《大学物理》第二章答案教学文案

合集下载

上海交大版大学物理第二章参考答案

上海交大版大学物理第二章参考答案

版权归原著所有 本答案仅供参考习题22-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。

当2st =时,求:(1) 质点的位矢; (2) 质点的速度。

解:由 x x f a m =,有:x a 263m /168s ==,2/167s m m f a y y ==(1) t dt a v v txx x 83200+-=+=⎰ 20001632)832(t t dt t dt v x x t t x +-=+-=+=⎰⎰t dt a v v t y y y 167000+=+=⎰2000327167t tdt dt v y y t t y ==+=⎰⎰于是2秒时质点的位矢为:)m )(87413(j i j y i x r+-=+=(2)于是质点在2s 时的速度: )m/s (8745j i v+-=2-2 摩托快艇以速率v 0行驶,它受到的摩擦阻力与速率平方成正比,可表示为F = -kv 2(k 为正值常量)。

设摩托快艇的质量为m ,当摩托快艇发动机关闭后,求: (1) 求速率v 随时间t 的变化规律; (2) 求路程x 随时间t 的变化规律;(3) 证明速度v 与路程x 之间的关系为x0ek v v '-=,其中m k k /='。

解:(1)由牛顿运动定律F ma =得:2d vkv md t-=,分离变量有2k d v d t m v -=,两边积分得:速率随时间变化的规律为011kt v v m=+; (2)由位移和速度的积分关系:0tx v dt =⋅⎰,积分有:000111ln()ln 1tk k k x dt t k m v m m v t v m=⋅=+-+⎰由于此题路程和位移相等,∴路程随时间变化的规律为:0ln(1)k kx v t m m=+ ; (3)由2d v d xkv m d x d t-=⋅,k d v d x m v -=,∴00x v v k dv dx m v -=⎰⎰ 积分有: )exp(0x mkv v -=)(0x k e v '-=,其中m k k ='2-3.质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。

大学物理第二章习题答案

大学物理第二章习题答案
普通物理
1
第二章 机械能及其守恒定律
——思考题与习题 (2课时)
思考题

2
在驱动轮不发生滑动的条件下,一辆汽车从静止加速到速率V。 汽车的动能是否由路面施于汽车的静摩擦力所作之功而获得的?

路面对汽车的静摩擦力并没有作功,汽车作用。
1 R 3
1 1 2 1 2 mgx k ( x x ) kx mv 2 2 2 2 (1)
O
A
x
F
x
B
mg
x
18
小球在 A 点时处于平衡状态,故
mg kx (2)
A
由以上二式可解出由静止释放小球后小 球第一次经过点 A 时的速率为
v k x m
O
x
F
x
B
mg
x
注意,在此问题中,弹性势能 0 点不能选在 A 点,而必须选 择弹簧自然伸长时的位置 O 点,因为弹性势能的定义 1 2 E p kx 2 只有选择弹簧自然伸长时的位置为势能 0 点时才成立。
3

一人逆水划船,使船相对于河岸静止。试问: 1)人是否要作功? 2)停止划船,让船顺流而下,则流水对船是否作功? 1)要作功,使被划的水获得动能增量。 2)略去空气阻力,略去船的海拔下降,人刚停下时流水做功, 使船与水达到同速,此后流水对船不作功。

4

质点系的内力之和是否一定为零?内力作功之和是否一定为零? 内力矩之和是否一定为零?为什么? 质点系的内力之和一定为零,因为内力是成对出现的,每一 对内力大小相等,方向相反。 内力作功之和不一定等于零,因为一对内力的功与内力大小 及发生作用的两部分之间的相对位移有关,例如爆炸的情况, 内力做功大于零。 内力矩之和一定为零,因为内力矩也是成对出现的,大小相 等,方向相反。

大学物理答案第二章牛顿定律-习题解答

大学物理答案第二章牛顿定律-习题解答
牛顿运动定律与实际问题的综合应用
将牛顿运动定律应用于各种实际问题中,如天体运动、弹性碰撞、摩擦力问题等,通过建立物理模型和 运用数学工具解决实际问题。
解决复杂问题的思路与方法
01
02
03
04
建立物理模型
根据问题的实际情况,抽象出 具体的物理模型,如质点、刚 体、弹性碰撞等,为解决问题 提供清晰的思路。
定律的应用场景与实例
总结词
牛顿第一定律在日常生活和科学研究中有着广泛的应用。例如,汽车安全带的设计、投掷物体的轨迹、行星的运 动等都遵循这一规律。
详细描述
汽车安全带的设计依据了惯性定律,通过限制乘客在急刹车或碰撞时的运动,减少伤害风险。投掷物体时,出手 的角度和力量会影响物体的运动轨迹,这也符合惯性定律。行星的运动规律是牛顿第一定律的重要应用之一,行 星绕太阳的椭圆轨道运动可以由惯性定律推导出来。
05
习题解答
常见错误解析与纠正
01 02 03
错误1
混淆了牛顿第二定律中的力和加速度概念,将力误认为是 加速度的原因,而实际上力是产生加速度的原因。纠正: 正确理解力和加速度的关系,力是产生加速度的原因,加 速度的大小和方向由力的三要素决定。
错误2
在分析多力作用下物体的运动时,未能正确分析合力和加 速度的关系。纠正:在分析多力作用下物体的运动时,应 先求出合力,再根据牛顿第二定律求出加速度,最后根据 运动学公式求解速度和位移。
导出牛顿第三定律。
定律的应用场景与实例
要点一
总结词
牛顿第三定律在现实生活中有着广泛的应用,例如火箭发 射、车辆行驶、体育运动等。
要点二
详细描述
在火箭发射中,火箭向下喷射高温高压气体,产生一个向 上的反作用力,使火箭升空。在车辆行驶中,车辆发动机 产生的力推动车辆前进,同时车辆也会给地面一个向后的 反作用力,使地面产生磨损。在体育运动中,例如篮球投 篮时,投篮的力量和手受到的反作用力大小相等、方向相 反。

