中考数学相似三角形动点问题专题复习

合集下载

完整版相似三角形的动点问题题型整理

完整版相似三角形的动点问题题型整理

相似三角形的动点问题一、动点型例1如图,已知等边三角形ABC中,点D, E, F分别为边AB , AC, BC的中点,M为直线BC上一动点,△ DMN为等边三角形(点M的位置改变时,△ DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE 上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1 )的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm , BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动. 点E、G的速度均为2cm/s,点F的速度为4cm/s, 当点F追上点G (即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△ EFG的面积为S ( cm2)(1 )当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、为顶点的三角形与以点F、C、G 为顶点的三角形相似?请说明理由.圜②图③迁移应用1如图,已知△ ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C 时,P、Q两点都停止运动,设运动时间为t( s),(1 )当t= 2时,判断△ BPQ的形状,并说明理由;(2 )设厶BPQ的面积为S (cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△ APR s^ PRQ?2、如图,在直角梯形ABCD 中,AB // DC,/ D=90o, AC丄BC, AB=10cm,BC=6cm, F 点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1) 求证:△ ACD BAC;2) 求:DC的长;3) 试探究:△ BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD 中,AD // BC,/ B=90° , AD=6 , BC=8 , AB=3 . 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P, Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P, Q运动的时间是t秒(t > 0)(1 )设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式 (不必写t 的取值范围);(2)当BP=1时,求△ EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△ EPQ覆盖, 刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.、动点加动线例1、如图,在Rt△ABC中,/ C=90 ° , AC=3 , AB=5 .点P从点C出发沿CA以每秒1 个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t> 0).(1 )当t=2时,AP= __________ ,点Q到AC的距离是 ___________________ ;(2)在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;迁移应用1、如图,已知矩形ABCD的边长AB=3cm , BC=6cm .某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ ACD相似?若存在,求t的值. (4)当DE经过点C时,请直接写出t的值.2、如图,正方形 ABCD 的边长为4, E 是BC 边的中点,点 P 在射线AD 上,过P 作PF 丄 AE 于 F .(1) 求证:△ PFAABE ;(2) 当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P , F , E 为顶点的三角 3、如图,已知 A (8, 0), B (0, 6),两个动点 P 、Q 同时在△ OAB 的边上按逆时针方 向(T O f A T B T O f)运动,开始时点 P 在点B 位置,点Q 在点O 位置,点P 的运动速 度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1) 在前3秒内,求△ OPQ 的面积S 与时间t 之间的关系式;并求出△ OPQ 的最大面积;(2) 在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点 P 、Q 的坐标;(3) 在前15秒内,探究PQ 平行于△ OAB —边的情况,并求平行时点 P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ ABC 是直角三角形,/ ACB ,点A 、C 的坐标分 (1) 求过点A 、B 的直线的函数表达式;(2) 在X 轴上找一点D,连接DB ,使得△ ADB 与厶ABC 相似(不包括全等),并求点形也与△ ABE 相似?