极限的求法
极限求解方法总结
千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
函数极限的十种求法
函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。
时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。
极限的六种求法
极限的六种求法1、代入法作者:教资备考群(865061525)之管理员,—━☆知浅づ如果自变量所趋近的值,能使函数有意义,就可以直接代入函数表达式中。
注:能使函数有意义,就是这个自变量在函数的定义域内。
【例】limx→2 x2x3 + 1− 2x + 3=( )。
2解:x2 − 2x + 3 = (x − 1)+ 2 ≥ 2 ≠ 0可见该函数的定义域是x3 + 1 R,所以可以直接将8 + 1x = 2 代入x3 + 1 。
x2 − 2x + 3limx→2 x2− 2x + 3 = limx→24 − 4 + 3= 3。
2、约公因子法如果自变量所趋近的值,使得函数没有意义。
可以考虑约公因子,将其约去。
因此经常运用因式分解。
【例】limx→3x2−x− 6x−3=( ) 。
解:这里发现,该函数的定义域为{x|x ≠ 3}。
如果x → 3,会使得函数没有意义。
因此考虑约公因子。
lim x→3x2−x−6x− 3= limx→3(x− 3)(x + 2)x− 3= lim(x + 2) = 5。
x→30 ⎩ x x x3、最高次幂法当函数是分式形式,且分子、分母都是多项式时,可以使用最高次幂法求极限。
它的原理,就是分子分母同时除以自变量的最高次幂。
这样自变量趋近于无穷大时, 那些比最高次幂低的项,直接就变为 0 了。
最高次幂法也俗称抓大头。
a⎧ ,n = m , a x m + a x m−1 + ⋯ + a⎪b 0lim 0 1 m = x→∞ b 0x n + b 1x n−1 + ⋯ + b n ⎨0,n > m , ⎪∞,n < m 。
【 例 】10x 4 + 6x 3 − x 2 + 3( ) 。
1 limx→∞2x 4 − x 2 − 9x=首先,观察到函数是个分式的形式。
其次,分子跟分母的最高次幂都是 4;最后,求极限直接用最高次幂法,原式 = 10= 5。
2那么,不妨拿这个例子,验证一下最高次幂法的原理。
极限的求法总结
n2
11 lim (1 )
n2 n
1 2
.
例ln i m (1 133 15 ...4 n 1 2 1 )
拆 项 :4 n 2 1 1 ( 2 n 1 ) 1 ( 2 n 1 ) 1 2 (2 n 1 1 2 n 1 1 )
lim( 1 1 ... 1 )
n 13 35
4n2 1
x 0
x
e e e e. 11 lim 1x x 0 2x
x lim1x x 02x
lim 1 x 02(1x)
1 2
14. 将数列极限转化成函数极限求解
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1 形式的极限,由于数列极限不能使用
解: 当0x1时,(积分不容易计算)
01xnssiinn33xx xn
故 01xnsin 3xd x1 xnd xxn 11, 01 sin 3x 0 n 10n 1
因为 lim0lim 1 0 x xn1
所以
lim 1xnsin3xdx0
x 01sin3x
10. 用等价无穷小量代换求极限
limx2( x2+93)3 x0 x2( x2+42) 2
9.利用夹逼准则(两边夹法)则求极限
说明:两边夹法则需要放大和缩小不等式,常用的方法 是都换成最大的和最小的。
例 求 li(m 11 1). n n 2 1 n 2 2 n 2 n
解
n1 1n, n 2 nn 2 1 n 2 nn 2 1
(n1,2,3,)
(1)证明
lim
n
xn
存在;
(2)求
lim
极限的求法