大学物理第二章质点动力学课后答案 ppt课件

大学物理第二章质点动力学课后答案 ppt课件

m1
k
m2
A
B
大学物理第二章质点动力学课后答
20

解:设弹簧恢复原长时B 物体的速度为v B 0
12kx02 12m2vB20
vB0
k 3m
x0
此后系统动量守恒 m 2vB0(m 1m 2)v
v
3 4
vB0
3 4
x0
k 3m
A、B两物体速度相等时,弹簧伸长最大。
1 2m 2vB 201 2(m 1m 2)v21 2km 2 xax
(A) 2 E k
(B)
1 2
Ek
(C)
1 3
Ek
Ek
1 2
mAv2A
✓(D)
2 3 Ek
mAvA (mA mB )v
v
2mB 3mB
vA
2 3
vA
E k 总 1 2(m Am B )v 22 3m B v 2 A2 3E k
大学物理第二章质点动力学课后答
14

2-5 有一倔强系数为k的轻弹簧,竖直放置,下端 悬一质量为m的小球。先使弹簧为原长,而小球恰好 与地接触。再将弹簧上端缓慢地提起,直到小球刚能
vB
F t2 m2
vA
Ft2 Ft1 m2 m1m2
大学物理第二章质点动力学课后答
17

2-8
量为
r 一 质a 量c 为mo t的i 质b s 点s 在xi t oy j 平n (S面I)上。运式动中,a,其b位,置 是矢
正值常数, 且a > b。
(1) 求质点在A点(a,0) 和B点(0,b) 时的动能。
ABC的水平光滑轨道运动。质点越过A角时,轨道作

大学物理习题答案解答第二章牛顿运动定律

大学物理习题答案解答第二章牛顿运动定律

第二章 牛顿运动定律一、填空题1、考察直线运动,设加速度为()a t ,初速度为00v =,则由dv a dv adt dt =⇒= 两边定积分,即 00v t v dv adt =⎰⎰ 得质点在任意时刻t 的速度为 110()()t v t a t dt =⎰ (2-1)再由ds v ds vdt dt =⇒= 两边定积分,即 00s t s ds vdt =⎰⎰ 得质点在任意时刻t 的路程为 0220()t s s s v t dt ∆=-=⎰ 把(2-1)式代入上式,得211200()tt s a t dt dt ∆=⎰⎰依题设可知两物体必做直线运动,设某时刻两物体间作用力为F ,则两物体的加速度分别为11F a m = 和 22F a m = 所以两物体在相同时间内发生的路程分别为:2221111121211200000011()1()()tt tt t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰ 2221221121211200000022()1()()t t t t t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰所以 11222111s m m s m m ∆==∆ 此即为所求。

2、箱子在最大静摩擦力的作用下,相对地面具有的最大加速度为2max 0max 00.49.8 3.92()F mg a g m s m mμμ-====⨯=⋅ (1)若设箱子相对卡车静止,即物体相对地面的加速度2max 2a m s a -=⋅<表明箱子与卡车底板间是静摩擦,摩擦力的大小为40280()F ma N ==⨯=(2)依然设箱子相对卡车静止,即物体相对地面的加速度2max 4.5a m s a -=⋅>表明箱子与卡车底板间是滑动摩擦,摩擦力的大小为0.25409.898()F mg N μ==⨯⨯=3、如图2-1(a)所示建立直角坐标系,再分析滑块的受力情况,如图2-1(b)所示,滑块受到三个力的作用,分别是地球施加的重力mg ,斜面对它的支持力1N 和滑动摩擦力1f ,并设其加速度为a 。

大学物理教程第2章习题答案

大学物理教程第2章习题答案

思 考 题2.1 从运动学的角度看,什么是简谐振动?从动力学的角度看,什么是简谐振动? 答:从运动学的角度看,弹簧振子相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。

从动力学的角度看,如果物体受到的力的大小总是与物体对其平衡位置的位移成正比,而方向相反,那么该物体的运动就是简谐振动。

2.2 弹簧振子的振幅增大到2倍时,其振动周期、振动能量、 最大速度和最大加速度等物理量将如何变化?答:弹簧振子的运动方程为0cos()x A t ωϕ=+,速度为0sin()v A t ωωϕ=-+,加速度的为)cos(02ϕωω+-=t A a ,振动周期2kT mπ=,总能量为221kA E =。

所以,弹簧振子的振幅A 增大到2倍时,其振动周期不变,振动能量为原来的4倍,最大速度为原来的2倍,最大加速度为原来的2倍。

2.3 下列运动是否为简谐振动?(1)小球在地面上作完全弹性的上下跳动;(2)小球在半径很大的光滑凹球面底部作小幅度的摆动; (3)曲柄连杆机构使活塞作往复运动; (4)小磁针在地磁的南北方向附近摆动。

