AB上一动点,M是线段BC的中点 (1)求证:AC+AB=2AM (2)若将条件“C是线段AB上一动点”改成“C是线段 AB延长线上一动点”,其它条件不变,(1)的结论 是否仍然成立?若成立请证明,若不成立,请说明 理由
解:(1)如果两直线平行,那么这两直线都和第三条直线 垂直;
(2)若a>0,b>0,则a+b>0 (3)有两个角相等的三角形是等腰三角形.
1.如果一个定理的逆命题是真命题,那么 这个逆命题也就成了定理。这两个定理叫 做互逆定理,其中一个定理叫做另一个定 理的逆定理.
注:(1)每个命题都有逆命题,但不 是所有定理都有逆定理(2)互逆定理 必须都是真命题
(来自《教材》)
知1-讲
例1 判断下列命题的真假,写出逆命题,并判断逆命题的 真假: (1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0.

中考数学知识点总结命题定理与证明

中考数学知识点总结命题定理与证明

中考数学知识点总结:命题、定理与证明1、命题与定理定义1:判断一件事情的语句,叫做命题。

命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。

数学中的命题常可以写成“如果……,那么……”的形式。

“如果”后接的部分是题设,“那么”后接的部分是结论。

定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。

定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。

定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。

其中一个叫做原命题,另外一个叫做逆命题。

如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。

2、证明一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。

1、通过具体实例,了解定义、命题、定理、推论的意义。

2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。

会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。

3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。

4、了解反例的作用,知道利用反例可以判断一个命题是错误的。

1、命题及命题真伪的判断。

2、命题的条件和结论的区分。

3、写出命题的逆命题。

1、下列语句中,属于命题的是( )A、直线AB和CD垂直吗B、过线段AB的中点C画AB的垂线C、同旁内角不互补,两直线不平行D、连结A、B两点2、下列语句不是命题的是( )A、两点之间线段最短B、不平行的两条直线有一个交点C、x与y的和等于0吗?D、对顶角不相等3、命题“垂直于同一条直线的两条直线互相平行”的题设是( ) A 、垂直 B 、两条直线C 、同一条直线D 、两条直线垂直于同一条直线4、命题“直角都相等”的题设是 ,结论是 。

5、把命题“有三个角是直角的四边形是矩形”改写成“如果……那么……”的形式: 。

《命题与证明》讲义

《命题与证明》讲义

命题与证明一、定义与命题1.定义:对某一名称或术语的含义,作出明确的规定,这样的句子叫做定义。

定义必须是严密的,一般避免使用含糊不清的术语,如“一些”、“大概”、“差不多”等不能在定义中出现。

正确的定义能把被定义的事物或名词与其他的事物或名词区别开来。

2.命题:对某一件事情作出正确或不正确的判断的句子,叫做命题。

正确的命题称为真命题;不正确的命题称为假命题。

每个命题都由条件和结论两部分组成。

条件是已知事项,结论是由已知事项推断出的事项。

一般地,命题都可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论。

3.公理、定理数学中有些命题的正确性是人们在长期实践中总结出来的,并把这一部分公认的真命题作为证明其他命题真假的起始依据,这些公认的真命题即为公理。

除了公理外,其他真命题的正确性都要通过推理的方法证实它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题即为定理。

【注意】公理和定理都是正确的命题,它们的细微差别是:公理是公认的正确命题,定理是用推理的方法判断为正确的命题。

4.如何判断命题的真假要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明),由条件到结论通过事实依据推导。

要说明一个命题是错误的,只需举出一个反例即可,也就是说能找到不符合命题的事实是判断假命题的有效方法。

二、证明1.证明:根据条件、定义及公理、定理等,经过推理,来判断一个命题是否正确,这样的推理过程叫证明。

证明过程包括已知、求证、证明和图形等。

2.三角形的内角和与三角形的外角(1)三角形三个内角和等于180°;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角。

3.反例:命题的反例是具备命题条件但不具备命题结论的实例,可以用来判断命题的错误性。

4.两直线平行的证明(1)若两直线与第三条直线相交,所得同位角相等或内错角相等,或同旁内角互补,则两直线平行;(2)在同一平面内,垂直于同一直线的两直线平行;(3)平行于同一直线的两直线平行。