一、 极限的求法 (按类型、方法、依据、步骤和例子的顺序总结)1. 初等函数 (1)定式① 在有定义的点处 代入法 初等函数在定义区间上连续 0l i m11xx e x →=+ ② 虽然无定义但可以判断出趋势的 观察和分析法 图像或无穷小和无穷大的性质1l i m l n (1)x x +→-+=-∞01l i m s i n 0x x x→= (2)未定式 无定义又无法直接判断趋势的(一般表现为00型、∞∞型、0⋅∞型、∞-∞型、1∞型、0∞型、00型七种之一)①型 有理分式或类似情况 初等方法 多项式因式分解理论 Ⅰ、因式分解 Ⅱ、约去零因子 Ⅲ、定式代数 2244468(2)(4)(2)2lim lim lim 54(1)(4)(1)3x x x x x x x x x x x x x →→→-+---===-+---②型 无理分式 初等方法 共轭因子理论 Ⅰ、分子(分母)有理化 Ⅱ、上面有理分式的方法112x x x →→→=== ③∞∞型 有理分式或类似情况 无穷大量分除法 无穷大和无穷小的关系 Ⅰ、分子分母同时除以最高次项 Ⅱ、定式观察结果(或者直接利用公式101010100()limlim ()n n n n m m x x m m n mP x a x a x a a n m Q x b x b x b b n m--→∞→∞⎧<⎪++⋅⋅⋅+⎪===⎨++⋅⋅⋅+⎪⎪∞>⎩ 读出结果) 32332232133213lim lim 537453744x x x x x x x x x x x x→∞→∞++++==++++++ ④00型 三角函数反三角函数 第一个重要极限或等价无穷小替换 0s i n l i m1x xx→=特征100型 2 sin[][]Ⅰ、等价无穷小替换 Ⅱ、转化为其他可求问题 22001(2)1cos 22lim lim 2sin x x x x x x x→→-==⑤幂指函数(1∞型)、指数、对数的未定式 凑指数幂法或等价无穷小替换法1lim(1)x x e x →∞+=特征1 1∞型 2 []1(1)[]+ Ⅰ、凑指数幂或等价无穷小替换 Ⅱ、转化为其他可求问题 sinsin 111lim(1)lim[(1)]xx x x x x e x x---→∞→∞-=-= 22220012lim lim 2sin x x x e x x x x→→-== ⑥ 0⋅∞型 取倒数转化为00型或∞∞型 1ln(1)1lim ln(1)lim11x x x x x x→+∞→+∞++== ⑦ ∞-∞型 通分或有理化转化为0型1x x →∞==2. 分段函数在分段点的极限左右极限方法 左右极限和极限的关系定理 Ⅰ、分别求出0lim ()x x f x -→和0lim ()x x f x +→ Ⅱ、判断0lim ()lim ()x x x x f x f x -+→→=是否成立? 0()sin 0x e ax f x xx ⎧-<=⎨≥⎩?a =时0lim ()x f x →存在解:0lim ()lim()1xx x f x e a a --→→=-=- 00lim ()lim sin 0x x f x x ++→→== 1a =3. 其他情况(1)以递推式给出的数列求极限 数学归纳法 单调有界判别准则 Ⅰ、证单调 Ⅱ、证有界⋅⋅⋅(即1n u +=(2)无穷和或无穷积的极限 通项归一 现成公式或夹逼定理 证明222111lim ()12n n n n n n πππ→∞++⋅⋅⋅+=+++证:由于22222221111()12n n n n n n n n n n πππππ←<++⋅⋅⋅+<→+++++,n →∞ 根据夹逼定理得 222111lim ()12n n n n n n πππ→∞++⋅⋅⋅+=+++附表 等价无穷小替换表0x →时1. 幂 (1)1~x x αα+-2. 指数 1~l n x a x a - 1~x e x -3. 对数 l n (1)~x x +4. 三角 s i n~~a r c s i n ~t a n ~x x x x x 反三角 211c o s ~2x x - 31t a ns i n ~2x x x -。
极限的求法总结
极限的求法总结引言:在数学中,极限是解决各种问题的关键方法之一,涉及到函数的趋势和趋近性质。
从初等数学到高等数学,极限概念与求法贯穿始终。
本文将总结几种常见的极限求法,旨在帮助读者更好地理解和应用极限概念。
一、代入法代入法是最常见也是最直观的一种极限求法。