若存在,请求出x 的值;若不存在,说明理由.SEC别为 A(-3,0) , C(1,O), BC 3AC 4x的坐标;(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△ APQ与厶ADB相似,如存在,请求出m的值;如不存在,请说明理由.OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点BC折叠,使点B落在边OA的点D处.已知折叠CE= 5 5,且-EA5、如图,四边形在Y轴上,将边DA (1) 判断OCD与厶ADE是否相似?请说明理由;(2) 求直线CE与x轴交点P的坐标;(3) 是否存在过点D的直线L ,使直线L、直线CE与x轴所围成的三角形和△ CDE相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.6、A ABC中,AB=AC=5 , BC=6,点P从点B开始沿BC边以每秒1的速度向点C运动,点Q从点C开始沿CA边以每秒2的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P, Q分别从B, C两点同时出发,当点Q运动到点A时,点Q、p停止运动,设它们运动的时间为x.1) ____________ 当x= 秒时,射线DE经过点C;2) 当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3) 当点Q运动时,是否存在以的P、Q、C为顶点的三角形与△ PDE相似?若存在,求出值;若不存在,请说明理由.7、如图,梯形ABCD 中,AD // BC, AB=CD=20cm , AD=40cm,/ D=120 °,点P、Q 同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D, 点P也随之停止运动.设运动时间为t (s)(1 )当t为何值时,△ CPQ与厶ABP相似;(2)设厶APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD 中,AB // DC,/ DAB=90 ° , AD=2DC=4 , AB=6 .动点M 以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动. 过点M作直线I // AD , 与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t (秒)(1 )当t=0.5时,求线段QM的长;(2)当O v t V2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;CQ(3) 当t>2时,连接PQ交线段AC于点R.请探究—Q是否为定值,若是,试求这个定RQ值;若不是,请说明理由.DE PC卫眩B9、如图1,直角梯形ABCD 中,/ A= / B=90° , AD=AB=6cm , BC=8cm,点E 从点A 出发沿AD方向以1cm/s的速度向中点D运动;点F从点C出发沿CA方向以2cm/s的速度11向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1 )当t为何值时,△ AEF和厶ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△ AFE的面积最大?最大值是多少?11, 4),动点P在线段OA上从点O出发以每秒1 10、如图,在平面直角坐标系中.四边形OABC是平行四边形•直线I经过0、C两点.点A的坐标为(8, 0),点B的坐标为(12个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A T C的方向向点C运动,过点P作PM垂直于x轴,与折线0 —C-B相交于点M .当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t> 0).^MPQ的面积为S.(1 )点C的坐标为__________________ ,直线l的解析式为________________________ 。

第22讲 难点探究专题:相似三角形中的动点问题-2024年新九年级数学暑假提升讲义(北师大版)

第22讲 难点探究专题:相似三角形中的动点问题-2024年新九年级数学暑假提升讲义(北师大版)