答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。

2.4 三只相同的弹簧(质量忽略不计)都一端固定,另一端连接质量为m 的物体,它们放置情况不同,其中一个平放,一个斜放,另一个竖直放。

如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。

2.5 当谐振子作简谐振动的振幅增大为原来的2倍时,谐振子的什么量也增大为原来的2倍?答:最大速度和最大加速度。

2.6 一弹簧振子作简谐振动,其振动的总能量为E 1。

如果我们将弹簧振子的振动振幅增加为原来的2倍,而将重物的质量增加为原来的4倍,则新的振子系统的总能量是否发生变化?答:弹簧振子212E kA = ,所以新的振子系统的总能量增加为原来的4倍。

2.7 一质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。

大物第二章课后习题答案

大物第二章课后习题答案

简答题2.1 什么是伽利略相对性原理?什么是狭义相对性原理?答:伽利略相对性原理又称力学相对性原理,是指一切彼此作匀速直线运动的惯性系,对于描述机械运动的力学规律来说完全等价。

狭义相对性原理包括狭义相对性原理和光速不变原理。

狭义相对性原理是指物理学定律在所有的惯性系中都具有相同的数学表达形式。

光速不变原理是指在所有惯性系中,真空中光沿各方向的传播速率都等于同一个恒量。

2.2同时的相对性是什么意思?如果光速是无限大,是否还会有同时的相对性?答:同时的相对性是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一个惯性系中观察,并不一定同时。

如果光速是无限的,破坏了狭义相对论的基础,就不会再涉及同时的相对性。

2.3什么是钟慢效应? 什么是尺缩效应?答:在某一参考系中同一地点先后发生的两个事件之间的时间间隔叫固有时。

固有时最短。

固有时和在其它参考系中测得的时间的关系,如果用钟走的快慢来说明,就是运动的钟的一秒对应于这静止的同步的钟的好几秒。

这个效应叫运动的钟时间延缓。

尺子静止时测得的长度叫它的固有长度,固有长度是最长的。

在相对于其运动的参考系中测量其长度要收缩。

这个效应叫尺缩效应。

2.4 狭义相对论的时间和空间概念与牛顿力学的有何不同? 有何联系?答:牛顿力学的时间和空间概念即绝对时空观的基本出发点是:任何过程所经历的时间不因参考系而差异;任何物体的长度测量不因参考系而不同。

狭义相对论认为时间测量和空间测量都是相对的,并且二者的测量互相不能分离而成为一个整体。

牛顿力学的绝对时空观是相对论时间和空间概念在低速世界的特例,是狭义相对论在低速情况下忽略相对论效应的很好近似。

2.5 能把一个粒子加速到光速c吗?为什么?答:真空中光速C是一切物体运动的极限速度,不可能把一个粒子加速到光速C。

从质速关系可看到,当速度趋近光速C 时,质量趋近于无穷。

粒子的能量为2mc ,在实验室中不存在这无穷大的能量。

2.6 什么叫质量亏损? 它和原子能的释放有何关系?答:粒子反应中,反应前后如存在粒子总的静质量的减少0m ∆,则0m ∆叫质量亏损。

《大学物理》第二章答案.docx

《大学物理》第二章答案.docx

习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为 :■)上以初速度V o 运动,V o 的方向与 斜面底边的水平线 AB Tr ⅛∣∣l ⅛lbi-<j ;, ∕∙R ⅛'..∣⅛.⅛ Tl 注史粒道. mg ,斜面支持力 N.建立坐标:取v 0方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.2A 题2-2图BX 方向:F χ = 0X = v °tY 方向:F y = mg Sin : = ma y t = 0时y = 0v y = 0由①、②式消去t ,得y = 1 g sin : t 2y^gSin : X 2 2V 02质量为16 kg 的质点在Xoy 平面内运动,受一恒力作用,力的分量为-1N,当 t = 0 时,x=y=0, V X = -2 m ∙ S , V y = 0 .求 当t = 2 S 盯质点勺(1)位矢;(2)述度. 解:a x =6 3m s 2 m 168 fy— 7-2a y =m m 16S(1)235V X = V χ°a χdt =-2 _ 2 二m S0 842—7 7 .4Vy =Vy0 + J La y dt2 ——m S16 8于是质点在 2s 时的速度解:物体置于斜面上受到重力f χ = 6 N, f y = -7-5- 7 - V i j4 81 3- 1-7 - =(-2 24)^-( ) 4J 2 8 2 16 13 7i J m 48(4)当t= m 时,其速度为kk m _ -m kV= v 0e即速度减至V 0的1.e4一质量为m 的质点以与地的仰角=30°的初速V 0从地面抛出,若忽略空气阻力,求质点Λ ms~r =(v o t 1a χt 2)i - 2 2 丄2 -a y t J3质点在流体中作直线运动,受与速度成正比的阻力 k4 )tm;度为V o ,证明(1) t 时刻的速度为V = V o e kv ( k 为常数)作用,t =0时质点的速由0到t 的时间内经过的距离为(3)停止运动前经过的距离为v °(m ) ; (4)证明当t =^ m k 时速 k答:(1) ••• 分离变量,得-kv dvm _ dt dv - -kdt V m dv t -kdV - 0 mVIn In e V 0V= v 0e.k ∙tm(3)质点停止运动时速度为零, 故有t JktVdt = j v 0e 肓 dt即 t →∞, X=0 V0e^m^4dtmv 0Jktmv 0斗 二 v °e=V OeV 0kt m落地时相对抛射时的动量的增量.解:依题意作出示意图如题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下而抛物线具有对y轴对称性,故末速度与X轴夹角亦为30o,则动量的增量为二p = mv - mv05作用在质量为10 kg的物体上的力为F = (10 ∙ 2t)i N,式中t的单位是S, (1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量. (2)为了使这力的冲量为200 N ∙s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度-6j m∙ s-1的物体,回答这两个问题.解:(1)若物体原来静止,则- t 4 IP=OFdt=O (10 2t)idt =56 kg m S i ,沿X 轴正向,L v1 = —p1 = 5.6 m S J imI1= p1= 56 kg m S i若物体原来具有「6 m S J初速,则- -- - t F - tp0 = -mv0, p =m(-v0dt) = -mv0亠∣Fdt于是0 m '0_ _ _ t ■■:P2 = P - P0 = .0 Fdt = P ,同理,Z2= w1,12=I1这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.⑵ 同上理,两种情况中的作用时间相同,即由矢量图知,动量增量大小为mv0,方向竖直向下.t 2I=o(10 2t)dt =10t t2亦即t210t - 200 = 0解得t =10 s, (V=20 s舍去)6—颗子弹由枪口射出时速率为V o m S J,当子弹在枪筒内被加速时,它所受的合力为F =(a -bt)N( a, b为常数),其中t以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解:(1)由题意,子弹到枪口时,有F =(a—∙bt)=0,得t= —b(2)子弹所受的冲量t 1 2I =』(a - bt)dt = at -三bt2—将t 代入,得b22b(3)由动量定理可求得子弹的质量I a2mV o 2bv o证毕.7设F合=7i -6jN . (1)当一质点从原点运动到= -3i 4j 16km时,求F所作的功.(2)如果质点到r处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,F合为恒力,A合=Fr =(7i -6j) (-3i 4j 16k)--21 -24 - -45 JA 45⑵P 75w∆t 0.6⑶由动能定理,E^=^- -45 J18如题2-18图所示,一物体质量为2kg,以初速度V0= 3m∙s从斜面A点处下滑,它与斜面的摩擦力为8N,到达B点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度. 解:取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