当需要求一个函数f(x)在某一点a的极限时,我们可以尝试将x的值逐渐靠近a,观察f(x)的趋势。
若存在一个固定的实数L,使得当x趋近于a时,f(x)趋近于L,则称L为f(x)在点a的极限。
代入法适用于大多数简单的初等函数,例如多项式函数和三角函数。
二、夹逼法夹逼法是一种常用的极限求法,适用于一些特殊函数或复杂函数的极限。
它的思想是通过构造两个较为简单的函数,使得它们夹在待求函数的两侧。
具体步骤为:找到两个函数g(x)和h(x),它们分别趋近于同一个极限L,且g(x) ≤ f(x) ≤ h(x)。
如果满足这个条件,那么f(x)在点a的极限也是L。
夹逼法常用于计算无穷小量、复合函数和级数等问题。
三、洛必达法则洛必达法则是一种利用导数的性质来求极限的常用方法。
当使用代入法或夹逼法无法直接得到极限结果时,可以考虑使用洛必达法则。
该法则的关键思想是利用函数的导数与函数的极限之间的关系。
具体步骤为:对于函数f(x)和g(x),如果当x趋近于某个实数a时,它们的极限都是0或无穷大,并且f'(x)和g'(x)都存在(其中f'(x)表示f(x)的导数),那么f(x)/g(x)的极限等于f'(x)/g'(x)。
洛必达法则常用于处理0/0型和∞/∞型的极限。
四、级数收敛法和发散法级数是数列的和。
在数学中,根据级数的性质,可以判断它的收敛与发散。
对于一个给定的级数,当其各项逐渐趋近于某个极限L(L可能是一个实数或无穷大)时,称该级数收敛于L。
反之,如果级数的和不会趋近于任何值,称该级数发散。
级数的收敛性与发散性在数学中具有广泛应用,特别是在实际问题中的数值分析和近似计算中。
16种求极限的方法
16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
求极限的方法
求极限的方法在数学中,求极限是一种重要的技巧,用于分析函数在某个点的行为。
下面介绍几种常见的求极限的方法。
1. 代入法:当函数在某个点处存在有限的定义时,可以直接将该点的值代入函数中得到极限值。
例如,求函数f(x) = 2x在x=3处的极限,可以将x=3代入函数中,得到f(3) = 2 * 3 = 6。
2. 因式分解法:当函数可以进行因式分解时,可以利用因式分解的性质来求解极限。
例如,求函数g(x) = (x^2 - 4)/(x - 2)在x = 2处的极限,可以先进行因式分解得到g(x) = (x + 2),然后将x = 2代入函数中,得到g(2) = 2 + 2 = 4。
3. 夹逼定理:当函数的极限难以直接求解时,可以利用夹逼定理来求解。
夹逼定理的核心思想是找到两个函数,它们的极限分别趋近于所求极限,然后利用夹逼定理来得到所求极限的值。
例如,求函数h(x) = sin(x)/x在x = 0处的极限,可以通过夹逼定理,将h(x)夹在函数i(x) = 1和函数j(x) = x之间,显然,i(x)和j(x)的极限分别为1和0,因此根据夹逼定理,h(x)的极限为1。
4. 泰勒展开法:当函数的极限无法通过以上方法求解时,可以利用泰勒展开来近似计算极限。
泰勒展开是将函数在某一点处展开成无穷项幂级数的形式,利用一定数量的项来近似原函数。
例如,求函数k(x) = e^x在x = 0处的极限,可以利用泰勒展开公式e^x = 1 + x + x^2/2! + x^3/3! + ...,将x = 0代入泰勒展开公式中,得到k(0) = e^0 = 1。
以上是几种常见的求极限的方法,根据具体问题的不同,可以选用不同的方法来求解极限。
极限的求法总结
8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
例 求极限 lim ( x2 + 3 − x2 +1) x→+
lim (
x→+
x2 + 3 −
x2 +1) = lim ( x2 + 3 − x2 +1)( x2 + 3 +
x→+
x2 + 3 + x2 +1
= lim
− −
1) 1)
= lim x + 1 = 1 . x→1 x + 3 2
(消去零因子法)
4.无穷小因子分出法求极限
例
求
lim
x→
2x3 7x3
+ +
3x2 4x2
+ −
5 1
.