第22讲难点探究专题:相似三角形中的动点问题【题型一相似三角形动点中求时间多解问题(利用分类讨论思想)】例以2cm/s (1)用含t 的代数式表示:(2)当以A ,P ,Q 为顶点的三角形与【答案】163t -/316t -+∵∠PAQ=∠BAC,∴当AP AQAB AC=时,APQ ABC∽当AP AQ=时,APQ ACB∽,即【答案】185或367或365【分析】根据题意可知B B∠=∠【详解】解:∵在Rt ABC△中,(1)若△BPQ与ABC相似,求t的值;(2)直接写出△BPQ是等腰三角形时(3)如图2,连接AQ、CP,若AQ⊥【答案】(1)t的值为1或41 32(2)BPQV是等腰三角形时t的值为:则1==42BH BQ-∵PH BQ⊥,AC ∴PH AC∥,∴PB BHAB BC=,即则1522BG PB ==∵=QBG ABC ∠∠∴BGQ BCA ~ ∴BG BQ BC BA =即∵PM BC ACB ⊥∠,∴PM AC ∥,∴BPM BAC △△∴BP PM BM BA AC BC ==解得3cm PM t =,【题型二相似三角形动点中求线段长多解问题(利用分类讨论思想)】例在BC 边上,①如图,当90DEB ∠=︒时,可知ACB △∽故答案为:6518或6517.【点睛】本题考查相似三角形的性质,勾股定理及垂直平分线的性质,将直角进行分类讨论,利用相似三角形的性质列比例式是解决问题的关键.【变式2-1】(2023秋·河南南阳·九年级南阳市第三中学校考期末)如图,在矩形12,E是BC的中点,连接AE,P是边ADD′处,当△APD′是直角三角形时,PD=【答案】(3,0)或(7 0,4)或【分析】先求出点A和点相似三角形的性质求解即可.【题型三相似三角形动点中求线段及线段和最值问题】例P是边BC在正方形ABCD 中, EP PQ ⊥,90EPQ ∴∠=︒,即BPE ∠ 90CQP CPQ ∠+∠=CQP BPE ∴∠=∠,【答案】85则PC PC '=,90ACB ∠=︒ ,90C HC '∴∠=︒,此时,PH PC PC '+=+C H BC '∥ ,C BCD '∴∠=∠,【答案】5104【分析】如图所示,作点A 且DE GQ =,连接GE BF ,4FB AB FBC ===,∠∠三角形,则45BAF ∠=︒;设【点睛】本题主要考查了一次函数与几何综合,平行四边形的性质与判定,勾股定理,轴对称的性质,相似三角形的性质与判断,等腰直角三角形的性质与判定等等,正确作出辅助线确定是解题的关键.【题型四相似三角形中的动点问题与函数图像问题】例上一动点,A ....【答案】B【分析】分两种情况:当点在AC 时,当点Q BC 时,结合相似三角形的判定和性质,即可求解.【详解】解:∵903,4ACB BC ∠===,∵直线l AB ⊥,∴BPQ ACB ∠=∠=故选:B.【点睛】本题主要考查了相似三角形的判定和性质,利用分类讨论思想解答是解题的关键.【变式4-1】(2023点O,动点P从点长为y,如果y与A.20B.24【答案】C⊥【分析】根据点P的移动规律,当OP BC形的面积.⊥时,【详解】解:根据题意得:当OP BCA.B.C..【答案】C【分析】分三种情况讨论得出y关于x的函数关系式即可得出答案.【详解】解:①当点P与点重合时,∥,在正方形ABCD中,AD BC【点睛】本题考查动点问题函数图像,考查了相似三角形的判定与性质,正方形的性质,反比例函数及一次函数的图像.解题的关键和难点在于根据点【变式4-3】(2023·于直线AB 下方的l 于点E ,若6AB =,设A .B ..D .【答案】B【分析】根据AE BD ∥得BAE ABD ∠=∠,根据直线是线段AB 的中垂线可得DB AD x ==,132BC AB ==,再证AEB BCD ,然后根据相似三角形列比例式化简可得18y x =,再结合x >定函数图像即可即可解答.【题型五相似三角形中的动点问题与几何综合问题】例连接DE (1)求证:∽CDE DAF △△;(2)当2FC =时,求EC 的长.(3)若直线AF 与线段BC 延长线交于点G ,当DEB GFD △∽△时,求DF 【答案】(1)见解析(2)12(3)125【分析】(1)根据矩形的性质得到90ADC BCD ∠=∠=︒,根据相似三角形的判定定理即可得到结论;(2)根据矩形的性质得到3DC AB ==,根据相似三角形的性质即可得到结论;(3)由90DEC AFD EDC ∠=∠=︒-∠可得BED DFG ∠=∠,用x 的代数式表示三角形的性质即可解决问题.(1)求证: ∽APQ BCP ;(2)若:1:16APQ BCP S S = ,求AQ 的长度;(3)连接CQ .试判断当点P 运动到边AB 的什么位置时,△【答案】(1)证明见解析(2)AQ =34(3)当点P 运动到边AB 的中点时,△PCQ ∽△BCP∵P是AB的中点,∴AP=BP=2.∵△APQ∽△BCP,∴AQBP=APBC,即2AQ=解得:AQ=1,【题型六相似三角形中的动点探究应用问题】例(1)如图1,在ABC 中,D E F ,,分别为AB AC BC ,,上的点,,DE BC AF ∥DG BF EG CF=.【尝试应用】(2)如图2,已知D E 、为ABC 的边BC 上的两点,且满足24BD DE CE ==,交AD AE 、和AC 于点L M 、和N ,求LM MN 的值.【拓展提高】∵PF BC ∥,24BD DE CE==由(1)中结论可得,2PQ QM =∵LM AB ∥,∴FNM FAP ∠=∠,FMN ∠=∴FMN FPA ,MLQ PAQ LM QM【基础巩固】(1)参照小慧提供时思路,利用图(2)请证明上述结论;(2)A 、B 、C 、是同一直线l 上从左到右顺次的点,点P 是直线外一动点,【尝试应用】①若2AB =,1BC =,延长AB 至D ,使CD BC =【拓展提高】②拓展:若AB m =,BC n =,()m n ≠,P 点在l 为___________(用含m 、n 的式子表示).