大学物理(机械工业出版社)第二章课后答案

大学物理(机械工业出版社)第二章课后答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图902n (sin )m cos 3cos '3cos ,e v vdv rg d v v rv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

大学物理课后习题答案第二章

大学物理课后习题答案第二章

第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = 4.78(m·s -2),绳对它的拉力为0v 0v2211sin 22y at g t α==⋅22sin g y x v α=F 12212(2)/22F m m ga m m μ-+=+图2.1M12图2.3= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数. 两个弹簧分别拉长x 1和x 2,产生的弹力分别为F 1 = k 1x 1,F 2 = k 2x 2.(1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2,因此,即:.(2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1= b );(5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:,因此角度为;而张力为2112(/2)/22m T F m g m m μ=-+12111k k k =+1212F F F k k k =+12111k k k =+1a1b 2bT ==cos tan sin mb mg mb ϕθϕ=+cos arctansin b g b ϕθϕ=+T =2图2.4(2).(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为,因此,即 v d v = -gl sin θd θ, (1) 取积分,得,解得:s -1).由于:,所以T B = 2mg = 1.96(N).(2)由(1)式积分得,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为切向加速度为a t = g sin θ;法向加速度为.由于T C – mg cos θ = ma n ,所以张力为T C = mg cosθ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= 8.49(m·s-2),法向加速度为 a n = 0,=22d d sF ma mt ==d d d d s v l t t θ==d d d d d d d d v v m v F mm v t t l θθθ===060d sin d Bv v v gl θθ︒=-⎰⎰02601cos 2B v gl θ︒=B v =22B BB v v T mg m m mgR l -===21cos 2C v gl C θ=+C v =2(2cos 1)Cn v a g R θ==-t a g=图2.6绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以 ,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 ,当h = 0时,v = 0,所以C = 0,因此速率为2.8 质量为m 的物体,最初静止于x 0,在力(k 为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t ,可得,因此方程变为,积分得.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此,即证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.22d d sF ma m t ==d d s v t =22d d d d d d d ()d d d d d d d s s v v s vv t t t t s t s ====212v gh C =+v =2kf x =-222d d k x f ma m x t =-==22d d d d d d d d d d x v x v v v t t t x x ===2d d k xmv v x =-212k mv Cx =+2012k k mv x x =-v =图2.7如果f (x ) = -k/x n ,则得. (1)当n = 1时,可得利用初始条件x = x时,v = 0,所以C = ln x 0,因此 , 即(2)如果n ≠1,可得.利用初始条件x = x 0时,v = 0,所以, 因此,即当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变量得, 积分得.当t = 0时,v = v 0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以21d 2nxmv k x =-⎰21ln 2mv k x C=-+21ln 2x mv k x =v =21121nk mv x C n -=-+-101nk C x n -=--2110111()21n n k mv n x x --=--v =d d vf mg kv mt =--=d d()d v m mg kv t m mg kv k mg kv +=-=-++ln ()mt mg kv C k =-++0ln ()mC mg kv k =+00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++0()exp()mg kt mg v v k m k =+--00/ln ln(1)/mg k v kv m m T k mg k k mg +==+,即,积分得, 当t = 0时,x = 0,所以,因此.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : . 积分得:.当t = 0时,v = v 0,所以,因此.解得 .由于,积分得0d [()exp()]d mg kt mgx v t k m k =+--0(/)d d exp()d m v mg k kt mgx tk m k +=---0(/)exp()`m v mg k kt mgx t C k m k +=---+0(/)`m v mg k C k +=0(/)[1exp()]m v mg k kt mg x tk m k +=---d d vf mg kv mt =-=0()exp()mg mg ktv v k k m =---2d d k v v f m mR t μ=-=2d d k vt Rv μ=-1k t C R v μ=+01C v =-011kt R v v μ=-001/k v v v t R μ=+0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 ,方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作矢量三角形,可得:. 因此向心力给予小球的的冲量大小为= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量0ln (1)`k kv tRx C Rμμ=++0ln (1)k k v tRx Rμμ=+2cos mgR ωθ=2arccosgR θω=±/20(cos )d I kA t tωω=-⎰π/20sin kAkAtωωωω=-=-π21p p p ∆=-21p p p =+∆p ∆==I p =∆mg图2.11.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为s -1),其速度的增量为s -1). 棒给球冲量为I = m Δv = 7.3(N·s),对球的作用力为(不计重力):F = I/t = 366.2(N).2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg –T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma , 联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;. 此时B 的速度大小为:v = at = 2(m·s -1).24v TI Ft mR ==2/42R T T mv mvR ππ==/4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==I ==y v =v ∆=t =v xΔv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 ,所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ. 重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为.摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即,或者 ./2`cos 452mmv v =︒0cos θd s G 1d d cos(/2)d W G s G s θ=⋅=+πsin d mgR θθ=-454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-f 2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-4520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=G f F 0F G f ++=()F G f =-+图2.17拉力的功元为:,拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:.由于W = ΔE ,可得滑动摩擦因数为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