初一数学命题定理证明知识点

初一数学命题定理证明知识点

初一数学命题定理证明知识点一、知识概述《初一数学命题定理证明知识点》①基本定义:- 命题就是可以判断真假的陈述句。

比如说“太阳从东边升起”,这就是一个真命题,因为这是客观事实。

而像“1 + 1 = 3”就是一个假命题,因为我们知道1加1等于2。

②重要程度:- 在初一数学里,这是构建逻辑思维基础的重要部分。

如果把数学比作一个大厦,命题定理证明就是大厦的地基。

以后学习更复杂的几何和代数知识的时候,都离不开这个基础。

③前置知识:- 得懂得基本的数学运算,例如加法、减法、乘法、除法,知道简单的数学关系,像数量大小等关系。

要是连1 + 2等于几都不知道,那判断关于这些数字运算的命题真假就无从谈起了。

④应用价值:- 在生活里用处不少。

比如算家里装修要用多少材料,你要根据房间的面积、形状等条件列出命题或者判断相关命题的真假,再计算到底买多少瓷砖或者涂料。

在工程里也是,如果工程师要搭建一座桥梁,他得根据各种数据列出命题,计算承重之类的数据,来确定方案是不是可行。

二、知识体系①知识图谱:- 在初一数学体系里,它是逻辑部分的基础。

是开始构建从简单数学知识到复杂数学证明的关键一环,把数字和运算与逻辑推理联系起来。

②关联知识:- 和有理数、整式的运算等都有关系。

比如对于整式的变形公式,它是否成立其实就是一个命题的真假判断问题。

同时也和简单的几何图形认识有关,像三角形内角和是180度这种命题就涉及简单几何知识。

③重难点分析:- 难点在于如何准确判断一个比较复杂语句是不是命题,并且判断真假。

比如“在x > 2的情况下,x + 1 > 3”,这就要先明白变量x的取值范围对命题的影响。

重点就是理解命题、定理、证明相关概念的内涵。

④考点分析:- 在考试里经常会出现判断命题真假,简单证明命题的题目。

可能是直接给个陈述让你判断,或者是在几何图形题里头包含命题的判断和证明。

考试主要是检查你对概念的理解和简单的逻辑运用能力。

初二数学第十九章命题与证明

初二数学第十九章命题与证明

初二数学第十九章:几何证明(一)一、知识梳理 【知识点1】演绎证明:从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.证明:演绎推理是数学证明的一种常用的、完全可靠的方法.演绎证明是一种严格的数学证明,是我们现在要学习的证明方式.在本书中演绎证明以后简称为证明. 【问题讨论】阅读下面的证明过程,说一说其中的因果关系.已知:如图,∠AOC 与∠COB 互为邻补角,OD 平分∠AOC ,OE 平分∠COB . 求证:∠DOE =90o .证明:∵OD 平分∠AOC (已知),∴∠1=21∠AOC (角平分线的意义). 同理∠2=21∠COB .∴∠1+∠2=21∠AOC +21∠COB =21(∠AOC +∠COB )(等式性质).∵∠AOC 与∠COB 互为邻补角(已知),∴∠AOC +∠COB =180o (邻补角的意义), 得∠1+∠2=90o (等量代换), ∴∠DOE =90o .【知识点2】定义:能界定某个对象含义的句子叫作定义. 例如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义. 【知识点3】对某一件事情做出判断,像这样判断一件事情的句子叫作命题;其判断为正确的命题叫作真命题;其判断为错误的命题叫作假命题. 在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.【问题讨论】把下列命题写成“如果.......,那么.......”的形式. (1)三条边对应相等的两个三角形全等.条件是____________________; 结论是:_______________________. 改写成:如果两个三角形有三条边对应相等,那么这两个三角形全等. (2)等角对等边;条件是:___________________;结论是:___________________________.改写成:如果在同一个三角形中,有两个角相等,那么这两个角所对的边也相等. (3)对顶角相等。

命题与证明复习资料

命题与证明复习资料

命题与证明复习资料知识讲解一:定义与命题概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题结构:命题可看做由题设(条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项。

命题的分类:正确的命题叫做真命题,不正确的命题叫做假命题判定一个命题是真命题的方法:(1)通过推理的方式,即根据已知的事实来推断未知事实;用推理的方法判断为正确的命题叫做定理.(2)人们经过长期实践后而公认为正确的:数学中通常挑选一部分人类经过长期实践后公认为正确的命题叫做公理.定理和公理都可以作为判断其他命题真假的依据。