【答案】(1)见解析;(2)见解析;【尝试应用】①2,【拓展提高】②∥,交作CE AP∴∽APB CEBPA AB∴=,CE BC∠PB平分APC ∴∠=∠APB CPB ∴∠=∠,CPB E∴=,PC CE延长PC 至Q ,使PQ AP =PCD QCB ∴∽ ,PD PC BQ CQ∴=,PB 平分APC ∠,AP AB m PC BC n∴==,不妨设AP ma =,PC na =由上知:PAB QPB ≌ ,BQ AB m ∴==,PD na②若点E在线段AC延长线上,CF=2AE=∵CE2+CF2=EF2,∴CE2+[2(5+CE)]2=40,∴CE=255或CE=-25(舍去),∴CE=255;③若点E在线段AC上,CF=2AE=2(AC ∵CE2+CF2=EF2,∴CE2+[2(5-CE)]2=40,∴CE=25或CE=-255(均不满足题意),综上所述,CE=25或25 5【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,三角形全等判定与性质,勾股定理,解一元二次方程,判断相似是解决本题的关键,求一、单选题1.(23-24九年级上·河南洛阳·期中)如图,在ABC 中,8AB AC ==,6BC =,点P 从点B 出发以1个单位/s 的速度向点A 运动,同时点Q 从点C 出发以2个单位/s 的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与ABC 相似时,运动时间为()A .24s 11B .9s 5C .24s 11或9s 5D .以上均不对【答案】C【分析】本题考查了相似三角形的性质,正确分四种情况讨论是解题关键.设运动时间为s t ,先分别求出BP t =,62BQ t =-,03t <<,再分四种情况:①BPQ BAC ∽,②BQP BAC △∽△,③BPQ CAB ∽,④BQP CAB ∽,利用相似三角形的性质分别建立方程,解方程即可得.【详解】解:设运动时间为s t ,由题意得:BP t =,2CQ t =,8,6AB BC == ,62BQ BC CQ t ∴=-=-,点P 从点B 运动到点A 所需时间为88s 1=,点Q 从点C 运动到点B 所需时间为63s 2=,03t ∴<<,AB AC BC =≠ ,B C A ∴∠=∠≠∠,①当BPQ BAC ∽时,则BP BQ AB BC =,即6286t t -=,解得2411t =,符合题意;②当BQP BAC △∽△时,折线AC CB -方向运动到点B 停止,动点H /s 的速度沿AB 方向运动到点B 停止.设AGH 的面积为2cm y ,运动时间为s x ,y 与x 之间关系的图象如图2所示,则AC 的长是()A .B .C .3cmD .4cm当点G 在CB 上运动,即a ()2cm GH GB a x ∴==-,(11222y GB AC a x ∴=⋅=-由图2知,当4x =时,y =()12432a a ∴-⋅=,解得13a =,21a =-(舍去),AC ∴的长是3cm .故选:C .3.(23-24九年级下·辽宁铁岭由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm /s .连接PQ ,设运动时间为()(04)t s t <<,连接PC ,将PQC △沿QC 翻折,得到四边形PQP C ',当四边形PQP C '为菱形时,t 的值为()A .2013B .2320C .4023D .52∴22AB AC BC =+ 点P 由点B 出发沿为1cm /s∴5AP t =-,PE AC ⊥ ,ACB ∠=PE BC ∴∥,∴APE ABC △∽△,∴AE AP AC AB=,∴545AE t -=,∴445AE t =-+,∴QE AE AQ =-=-又 1122QE QC ==⨯∴914252t t -+=-+,解得2013t =, 200413<<,二、填空题4.(23-24九年级上·江苏泰州·期中)如图,在ABC ∆中,8,4,10AC BC AB ===,P 是AC 上一点,2CP =,点Q 从点A 出发,以每秒1个单位长度的速度向终点B 运动,设运动时间为t 秒,当直线PQ 截ABC 存在与ABC 相似的三角形时,t =.点P 从点A 出发沿着边按由A D C →→的路径运动,到达终点C 停止,当以点P 、M 、D 为顶点的三角形与ABD 相似时,则线段AP 的长为.∵四边形ABCD 是菱形,120BAD ∠=∴4AB BC CD AD ====,ABC ∠=∴30ABD ABD ∠=∠=︒,∵点M 是BD 的中点,∴AM BD ⊥,即90AMB AMD ∠=∠=在Rt ADM 中,11422AM AD ==⨯=①如图所示,当点P 在AD 上时,当 ∴1P D MD AD BD =,则1·24MD AD PD BD ==∴11422AP AP AD PD ==-=-=;②如图所示,当点P 在CD 上时,当 连接AC ,根据菱形的性质,BAC ∠∴根据上述证明可得,点1P 是AD 的中点,且∴当2P MD ABD ∽时,点2P 关于点∴22P D =,∴点2P 为CD 的中点,且60ADC ∠=︒∴2AP CD ⊥,即290AP D ∠=︒,∴230DAP ∠=︒,6.(20-21八年级下·重庆九龙坡·期末)如图,直线AB的解析式为y=3x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,当线段EF的长度最小时,△OEF的面积为.