大学物理课后习题答案 第二章

大学物理课后习题答案 第二章

大学物理教程课后习题答案 第二章 2.1 两根轻弹簧与物体连接方式如题图 2.1,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑.证明系统可作简谐振动,并求振动的固有频率. 题图2.1 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.设m 位于x 时,两弹簧分别伸长1x 和2x ,则12x x x =+.因两弹簧弹性力相等,所以物体m 所受合力1122F k x k x ==.设由两弹簧组合而成的“组合弹簧”的劲度系数为k ,于是12121212()()k k F F F kx k x x k kF k k k k +==+=+= 由此求得“组合弹簧”的劲度系数1212k k k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的固有频率12121122()k k k m m k k νππ==+ 2.2 两根轻弹簧与物体连接方式如题图2.2,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑,物体静止时两弹簧均处于自由伸张状态.证明系统可作简谐振动,并求振动的圆频率和周期. 题图2.2 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.m 位于x 时,弹簧1被拉长,弹簧2被压缩,m 所受合力1212()F kx k x k x k k x ==+=+由此求得“组合弹簧”的劲度系数12k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的圆频率和周期分别为120k k m ω+= , 122m T k k π=+ 2.3 弹簧振子的质点质量为42.510kg -⨯,运动学方程为0.06cos(5)(m)x t π=+.求:(1)振幅和周期;(2)质点的初始位置;(3)质点位于初始位置时所受合力;(4)质点在s t π=时的位置、速度和加速度.解 (1)由运动学方程可见,振幅006m A .=,05ω=,周期0204(s)126(s)T ..ππω===(2)由运动学方程可见,0t =时,质点的初始位置0006cos 006(m)x ..π==-.(3)对运动学方程求时间导数可得d 0.3sin(5)d x x v t tπ==-+ d 1.5cos(5)d x x v a t t π==-+ 0t =时0 1.5cos 1.5x a π=-=,根据牛顿第二定律可知质点位于初始位置时所受合力440025101537510(N)x F ma ...--==⨯⨯=⨯(4)把t π=代入运动学方程和(3)中求得的x v 、x a 表达式,即可求得质点在t π=时的位置、速度和加速度分别为006cos(5+)006(m)x ..ππ==03sin(5)0(m )x v .ππ=-+=215cos(5) 1.5(m )x a .ππ=-+=-2.4 一质点作简谐振动,振幅为0.02m ,速度幅为0.03m s ,取速度为最大值时为0t =.求:(1)周期;(2)加速度幅;(3)运动学方程. 解 设运动学方程为00cos()002cos()x A t .t ωϕωϕ=+=+,则00002sin()x v .t ωωϕ=-+200002cos()x a .t ωωϕ=-+(1)由m 0002003v ..ω==,可知000315002...ω==,所以周期为 022419(s)15T ..ππω=== (2) 222m 0002002150045(m s )a ....ω==⨯=(3)由已知条件0t =时00x =、0m x v v =,可知0002cos .ϕ=、m m sin v v ϕ=-,即cos =0ϕ ,sin =1ϕ- 由以上二式求出2πϕ=-,所以运动学方程为002cos(15)2x ..t π=-2.5 一水平放置的弹簧振子,质点质量为0.1kg ,振幅为0.01m ,质点运动的最大加速度为20.04m s .求:(1)系统的机械能;(2)质点通过平衡位置时的动能;(3)以0.01m x =时为0t =,动能与势能相等的时刻.解 根据001m A .=和22m 0004m s a A .ω==,可以求出00040012..ω==. 由0k m ω=,可知2001404k m ..ω==⨯=.(1)系统的机械能2251104001210(J)22E kA ..-==⨯⨯=⨯ (2)通过平衡位置时0x =,势能p 0E =,所以动能5k 210(J)E E -==⨯.(3)由已知条件0t =时0001m x .=、00x v =,可知cos 1ϕ= , sin 0ϕ=由以上二式求出0ϕ=.于是2252k 01sin ()210sin 22E kA t t ωϕ-=+=⨯ 2252p 01cos ()210cos 22E kA t t ωϕ-=+=⨯ 动能与势能相等的时刻,k p E E =,即22sin 2cos 2t t =可求出2(21)244t kk πππ=+=+ , 0123k ,,,...= 所以(21)8t k π=+,0123k ,,,...