命题⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧假命题(举反例)理)其它的真命题(需要推定理(需要推理)公理(公认为正确)真命题 ◆针对练习1.下列语句中,为定义的是( )A .两点确定一条直线吗;B .三角形的角平分线是一条线段C .在同一平面内,不相交的两条直线叫做平行线;D .同角的余角相等2.已知下列句子:①延长线段AB 到C;②垂线段最短;③过点A 画直线EF ;④将4•开平方.其中是命题的有( )A .1个B .2个C .3个D .4个3.把命题“同角的补角相等”改写成“如果……那么……”的形式,正确的是( )A .如果同角,那么相等;B .如果同角,那么补角相等;C .如果同角的补角,那么相等;D .如果两个角是同一个角的补角,那么这两个角相等.4.指出下列命题的条件和结论,并改写成“如果……那么……”的形式.(1)两直线平行,内错角相等;(2)全等三角形的面积相等.5.正确的命题称为______命题,不正确的命题称为_______命题.命题“如果ab=0,那么a=0”是________命题;命题“如果a=0,那么ab=0”是________命题.6.下列说法正确的是( )A .定理不一定是真命题;B .真命题不一定正确C .假命题不一定错误;D .公理一定是真命题7.(1)命题“若a 〉3,则2(3)a =a —3”是真命题还是假命题?请说明理由.(2)命题“如果ab 〉0,则a>0且b 〉0”是真命题还是假命题?请说明理由.8.•命题“在一个三角形中,•等边对等角”的条件是:____________,结论是:_______________,它是______命题.9.如图,△ABC 中,∠B=∠C ,AD ∥BC,则AD 平分△ABC 的外角∠EAC.用推理的方法说明它是一个真命题.◆综合提高10.指出下列命题的题设和结论,并把它改写成“如果……那么……”的形式.(1)三角形两边之和大于第三边;(2)三角形的内角和等于180°.11.观察下列给出的方程,找出它们的共同特征,试给出名称,并作出定义.x 3+x 2-3x+4=0,x 3+x-1=0,x 3—2x 2+3=x ,y 3+2y 2-5y-1=0.12.已知下列命题:①有一个内角是60°的三角形是等边三角形;•②有一个内有是60°的等腰三角形是等边三角形;③有两个内角是60°的三角形是等边三角形;④三个内角相等的三角形是等边三角形.其中真命题有( )A.1个 B.2个 C.3个 D.4个13.下列命题中,哪些是真命题?哪些是假命题?请说明理由.(1)如果两个角相等,那么它们是对顶角.(2)关于x的方程ax2-x=0(a≠0)必有两个不相同的实数解.14.下列关于代数式x2-4x+8的三个命题:①该代数式的值必定大于8;②该代数式的值必定大于4;③该代数式的值必定大于2.其中是真命题的有_______.(填序号)知识点二:证明概念:要判断一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理,一步一步推得结论成立,这样的推理过程就叫做证明注:证明过程中的每一步推理都要有依据,依据作为推理的理由可以写在每一步后的括号内证明命题的一般步骤:(1)根据题意,画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证"中写出结论;(3)在“证明"中写出推理过程.依据思路,运用数学符号和数学语言条理清晰地写出证明过程;检查表达过程是否正确、完善.证明几何命题时,表述要按照一定的格式,一般为:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论(3)在“证明"中写出推理过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题、定理与证明的知识点总结一、知识结构梳理二、知识点归类知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。

如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。

知识点二命题的概念叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用是教科书是湘教版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

知识点三命题的结构每个命题都有题设和结论两部分组成。

题设是已知的事项,结论是由已知事项推断出的事项。

一般地,命题都可以写出“如果------,那么-------”的形式。

有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。

如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。

例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。

1、同角的余角相等2、两点确定一条直线知识点四真命题与假命题如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。

知识点五证明及互逆命题的定义1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。

注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。

2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。

注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。

例说出下列命题的逆命题,并指出它们的真假。

(1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。

类型一:例、判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?(1)对顶角相等;(2)画一个角等于已知角;(3)两直线平行,同位角相等;(4),两条直线平行吗? (5)鸟是动物;(6)若,求的值;(7)若,则.思路点拨:通过本题熟悉命题的定义解析:句子(1)(3)(5)(7) 对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中(1)(3)(5)判断是正确的,(7)判断是错误的.【变式1】下列语句中,哪些是命题,哪些不是命题?(1)若a<b,则;(2)三角形的三条高交于一点;(3)在ΔABC中,若AB>AC,则∠C >∠B吗?(4)两点之间线段最短;(5)解方程;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.类型二:例、指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;(5)三角形的内角和等于180°;(6)角平分线上的点到角的两边距离相等.思路点拨:找出命题的条件和结论是本题的难点,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写时注意要把省略的词或句子添加上去.解析:(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。

可以改写成“如果在同一个三角形中有两个角相等,那么这两个角所对的边也相等。

”值得注意的是,命题中包含了一个前提条件:“在一个三角形中”,在改写时不能遗漏.(3)这个命题的条件是“两个角是对顶角”,结论是“两个角相等”.这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”.(4)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.这个命题可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.(5)条件是“三个角是一个三角形的三个内角”,结论是“这三个角的和等于180°”.这个命题可以改写如果“三个角是一个三角形的三个内角,那么这三个角的和等于180°”;(6) “如果一个点在一个角的平分线上,那么这个点到这个角的两边距离相等。