∵A(0,4),点B坐标为(﹣3∴OA=4,OB=3,三、解答题7.(22-23九年级上·陕西咸阳·期中)如图,在矩形ABCD 中,15cm AB =,10cm BC =,动点P 从点A 出发,沿AB 边以2cm/s 的速度向点B 匀速移动,动点Q 从点D 出发,沿DA 边以1cm/s 的速度向点A 匀速移动,一个动点到达端点时,另一个动点也停止运动,点P ,Q 同时出发,设运动时间为s t .(1)当t 为何值时,APQ △的面积为29cm ?(2)当t 为何值时,以A ,P ,Q 为顶点的三角形与ABC 相似?点出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动,设运动时间为x,(1)当PQ BC ∥时,x 为何值?(2)APQ △能否与CQB ∆相似,若能,求出AP 的长,若不能,请说明理由.(3)当:1:3BCQ ABC S S =△△时,求:BPQ ABC S S △△.(直接写答案)4的方向向点A 匀速运动,速度为2cm/s ,同时点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ,连接PQ .设运动的时间为t (s ),其中04t <<.解答下列问题:(1)AP =,AQ =;(用含t 的代数式表示)(2)当t 为何值时,以P 、Q 、A 为顶点的三角形与ABC 相似?(3)点P 、Q 在运动过程中,APQ △能否成为等腰三角形?若能,求出此时t 的值;若不存在,请说明理由.。

九年级中考 专题04 动点与相似三角形存在性问题解法题型讲义(教师版)

九年级中考 专题04 动点与相似三角形存在性问题解法题型讲义(教师版)

动点与相似三角形存在性问题解法动点存在性问题是中考的热点与难点,相似三角形存在性问题是其中的重点题型。

其解题核心是找到比例关系得到方程,难点在于分类讨论找出隐含的条件. 通常,隐含的条件中角度相等不太容易发现.一、典例解析例1. 【2020·广东东莞】如图,抛物线y =3+√36x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =√3CD .(1)求b ,C 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.【答案】见解析.【解析】解:(1)∵OB=3OA=3∴B (3,0),A (-1,0)∴0930b c b c ⎧+=⎪⎪++=解得:b=,c= (2)过点D 作DE ⊥y 轴于E ,∵∠ECD=∠BCO,∠DEC=∠BOC=90°∴△CDE∽△CBO∴CD DE BC OB=3DE=,即D点横坐标为其坐标为D()由B(3,0)得直线BD解析式为:y=(3)由A(-1,0),B(3,0),D(),知S△ABD=2),BD=2),AD=过点A作AH⊥BD于H,∴AH=2,DH=2,∴tan∠ADB=1,tan∠∠设Q(x,0),P(1,m),其中m<0,x<3,①当△ABD∽△BPQ时,∠DAB=∠QBP(由题意知∠QBP<90°,∠DAB>90°,不存在)②当△ABD∽△BQP时,同理,此种情况不存在;③当△ABD∽△QBP时,tan ∠ADB=tan ∠QPB=1,tan ∠ABD= tan ∠∠PQO=tan ∠∴2m -m=,21m x -=-即Q 0) ④当△ABD ∽△QPB 时,同理,∴12m -=,即m=-2,21m x -=-x=5-即Q (5-0)⑤当△ABD ∽△PQB 时,同理,∴12m -=,即m=-2,1m x --,x=1-即Q (1-0)⑥当△ABD ∽△PBQ 时,同理,∴2m -m=,11m x -=-,x=1即Q (1,0). 例2.【2020·贵州铜仁】如图,已知抛物线y =ax 2+bx +6经过两点A (﹣1,0),B (3,0),C 是抛物线与y 轴的交点.(1)求抛物线的解析式;(2)点P (m ,n )在平面直角坐标系第一象限内的抛物线上运动,设△PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得∠CMN =90°,且△CMN 与△OBC 相似,如果存在,请求出点M 和点N 的坐标.【答案】见解析.【解析】解:(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx +6,得:{a −b +6=09a +3b +6=0,解得:{a =−2b =4, ∴抛物线的解析式为y =﹣2x 2+4x +6.(2)过点P 作PF ∥y 轴,交BC 于点F ,如图所示.当x =0时,y =﹣2x 2+4x +6=6,∴点C 的坐标为(0,6).设直线BC 的解析式为y =kx +c ,将B (3,0)、C (0,6)代入y =kx +c ,得:{3k +c =0c =6,解得:{k =−2c =6, ∴直线BC 的解析式为y =﹣2x +6.设点P 的坐标为(m ,﹣2m 2+4m +6),则点F 的坐标为(m ,﹣2m +6),∴PF =﹣2m 2+4m +6﹣(﹣2m +6)=﹣2m 2+6m ,∴S △PBC =12PF •OB =﹣3m 2+9m =﹣3(m −32)2+274,∴当m =32时,△PBC 面积取最大值,最大值为274.∵点P (m ,n )在平面直角坐标系第一象限内的抛物线上运动,∴0<m <3.