解
x
→
时,
分子,分母的极限都是无穷大.(
型
)
先用x3去除分子分母,分出无穷小,再求极限.
35
lim
x→
2x3 7x3
+ +
练习4
lim
x→
(2x
+1)4 (x −1)78 (x +1)82
=
lim
x→
x4
(2
+
1 x
)4
x 78
(1 −
x82
(1 +
)1 82
x
1 x
)78
= 24
= 16
5.先变形再求极限
(利用求和化简,拆项技巧,合并化简等)
例
求
1
lim(
求极限的若干方法
求极限的若干方法求极限的方法可以分为以下几种:1. 代入法:将函数中的自变量代入,并通过逐渐逼近的方法求得极限值。
这种方法比较直观简单,特别适用于一些特殊函数的极限计算,如三角函数、指数函数等。
2. 分子分母分别求极限法:当函数形式较为复杂时,可以将分子和分母分别求极限,再求两者的商的极限。
通过这种方法,可以将复杂的极限问题简化为较为简单的子问题,更容易求解。
3. 极限运算法则:极限运算法则是求极限的一种常用方法,通过运用一些基本极限的性质,可以简化复杂极限的计算。
常用的极限运算法则包括加法法则、乘法法则、除法法则、幂函数法则等。
4. 复合函数求极限法:对于复合函数的极限,可以先对内部函数求极限,再对外层函数求极限。
这种方法适用于复杂函数的极限计算,可以将复杂函数拆分为多个较为简单的函数,分别求其极限。
5. 求导法:对于一些特殊的极限问题,求导法可以起到一定的辅助作用。
通过对函数求导,可以将原问题转化为导函数的极限问题,进而求得原函数的极限。
6. 泰勒展开法:对于某些无法直接求得极限的函数,可以通过泰勒展开,将函数近似为多项式形式,并通过多项式的极限计算得到原函数的极限。
7. 渐进法:当函数中含有无穷大或无穷小量时,可以使用渐进法求极限。
这种方法通过分析无穷大或无穷小量在极限过程中的变化趋势,来确定极限的值。
8. 变量替换法:当函数中含有复杂的无穷小量或无穷大量时,可以通过替换变量的方法,将复杂的极限问题转化为简单的极限问题。
9. 用L'Hôpital法则:对于某些不定式形式的极限,如0/0、∞/∞等,可以使用L'Hôpital法则求极限。
该法则利用导数的性质,将原函数的极限转化为导函数的极限。
10. 用积分法:对于一些函数极限,可以通过积分的方法来求解。
通过将极限转化为积分形式,可以利用积分的性质和计算方法得到极限的值。
求极限的方法有很多种,具体选择哪种方法取决于函数的特点和问题的要求。
极限的求法
极限的求法1、 利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:lim x→x 0f (x )=A 的ε−δ定义是指:∀ε>0,∃δ=δ(0x ,ε)>0,0<|x −0x |<δ |f (x )−A |<ε为了求δ可先对x 0的邻域半径适当限制,如然后适当放大|f (x )−A |≤φ(x )(必然保证φ(x )为无穷小),此时往往要用含绝对值的不等式:|x +a |=|(x −0x )+(0x +a)|≤|x −0x |+|0x +a|<|0x +a|+δ1或|x +a |=|(x −0x )+(0x +a)|≥|0x +a|−|x −0x |>|0x +a|−δ1 从φ(x )<δ2,求出δ2后,取δ=min (δ1,δ2),当0<|x −0x |<δ时,就有|f (x )−A |<ε。
例:设lim n→∞x n =a 则有limn→∞x 1+x 2+...x nn=a 。
证明:因为lim n→∞x n =a ,对∀ε>0,∃N 1=N 1(ε),当n >N 1时,|x n −a |<ε2于是当n >N 1时,|x 1+x 2+...+x nn−a|=|x 1+x 2+...+x n −na |n0<ε<1其中A =|x 1−a |+|x 2−a |+|x N 1−α|是一个定数,再由An <ε2,解得n >2A ε,故取N =max {N 1,[2Aε]}当n >N 时,|x 1+x 2+...+x nn−α|<ε2+ε2=ε。
2、 直接代入法求极限适用于分子、分母的极限不同时为零或不同时为∞。