=2.6 题图2.6所示为振幅与频率相同的两个简谐振动的x t -图.求:(1)两个简谐振动的运动学方程;(2)哪个简谐振动的相位超前?超前多少? 题图2.6解 由x t -图可见01m A .=、4s T =,可知0205.Tπωπ==. 对振动(1),1101cos (05)x ..t πϕ=+,当0t =时101005201cos x ..ϕ== , 101005sin 0x v .πϕ=-<可知14πϕ=.运动学方程为 101cos(05)4x ..t ππ=+ 振动(2),2201cos (05)x ..t πϕ=+,当0t =时 202005201cos x ..ϕ== , 202005sin 0x v .πϕ=->可知24πϕ=-.运动学方程为101cos(05)4x ..t ππ=- 两个简谐振动的的相位差 122πϕϕϕ∆=-=说明振动(1)比振动(2)超前2π. 2.7 有两个同方向同频率的简谐振动,它们的运动学方程分别为130.05cos(10)4x t π=+和210.05cos(10)4x t π=+(国际制单位).求:(1)合振动的振幅和初相位;(2)若另有一振动30.08cos(10)x t ϕ=+,ϕ为何值13x x +的振幅最大?ϕ为何值13x x +的振幅最小?(利用旋转矢量图解题)解 (1)分别作与0t =时刻的1x 和2x 对应的旋转矢量1A 和2A ,如题解图2.7.由旋转矢量图可见合矢量12A A +的长度为0.052,与Ox 轴夹角为90ο.于是可知合振动的振幅0.052m A =,初相位12ϕπ=合. 题解图2.7(2)1x 和3x 同相,即34ϕπ=时,13x x +的振幅最大;1x 和3x 反相,即14ϕπ=-时,13x x +的振幅最小.2.8 有两个同方向同频率的简谐振动,其合振动的振幅为0.02m ,合振动与第一个分振动的相位差为30ο,第一个分振动的振幅为0.013m .求:(1)第二个分振动的振幅;(2)两个分振动的相位差.(利用旋转矢量图解题)解 根据已知条件作旋转矢量图,如题解图2.8.(1)由图可见,第二个分振动的振幅20.01m A =.(2)由图可见,两个分振动的相位差2190ϕϕο-=. 题解图2.82.9 现在力学的学习暂时告一段落,请读者总结一下有何收获和体会?(牛顿质点力学的理论结构、数学和物理的关系、学习了哪些方法……)*2.10 某阻尼振动(弱阻尼状态)的振幅经一“周期”后变为原来的13,求振动的“周期”为振动系统固有周期的几倍.解 弱阻尼振动()e cos t x A 't βωϕ-=+,由题意()e 1e 3e et T 't T'T'A A ββββ--+-=== lne ln3T'T 'ββ==所以22ln 3'T 'ππβω==根据'ω=0ω== 于是0022T ''T 'ωπωπωω===1015.= *2.11 质量为3310kg m -=⨯的质点,挂在劲度系数21.210N m k -=⨯的弹簧下端,沿Ox 轴运动.质点除线性回复力外,还受策动力0cos 2t(N)x F F =和阻力rx x F v γ=-作用.求当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的几分之几?解 根据已知条件,22312104310k .m ω--⨯===⨯,2ω=.故弱阻尼受迫振动的稳态振幅004f A β== 由于00F f m =和2mγβ=,所以 002F A γ=当3'γγ=,00001263F F A A γγ'===',因此当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的三分之一.*2.12 为什么说牛顿力学是“确定性”的?混沌的基本特征是什么?。

大学物理第2章习题解答(全)教案资料

大学物理第2章习题解答(全)教案资料

化,方向永远指向圆心
不变,其速率不断增加
2-6 图示一斜面,倾角为 ,底边AB长
为 l 2.1m ,质量为m的物体从斜面顶
端由静止开始向下滑动,斜面的摩擦因数
为 0.14。试问当 为何值时,物体在
斜面上下滑的时间最短?其数值为多少?
m
A
l
B
2-6 已知 l 2.1m, v0 0, 0.14
求 t ? t tmin ? ?
解:
x : mg sin Ff ma x
FN o Ff
p
y : FN mg cos 0
Ff FN
mg sin mg cos ma
运动方程 l 1 at2 1 g(sin cos )t 2 cos 2 2
l 1 at2 1 g(sin cos )t 2
(1) a 10.0m / s2时,绳: FT , 乙对甲: FN
FT 5.94 103(N )
乙对甲: FN 1.98 103 (N ) (2) a 1.0m / s2时,绳: FT , 乙对甲: FN
乙 m2 甲 m1
FT 3.24 103(N )
乙对甲Байду номын сангаас: FN 1.08 103(N ) a
dv 1 (120t 40)dt (12.0t 4.0)dt m
dv (12.0t 4.0)dt
已知:t0 0时, v0 6.0m s1
设: t t 时, v v
v
t
则: dv (12.0t 4.0)dt
v0
0
v 6.0 4.0t 6.0t2
v 6.0 4.0t 6.0t2 v dx / dt
FT'
B
FN
a