(3)存在点M 、点N 使得∠CMN =90°,且△CMN 与△OBC 相似.①如图,∠CMN =90°,当点M 位于点C 上方,过点M 作MD ⊥y 轴于点D ,∵∠CDM =∠CMN =90°,∠DCM =∠NCM ,∴△MCD ∽△NCM ,若△CMN 与△OBC 相似,则△MCD 与△NCM 相似,设M (a ,﹣2a 2+4a +6),C (0,6),∴DC =﹣2a 2+4a ,DM =a ,当DM CD =OB OC =36=12时,△COB ∽△CDM ∽△CMN , ∴a −2a 2+4a =12,解得,a =1,∴M (1,8),此时ND =12DM =12,∴N (0,172),②当CD DM =OB OC =12时,△COB ∽△MDC ∽△NMC , ∴−2a 2+4a a =12, 解得a =74,∴M (74,558),此时N (0,838). ③如图,当点M 位于点C 的下方,过点M 作ME ⊥y 轴于点E ,设M (a ,﹣2a 2+4a +6),C (0,6),∴EC =2a 2﹣4a ,EM =a ,同理可得:2a 2−4a a =12或2a 2−4a a =2,△CMN 与△OBC 相似, 解得a =94或a =3,∴M (94,398)或M (3,0),此时N 点坐标为(0,38)或(0,−32).综上所述,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,−32),使得∠CMN =90°,且△CMN 与△OBC 相似.例3.【2020·浙江金华】如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知OB =8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【答案】见解析.【解析】解:(1)∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形∵四边形ABOC是正方形,∴OB=OC=AB=AC,∠ACE=∠ABD=90°∵点D,E是OB,OC的中点,∴CE=BD,∴△ACE≌△ABD(SAS),∴AE=AD,∴平行四边形AEFD是菱形(2)连接DE∵S△ABD=12AB·BD=12×8×4=16S△ODE=12OD·OE=12×4×4=8∴S△AED=S正方形ABOC-2 S△ABD-S△ODE=64-2×16-8=24,∴S菱形AEFD=2S△AED=48.(3)连接AF与DE相交于点K,易得△ADK的两直角边之比为1:3,①当AP为菱形一边时,点Q在x轴上方,有两种情况:(i)如图,AG与PQ交于点H,∵菱形P AQG∽菱形ADFE,∴△APH的两直角边之比为1:3.过点H作HN⊥x轴于点N,交AC于点M,设AM=t,∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t.∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴13 AM MH NH PN==∴HN=3AM=3t,∴MH=MN-NH=8-3t,∵PN=3MH,∴8-t=3(8-3t),解得t=2,∴OP=2ON=2(8-t)=12,∴点P的坐标为(12,0).(ii)如图△APH的两直角边之比为1:3.过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M.∵∠1=∠3=90°-∠2,∠AMH=∠PNH,∴△AMH∽△HNP,∴13 AM MH NH PN==设MH=t,∴PN=3MH=3t,∴AM=BM-AB=3t-8,∴HN=3AM=3(3t-8)=9t-24.∵HI是△OPQ的中位线,∴OP=2IH,∴HI=HN,∴8+t=9t-24,解得t=4∴OP=2HI=2(8+t)=24,∴点P的坐标为(24,0).②当AP为菱形一边时,点Q在x轴下方,有两种情况,(i)△PQH的两直角边之比为1:3.过点H作HM⊥y轴于点M,过点P作PN⊥HM于点N.∵MH是△QAC的中位线,∴HM=4,同理,△HPN∽△QHM∴13 PN NH MH MQ==则PN=43,∴OM=4 3设HN=t,则MQ=3t.∵MQ=MC,∴4383t=-,解得:t=209∴OP=MN=4+t=56 9即P(569,0);(ii)△PQH的两直角边之比为1:3.过点H作HM⊥x轴于点M,交AC于点I,过点Q作NQ⊥HM于点N,同理,得:HM=4 3设PM=t,则HN=3t,∵HN=HI,∴4383t=+,解得:t=289∴OP=OM-PM=QN-PM=4-t=8 9即P(89,0).③当AP为菱形对角线时,△PQH的两直角边之比为1:3.同理得:点P的坐标为(16,0).综上所述,点P的坐标为(12,0),(24,0),(569,0),(89,0),(16,0).三、刻意练习1.