求极限方法总结
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
极限的求解方法总结
极限的求解方法总结极限是数学中的重要概念,用来描述函数在其中一点逼近一些特定值的过程。
求解极限的方法有很多种,常见的方法包括直接代入法、夹逼准则、洛必达法则、级数展开法等。
下面将对这些方法进行总结。
1. 直接代入法:对于一些简单的极限问题,可以直接通过将自变量的值代入函数中计算得到极限的值。
例如,对于极限lim(x->2) (3x-1),可以直接将x的值替换为2,计算出极限的值为52. 夹逼准则:夹逼准则是一种常用的证明极限存在的方法。
当一个函数f(x)在特定点x0的左右两侧有两个函数g(x)和h(x)夹住时,即g(x)<=f(x)<=h(x),并且lim(x->x0) g(x) = lim(x->x0) h(x) = L,那么就可以得出lim(x->x0) f(x) = L。
这个准则同时适用于极限为实数和无穷大的情况。
3. 洛必达法则:洛必达法则是一种求解极限的常用方法,特别适用于遇到0/0或∞/∞的不定型。
洛必达法则的核心思想是利用导数的性质来简化极限的计算。
如果一个极限可以用洛必达法则求解,首先计算函数f(x)和g(x)的导数,然后计算导数的极限lim(x->x0) f'(x) / g'(x),如果此极限存在,且不为无穷大,则lim(x->x0) f(x) / g(x) = lim(x->x0) f'(x) / g'(x)。
4.级数展开法:级数展开法是一种将复杂的函数用简单的级数来逼近的方法,常用于求解无穷小量的极限。
通过将函数展开成无穷级数的形式,并且当无穷级数收敛时,可以认为级数展开是原函数的近似解,在特定范围内与原函数相等。
通过计算级数的部分和求出极限的值。
以上方法并不是独立使用的,有些问题需要结合多种方法才能求解。
在实际应用中,根据具体的问题特点,选择合适的方法进行求解。
总之,求解极限是数学中的重要任务之一,需要掌握不同的求解方法,并根据具体情况选择合适的方法。
求极限方法总结
求极限方法总结求极限是微积分的重要内容之一,需要通过特定的方法来计算。
下面对常见的求极限方法进行总结。
1. 代入法:将极限中的变量直接代入函数中,求出函数在该点处的函数值,作为极限的近似值。
这种方法适用于简单的极限。
2. 分子有理化法:当极限的分子、分母含有根式时,可以通过有理化的方法,将根式分子分母有理化,然后进行化简,化简后求极限。
这种方法适用于分子分母含有根式的情况。
3. 夹逼法:当函数的极限不存在或难以直接求出时,可以通过构造一个上界函数和下界函数,使得它们的极限都存在且相等,且夹住函数的极限。
然后通过夹逼原理,求出该极限。
这种方法适用于极限存在且难以直接求出的情况。
4. L'Hopital法则:当极限为形式为“∞/∞”、“0/0”、“1^∞”、“0^0”等无穷型与无穷型的不定式时,可以通过求导的方法,将其转化为可直接计算的形式。
这种方法适用于无穷型与无穷型的不定式。
5. 推广L'Hopital法则:当极限为形式为“∞*0”、“∞-∞”等不定型不定式时,可以通过引入参数,将其转化为可直接计算的形式。
这种方法适用于不定型不定式。
6. 换元法:当极限为特殊函数形式时,可以通过换元的方法,将其转化为可直接计算的形式。
比如将极限中的自变量换成1/自变量或sin(1/自变量)等函数形式。
这种方法适用于特殊函数形式的极限。
7. Taylor展开法:当极限为函数值在某点的展开式时,可以通过泰勒展开的方法,将其转化为可直接计算的形式。
这种方法适用于函数值在某点的展开式。
8. 综合运用:对于复杂的极限问题,可以综合运用以上方法,逐步化简。
先运用代入法、分子有理化法,再运用夹逼法、L'Hopital法则等,逐步逼近极限的值。
在实际应用中,根据题目的要求和已知条件,选择适合的方法来求解极限。
对于复杂的问题,可以采用逐步化简的方法,一步步逼近极限的值。
同时,对于无法通过常见方法求解的特殊问题,还可以借助数值计算的方法,利用计算机进行近似计算。