”总结升华:注意原命题中省略的重要内内容一定要补充完整。

【变式1】试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;【答案】(l)对顶角相等(真);相等的角是对顶角(假);不是对顶角不相等(假);不相等的角不是对顶角(真).(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);两直线不平行,同位角不相等(真);同位角不相等,两直线不平行(真).(3)若a=0,则ab=0(真);若ab=0,则a=0(假);若a≠0,则ab≠0(假);若ab≠0,则a≠0(真).(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);两条直线平行,则一定不相交(真);两条直线不相交,则一定平行(假).【变式2】判断正误:(1)如果两个角是对顶角,那么这两个角相等。

()(2)如果两个角相等,那么这两个角是对顶角。

()(3)如果两个角有公共顶点,那么这两个角是对顶角。

()(4)如果两个角有公共顶点,有一条公共边,那么这两个角是邻补角。

()(5)如果两个角是邻补角,那么这两个角一定互为补角。

()(6)如果两个角的和是180°,那么这两个角是邻补角。

()(7)对顶角的角平分线在同一条直线上。

()(8)如果两个角有公共顶点,且角平分线互为反向延长线,那么这两个角是对顶角。

【答案】:(1)√;(2)×;(3)×;(4)×;(5)√;(6)×;(7)√;(8)×。

注:判断题如果是正确的命题需要加以说明或论证,找出依据,如果是错误的命题,只要举出一个反例即可。

知识点六公理与定理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。

以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。

注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;(2 ) 定理都是真命题,但真命题不一定都是定理。

例填空:(1)同位角相等,则两直线;(2)平面内两条不重合的直线的位置关系是;(3)四边形是平行四边形。

知识点七互逆定理如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。

注意:每个命题都有逆命题,但并非所有的定理都有逆定理。

如:“对顶角相等”就没逆定理。

知识点八证明的含义从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。

推理证明的必要性:判断猜想的数学结论是否正确,仅仅依靠经验是不够的,必须一步一步,有理有据地进行推理。

证明命题的步骤:由题设出发,经过一步步的推理最后推出结论(书证)正确的过程叫做证明。

证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理,在此以前学过的定理。

(证明命题的格式一般为:1)按题意画出图形;2)分清命题的条件和结论,结合图形在“已知”中写出条件,在“求证”中写出结论;3)在“证明”中写出推理过程)证明的四个注意(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题:②公理可以作为判定其他命题真假的根据.(2)注意,定理都是真命题,但真命题不一定都是定理;一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题. 这些被选作定理的真命题,在教科书中是用黑体字排印的.(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断。

如“两直线平行,同位角相等”这个命题,如果只采用测量的方法. 只能测量有限个两平行直线的同位角是相等的. 但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.(4)注意:证明中的每一步推理都要有根据,不能“想当然”. ①论据必须是真命题,如;定义、公理、已经学过的定理和已知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.例1.证明:两直线平行,内错角相等。

已知:a∥b,c是截线求证:∠1=∠2分析:要证∠1=∠2只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2证明:∵a∥b(已知)∴∠3=∠2(两直线平行,同位角相等)∵∠1=∠3(对顶角相等) ∴∠1=∠2(等量代换)例2. 如图所示,已知:∠A=∠F,∠C=∠D,求证:BD∥CE分析:要证BD∥CE,只需证得∠D=∠CEF或∠D+∠CED=180°即可,由于∠C=∠D,因此只要∠C=∠CEF或∠C+∠CED=180°,这就需要有AC∥DF,由已知条件中的∠A=∠F,可以得出AC∥DF,故此题可证证明:∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠C=∠CEF(两直线平行,内错角相等)又∵∠D=∠C(已知)∴∠D=∠CEF(等量代换) ∴BD∥CE(同位角相等,两直线平行)【变式】已知:如图正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF(1)求证:ΔBCE≌ΔDCF(2)若∠FDC=30°,求∠BEF的度数。

知识点九反证法反证法:在证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义,公理,定理等矛盾的结论,从而得出假设命题不成立是错误的,即所求证的命题成立,这种证明方法叫做反正法。

反证法的基本步骤:1.假设命题的结论不成立 2.从这个假设出发,经过推理论证得出矛盾。

3.有矛盾判定假设不正确,从而肯定命题的结论正确结论的反面不止一种情形的反证法:应用反证法证明命题时,首先要分清命题的题设和结论,再全面地否定结论,如果结论的反面不止一种情形,那么必须把各种可能性都列出来,并且在逐一加以否定之后,才能肯定原结论正确。

例1、已知:如右图,直线l 1,l 2,l 3在同一平面内,且l 1∥l 2,13与11相交于点P.求证:13与l 2相交.(使用反证法)思路点拨:仔细阅读反证法的定义,掌握这种方法的规律。

相关文档
最新文档