【2020·山东烟台】如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=12,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)设OB =t ,则OA =2t ,则点A 、B 的坐标分别为(2t ,0)、(﹣t ,0), 则12=12(2t ﹣t ),解得:t =1,点A 、B 的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y =a (x ﹣2)(x +1)=ax 2+bx +2,解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+x +2;(2)存在,理由:点D (m ,﹣m 2+m +2)(m >0),则OD =m ,DE =﹣m 2+m +2,以点O ,D ,E 为顶点的三角形与△BOC 相似, 则DE OE =OB OC ,DE OE =OC OB即DE OE =2或12,即222m m m -++=或2212m m m -++=,解得:m =1或﹣2(舍去),综上所述,m =1. 2.【2020·黑龙江绥化】如图1,抛物线21(2)62y x =-++与抛物线21122y x tx t =-++-相交y 轴于点C ,抛物线1y 与x 轴交于A 、B 两点(点B 在点A 的右侧),直线23y kx =+交x 轴负半轴于点N ,交y 轴于点M ,且OC ON =.(1)求抛物线1y 的解析式与k 的值;(2)抛物线1y 的对称轴交x 轴于点D ,连接AC ,在x 轴上方的对称轴上找一点E ,使以点A ,D ,E 为顶点的三角形与AOC ∆相似,求出DE 的长;【答案】见解析.【解析】解:(1)当0x =时,得21(2)62642y x =-++=-+=, (0,4)C ∴,把(0,4)C 代入21122y x tx t =-++-得,24t -=, 6t ∴=,2134y x x ∴=-++,ON OC =,(4,0)N ∴-,把(4,0)N -代入23y kx =+中,得430k -+=, 解得,34k =; ∴抛物线1y 的解析式为2134y x x =-++,k 的值为34. (2)连接AE ,令0y =,得21340y x x =-++=,解得,1x =-或4,(1,0)A ∴-,(4,0)B ,∴对称轴为:14322x -+==, 3(2D ∴,0), 1OA ∴=,4OC =,32OD =,52AD =, ①当AOC EDA ∆∆∽时,OA OC DE DA=,即1452DE =, 58DE ∴=, ②当AOC ADE ∆∆∽时,AO OC AD DE=,即1452DE =, 10DE ∴=, 综上,58DE =或10; 3.【2020·湖北鄂州】如图,抛物线y =12x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .直线y =12x ﹣2经过B 、C 两点.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,过点P 且垂直于x 轴的直线与直线BC 及x 轴分别交于点D 、M .PN ⊥BC ,垂足为N .设M (m ,0).当点P 在直线BC 下方的抛物线上运动时,是否存在一点P ,使△PNC 与△AOC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)针对于直线y =12x ﹣2,令x =0,则y =﹣2,∴C (0,﹣2),令y =0,则0=12x ﹣2,∴x =4,∴B (4,0),将点B ,C 坐标代入抛物线y =12x 2+bx +c 中,得{c =−28+4b +c =0, ∴{b =−32c =−2, ∴抛物线的解析式为y =12x 2−32x ﹣2;(2)由(1)知,抛物线的解析式为y =12x 2−32x ﹣2,令y =0,则0=12x 2−32x ﹣2,∴x =﹣1或x =4,∴点A (﹣1,0),∴OA =1,∵B (4,0),C (0,﹣2),∴OB =4,OC =2,∴OAOC =OCOB ,∵∠AOC =∠COB =90°,∴△AOC ∽△COB ,∴∠OAC =∠OCB ,∠ACO =∠OBC ,∵△PNC 与△AOC 相似,当△PNC ∽△AOC ,∴∠PCN =∠ACO ,∴∠PCN =∠OBC ,∴CP ∥OB ,∴点P 的纵坐标为﹣2,∴12m 2−32m ﹣2=﹣2, ∴m =0(舍)或m =3,∴P (3,﹣2);当△PNC ∽△AOC 时,∴∠PCN =∠CAO ,∴∠OCB =∠PCD ,∵PD ∥OC ,∴∠OCB =∠CDP ,∴∠PCD =∠PDC ,∴PC =PD ,由①知,P (m ,12m 2−32m ﹣2),D (m ,12m ﹣2), ∵C (0,﹣2),∴PD =2m −12m 2,PC =√m 2+(12m 2−32m −2+2)2=√m 2+(12m 2−32m)2,∴2m 2−12m =√m 2+(12m 2−32m)2,∴m =32,∴P (32,−258), 即满足条件的点P 的坐标为(3,﹣2)或(32,−258). 4.【2020·湖北荆州】如图1,在平面直角坐标系中,A (﹣2,﹣1),B (3,﹣1),以O 为圆心,OA 的长为半径的半圆O 交AO 延长线于C ,连接AB ,BC ,过O 作ED ∥BC 分别交AB 和半圆O 于E ,D ,连接OB ,CD .(1)求证:BC 是半圆O 的切线;(2)试判断四边形OBCD 的形状,并说明理由;(3)如图2,若抛物线经过点D 且顶点为E .①求此抛物线的解析式;②点P 是此抛物线对称轴上的一个动点,以E ,D ,P 为顶点的三角形与△OAB 相似,问抛物线上是否存在一点Q .