极限的几种求解方法
求1、运用极限的定义 例: 用极限定义证明:1223lim 22=-+-→x x x x 证: 由244122322-+-=--+-x x x x x x ()2222-=--=x x x0>∀ε 取εδ= 则当δ<-<20x 时,就有ε<--+-12232x x x由函数极限δε-定义有:1223lim 22=-+-→x x x x 2、利用极限的四则运算性质若 A x f x x =→)(lim 0B x g x x =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B ≠0 则:BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,例:求 453lim 22+++→x x x x解: 453lim 22+++→x x x x =254252322=++⋅+3、约去零因式(此法适用于型时0,0x x →)例: 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x xx x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim -→x 735-=+-x x4、通分法(适用于∞-∞型) 例: 求 )2144(lim 22x xx ---→解: 原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数f(x)、g(x) 满足: (I )0)(lim 0=→x f x x(II) M x g ≤)( (M 为正整数) 则:0)()(lim 0=→x f x g x x例: 求 xx x 1sinlim 0⋅→ 解: 由 0lim 0=→x x 而 11sin≤x故 原式 =01sinlim 0=⋅→xx x6、利用无穷小量与无穷大量的关系。
高等数学求极限的各种方法
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,就是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........就是解题的关键 4.应用两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
极限的几种求法初探
极限的几种求法初探极限是数学分析中的重要概念,它描述了函数在某一点附近的收敛性质。
通过求解极限,我们可以得到函数在某点的近似值,并且在实际问题中具有广泛的应用。
在这篇文章中,我们将初步探讨几种常见的求解极限的方法。
一、直接代入法直接代入法是求解极限最简单的方法。
当极限中的变量取某个特定的值时,我们可以直接将该值代入到函数中并计算函数的值。
这种方法适用于除了发散的情况,因为在发散的情况下,函数的值可能不存在或者无穷大,无法通过直接代入的方法求解极限。
求解函数 f(x) = x^2 在 x = 2 处的极限。
我们可以直接将 x = 2 代入函数中,得到 f(2) = 2^2 = 4。
函数 f(x) 在 x = 2 处的极限为 4。
二、夹逼法夹逼法是一种常用的求解极限的方法,它基于一个重要的定理:如果存在两个函数g(x) 和 h(x),满足g(x) ≤ f(x) ≤ h(x) 在某个点附近成立,并且 g(x) 和 h(x) 的极限都为 L,那么函数 f(x) 的极限也为 L。
通过夹逼法,我们可以将一个复杂的函数 f(x) 的极限问题简化为两个较为简单的函数的极限问题。
我们需要找到能够夹逼住函数 f(x) 的两个函数 g(x) 和 h(x)。
然后,我们需要证明 g(x) 和 h(x) 的极限都为 L。
我们可以根据夹逼法的定理得到函数 f(x)的极限为 L。
对于函数 g(x) = 0,显然它的极限为 0,因为它在任意点附近都等于 0。
对于函数 h(x) = x^2,我们可以使用紧凑性原理来证明它的极限为 0。