大学物理-第二章标准答案-张社奇主编

大学物理-第二章标准答案-张社奇主编

大学物理-第二章答案-张社奇主编————————————————————————————————作者:————————————————————————————————日期:2-1 一木块能在与水平面成α角的斜面上匀速下滑。

若使它以速率υ0沿此斜面向上滑动,求木块向上滑行的距离。

知识点窍 牛顿第二定律:F=m a 逻辑推理 物体沿斜面运动。

匀速下滑时∑F=0,可知摩擦力f 与重力G 滑斜面分力平衡,沿斜面上滑时,因物体所受各力均为恒力且方向沿斜面向下,物体作匀减速运动。

由∑F=ma 及υ2=υ20+2a s 可求出物体上滑的距离。

解题过程 物体沿斜面匀速下滑Mgsin a -f=0 ①物体沿斜面上滑-mgsin a -f =m a ②υ2=υ02+2a s ③ 且滑到最高点时,υ=0 ④由①②③④可得: S=υ02 /4gsina2-2 知识点窍 牛顿第二定律:i iF ma =å逻辑推理 在计算钢丝绳所受张力时,可以将两板作为一个整体研究,由于整体在钢丝绳的拉力及重力作用下,向上加速运动,可利用牛顿第二定律列出动力学方程求解。

在计算2m 对1m 的作用力时,采用隔离法,将二块分离出来,单独研究。

解题过程 以两板作为一系统,对其进行受力分析。

竖直方向上为y 轴建立oy 坐标。

由牛顿第二定律得:1212y T m g m g m m a -+=+()() 解之得 12y T m m a =+g ()(g+)①再由1m 为研究对象。

对其进行受力分析。

由牛顿第二定律得:111y T m g m a -=解之得:11y T m g a ()=+ ②(1)当210.0a m s -=g时,由①②得:35.9410T N =?,2m 对1m 的作用力:1T =?(2)当21.0a m s -=g时,由①②得:33.7410T N =?,1T =?由以上计算可知,在起吊相同重物时,绳子所受的张力随着加速度的增大而增大。

大学物理答案-第二章

大学物理答案-第二章

分析:已知物体的运动轨迹,求速度及加速度的分量式。利用法向加速度和切向加速度 的定义即可求出。
解: (1)
Q
x=t2
∴ t= x
t≥0
Q
y = ( t − 1) 2
∴ y = ( x − 1) 2
& = 2(t − 1) y
& = 2t Q x


v=
dv = dt
&2 + y & 2 = 8t 2 − 8t + 4 x
∴t = 2 an =
400 = 256 × 2 − 256 R
∴ R=
400 = 25m 16
2-11 一质点沿半径为 R 的圆周按规律 s=v0t-bt2/2 运动, v0 和 b 都是取正值的量。 求 (1) t 时刻质点的加速度(2) t 为何值时加速度的值等于 b?(3)加速度为 b 时,质点已
解:根据运动的叠加原理,把小球的运动分解为X方向和Y方向两个运动的叠加: X方向:小球不受力,作匀速直线运动 t=0 时,x0=0,vx=7.6m/s Y方向:小球受重力作用,作匀减速直线运动, 加速度为重力加速度:a = - g t=0 时,y0=9.1m,vy0=6.1m/s,a= - g = - 9.8m/s2 ∴ v y = v y 0 − gt = 6.1 − 9.8t = 0 (1) 球上升到最高点时,Y方向的速度为0
第二章 质点力学
本章以单个质点作为研究对象,研究其运动情况,包括质点运动学和质点动力学两部 分。质点运动学部分介绍了质点运动的矢量描述和坐标描述,以及运动描述的相对性。 质点动力学部分介绍了牛顿运动定律,以及在实际中如何运用牛顿运动定律去解题。另 外,本章还介绍了非惯性参照系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理》第二章答案习题二1 一个质量为P的质点,在光滑的固定斜面(倾角为α)上以初速度v运动,0v的方向与斜面底边的水平线AB平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg,斜面支持力N.建立坐标:取0vϖ方向为X轴,平行斜面与X轴垂直方向为Y轴.如图2-2.题2-2图X方向:0=xF tvx=①Y方向:yymamgF==αsin②0=t时0=y0=yv2sin21tgyα=由①、②式消去t,得22sin21xgvy⋅=α2 质量为16 kg 的质点在xOy平面内运动,受一恒力作用,力的分量为xf=6N,yf=-7 N,当t=0时,==yx0,xv=-2 m·s-1,yv=0.求当t=2 s时质点的 (1)位矢;(2)速度.解:2sm83166-⋅===mfa xx2sm167-⋅-==mfa yy(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=2112sm872167sm452832dtavvdtavvyyyxxx于是质点在s 2时的速度1s m 8745-⋅--=ji v ϖϖϖ(2)m874134)167(21)4832122(21)21(220j i j i jt a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=3 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mke v )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速答: (1)∵ tvm kv a d d =-= 分离变量,得m tk v v d d -=即 ⎰⎰-=v v t mtk v v 00d d m kte v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞, 故有 ⎰∞-=='00d kmv t ev x tm k (4)当t=km时,其速度为evevevv k m m k01===-⋅-即速度减至v的e1.4一质量为m的质点以与地的仰角θ=30°的初速vϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y轴对称性,故末速度与x轴夹角亦为o30,则动量的增量为vmvmpϖϖϖ-=∆由矢量图知,动量增量大小为vmϖ,方向竖直向下.5 作用在质量为10 kg的物体上的力为i tFϖ)210(+=N,式中t的单位是s,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度jϖ6-m·s-1的物体,回答这两个问题.解: (1)若物体原来静止,则iti ttFp tϖϖϖϖ141smkg56d)210(d-⋅⋅=+==∆⎰⎰,沿x轴正向,ipIimpvϖϖϖϖϖϖ111111smkg56sm6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1sm-⋅初速,则⎰⎰+-=+-=-=tttFvmtmFvmpvmpd)d(,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ,同理, 12v v ϖϖ∆=∆,12I I ϖϖ=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)6一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 证毕.7 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求Fϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F ϖ为恒力,∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P (3)由动能定理,J 45-==∆A E k8 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。