根据紧凑性原理,由于 x^2 是一个连续函数,在闭区间 [0, 1] 上连续,所以根据最大值最小值定理,它必然存在一个最小值。
在该最小值对应的点 x0 处,x^2 取得最小值,且这个最小值必然为 0。
我们可以得出 x^2 的极限为 0。
根据夹逼法的定理,我们可以得到函数 f(x) = x^2 在 x = 0 处的极限为 0。
极限的求法
极限的求法1. 直接代入法适用于分子、分母的极限不同时为零或不同时为例 1. 求.分析 由于,所以采用直接代入法.解 原式=2.利用极限的四则运算法则来求极限为叙述方便,我们把自变量的某个变化过程略去不写,用记号)(lim x f 表示)(x f 在某个极限过程中的极限,因此极限的四则运算法则可确切地叙述如下: 定理 在同一变化过程中,设)(lim ),(lim x g x f 都存在,则 (1)=±)]()(lim[x g x f )(lim )(lim x g x f ± (2)=)]()(lim[x g x f )(lim )(lim x g x f (3)当分母)(lim x g 0≠时,有)(lim )(lim )()(limx g x f x g x f =总的说来,就是函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例2. 求11lim2+-→x x x 。
解11lim 2+-→x x x )1(lim )1(lim 22+-=→→x x x x 31=3.无穷小量分出法 适用于分子、分母同时趋于,即型未定式例3.分析所给函数中,分子、分母当时的极限都不存在,所以不能直接应用法则.注意到当时,分子、分母同时趋于,首先将函数进行初等变形,即分子、分母同除的最高次幂,可将无穷小量分出来,然后再根据运算法则即可求出极限.为什么所给函数中,当时,分子、分母同时趋于呢?以当说明:因为,但是趋于的速度要比趋于的速度快,所以.不要认为仍是(因为有正负之分).解原式 (分子、分母同除)(运算法则)(当时,都趋于.无穷大的倒数是无穷小.)4.消去零因子法适用于分子、分母的极限同时为0,即型未定式例4.分析所给两个函数中,分子、分母的极限均是0,不能直接使用法则四,故采用消去零因子法.解原式= (因式分解)=(约分消去零因子 )=(应用法则)=5. 利用无穷小量的性质例5. 求极限 分析 因为不存在,不能直接使用运算法则, 故必须先将函数进行恒等变形.解 原式=(恒等变形)因为 当 时,, 即是当时的无穷小,而 ≤1, 即是有界函数,由无穷小的性质:有界函数乘无穷小仍是无穷小,得=0.6. 利用拆项法技巧例6:))12)(12(15.313.11(lim +-+⋅⋅⋅++∞→n n n分析:由于))12)(12(1+-n n =)12112(1(21+--n n原式=21)1211(21)]121121()5131()311[(21lim lim =+-=+--+⋅⋅⋅+-+-∞→∞→n n n n n7. 变量替换例7 求极限.分析当时,分子、分母都趋于,不能直接应用法则,注意到,故可作变量替换.解原式 == (令,引进新的变量,将原来的关于的极限转化为的极限.)=. (型,最高次幂在分母上)8.分段函数的极限例8设讨论在点处的极限是否存在.分析所给函数是分段函数,是分段点, 要知是否存在,必须从极限存在的充要条件入手.解因为所以不存在.注1因为从的左边趋于,则,故.注2因为从的右边趋于,则,故.我总结的16种求极限的方法(你还能找出其他的?首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,求极限的方法横向总结:
1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)
2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos
二,求极限的方法纵向总结:
1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置
2)用无穷小量与有界变量的乘积
3)2个重要极限
4)分式解法(上述)。