则由功能原理,有⎪⎭⎫ ⎝⎛︒+-=-37sin 212122mgs mv kx s f r 222137sin 21kx sf mgs mv k r -︒+= 式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得-1m N 1390⋅=k题2-18图再次运用功能原理,求木块弹回的高度h '2o 2137sin kx s mg s f r -'='-代入有关数据,得 m 4.1='s , 则木块弹回高度m 84.037sin o ='='s h题2-19图9 一个小球与一质量相等的静止小球发生非对心弹性碰撞,试证碰后两小球的运动方向互相垂直.证: 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv += 即 222120v v v += ①题2-20图(a) 题2-20图(b) 又碰撞过程中,动量守恒,即有210v m v m v m ϖϖϖ+=亦即 210v v v ϖϖϖ+= ②由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以0v ϖ为斜边,故知1v ϖ与2v ϖ是互相垂直的.10 一质量为m 的质点位于(11,y x )处,速度为j v i v v y x ϖϖϖ+=, 质点受到一个沿x负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解: 由题知,质点的位矢为j y i x r ϖϖϖ11+=作用在质点上的力为i f f ϖϖ-=所以,质点对原点的角动量为v m r L ϖϖϖ⨯=0)()(11j v i v m i y i x y x ϖϖϖϖ+⨯+=k mv y mv x x y ϖ)(11-=作用在质点上的力的力矩为k f y i f j y i x f r M ϖϖϖϖϖϖϖ1110)()(=-⨯+=⨯=11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1这时它离太阳的距离2r 多少?(太阳位于椭圆的一个焦点。

)解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r =∴ m 1026.51008.91046.51075.81224102112⨯=⨯⨯⨯⨯==v v r r 12 物体质量为3kg ,t =0时位于m 4i r ϖϖ=, 1s m 6-⋅+=j i v ϖϖϖ,如一恒力N 5j f ϖϖ=作用在物体上,求3秒后,(1)物体动量的变化;(2)相对z 轴角动量的变化.解: (1) ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p ϖϖϖϖ(2)解(一) 73400=+=+=t v x x xj at t v y y 5.25335213621220=⨯⨯+⨯=+=即 i r ϖϖ41=,j i r ϖϖϖ5.2572+=10==x x v v1133560=⨯+=+=at v v y y即 j i v ϖϖϖ611+=,j i v ϖϖϖ112+=∴ k j i i v m r L ϖϖϖϖϖϖϖ72)6(34111=+⨯=⨯=k j i j i v m r L ϖϖϖϖϖϖϖϖ5.154)11(3)5.257(222=+⨯+=⨯=∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L ϖϖϖϖ解(二) ∵dtdzM=∴⎰⎰⨯=⋅=∆t t tFrtML00d)(dϖϖϖϖ⎰⎰-⋅⋅=+=⨯⎥⎦⎤⎢⎣⎡⨯+++=3132smkg5.82d)4(5d5)35)216()4(2ktkttjjtti tϖϖϖϖϖ题2-24图13 飞轮的质量m=60kg,半径R=0.25m,绕其水平中心轴O转动,转速为900rev·min-1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F,可使飞轮减速.已知闸杆的尺寸如题2-25图所示,闸瓦与飞轮之间的摩擦系数μ =0.4,飞轮的转动惯量可按匀质圆盘计算.试求:(1)设F=100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?(2)如果在2s内飞轮转速减少一半,需加多大的力F?解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N、N'是正压力,r F、r F'是摩擦力,xF和yF是杆在A点转轴处所受支承力,R是轮的重力,P是轮在O轴处所受支承力.题2-25图(a)题2-25图(b)杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有F l l l N l N l l F 1211210)(+='='-+ 对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反. ∵ N F r μ= N N '= ∴ F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为rad21.53)49(340214960290021220ππππβωφ⨯=⨯⨯-⨯⨯=+=t t 可知在这段时间里,飞轮转了1.53转. (2)10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 2000s rad 21522-⋅-=-=-=πωωωβtt用上面式(1)所示的关系,可求出所需的制动力为Nl l mRl F 1772)75.050.0(40.021550.025.060)(2211=⨯+⨯⨯⨯⨯⨯=+-=πμβ 14 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题2-26图所示.设R =0.20m, r =0.10m ,m =4 kg ,M =10 kg ,1m =2m =2 kg ,且开始时1m ,2m 离地均为h =2m .求:(1)柱体转动时的角加速度;(2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图 题2-26(b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I +=由上式求得 22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=g r m R m I rm Rm β (2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N15 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:(1)初始时刻的角加速度;(2)杆转过θ角时的角速度.解: (1)由转动定律,有β)31(212ml mg= ∴ l g 23=β (2)由机械能守恒定律,有 22)31(21sin 2ωθml l mg = ∴ l g θωsin 3=。

相关文档
最新文档