使S △EPQ =S △OAB ?若存在,请直接写出Q 点的横坐标;若不存在,说明理由.【答案】见解析.【解析】解:(1)证明:设AB 与y 轴交于M ,∵A (﹣2,﹣1),B (3,﹣1),∴AB ∥x 轴,且AM =2,OM =1,AB =5,∴OA =OC =√5,∵DE ∥BC ,O 是AC 的中点,∴OE 是△ABC 的中位线,∴AE =12AB ,BC =2OE ,∴E (12,﹣1), ∴EM =12,∴OE =√OM 2+ME 2=√12+(12)2=√52,∴BC =2OE =√5,在△ABC 中,∵AC 2+BC 2=(2√5)2+(√5)2=25,AB 2=52=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,∴BC ⊥AC ,∵AC 为半圆O 的直径,∴BC 是半圆O 的切线;(2)四边形OBCD 是平行四边形,理由是:由(1)得:BC =OD =OA =√5,∵OD ∥BC ,∴四边形OBCD 是平行四边形;(3)①由(1)知:OD =OA =√5,E 是AB 的中点,且E (12,﹣1),OE =√52, 过D 作DN ⊥y 轴于N ,则DN ∥EM ,∴△ODN ∽△OEM ,∴ON OM =DN EM =OD OE ,即ON 1=DN12=√5√52,∴ON =2,DN =1,∴N (﹣1,2),设此抛物线的解析式为:y =a (x −12)2﹣1,把N (﹣1,2)代入得:2=a (﹣1−12)2﹣1,解得:a =43,∴此抛物线的解析式为:y =43(x −12)2﹣1,即y =43x 2−43x −23;②存在,过D 作DG ⊥EP 于G ,设Q 的横坐标为x ,∵DG =1+12=32,EG =2+1=3,∴DE =√DG 2+EG 2=√(32)2+32=3√52, tan ∠DEG =DG EG =323=12, ∵tan ∠OAM =OM AM =12,且∠DEG 和∠OAM 都是锐角, ∴∠DEG =∠OAM ,当△EPD ∽△AOB 时,EP AO =DE AB ,即√5=3√525,∴EP =32, ∵S △AOB =12AB ⋅OM =12×5×1=52, ∵S △EPQ =S △OAB , ∴12⋅EP ⋅|x −12|=52,即12×32×|x −12|=52, 解得:x =236或−176;当△OAB ∽△DEP 时,ABEP =OADE ,即5EP =√53√52,∴EP =152,同理得:12⋅152⋅|x −12|=52, 解得:x =76或−16;综上,存在符合条件的点Q ,Q 点的横坐标为236或−176或76或−16. 5.【2020·湖北随州】如图,在平面直角坐标系中,抛物线y =ax 2+bx +1的对称轴为直线x =32,其图象与x轴交于点A 和点B (4,0),与y 轴交于点C .(1)直接写出抛物线的解析式和∠CAO 的度数;(2)动点M ,N 同时从A 点出发,点M 以每秒3个单位的速度在线段AB 上运动,点N 以每秒√2个单位的速度在线段AC 上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t (t >0)秒,连接MN ,再将线段MN 绕点M 顺时针旋转90°,设点N 落在点D 的位置,若点D 恰好落在抛物线上,求t 的值及此时点D 的坐标;(3)在(2)的条件下,设P 为抛物线上一动点,Q 为y 轴上一动点,当以点C ,P ,Q 为顶点的三角形与△MDB 相似时,请直接写出点P 及其对应的点Q 的坐标.(每写出一组正确的结果得1分,至多得4分)【答案】见解析.【解析】解:(1)由题意:{−b 2a =3216a +4b +1=0, 解得{a =−14b =34, ∴抛物线的解析式为y =−14x 2+34x +1,令y =0,可得x 2﹣3x ﹣4=0,解得x =﹣1或4,∴A (﹣1,0),令y =0,得到x =1,∴C (0,1),∴OA =OC =1,∴∠CAO =45°.(2)过点C 作CE ⊥OA 于E ,过点D 作DF ⊥AB 于F .∵∠NEM =∠DFM =∠NMD =90°,∴∠NME +∠DMF =90°,∠DMF +∠MDF =90°, ∴∠NME =∠MDF , ∵NM =DM ,∴△MEN ≌△DFM (AAS ), ∴NE =MF ,EM =DF ,∵∠CA O =45°,AN =√2t ,AM =3t , ∴AE =EN =t , ∴EM =AM ﹣AE =2t ,∴DF =2t ,MF =t ,OF =4t ﹣1, ∴D (4t ﹣1,2t ),∴−14(4t ﹣1)2+34(4t ﹣1)+1=2t , ∵t >0,解得t =34,经检验,t =34时,M ,N 均没有达到终点,符合题意, ∴D (2,32).(3)当点Q 在点C 的下方,点P 在y 的右侧,∠QCP =∠MDB 时,取E (12,0),连接EC ,过点E 作EG ⊥EC 交PC 于G ,∵M (54,0),D (2,32),B (4,0)∴FM =2−54=34,DM =3√54,BM =114,BD =52, ∴DF =2MF , ∵OC =2OE ,∴tan ∠OCE =tan ∠MDF =12, ∴∠OCE =∠MDF , ∴∠OCP =∠MDB , ∴∠ECG =∠FDB ,∴tan ∠ECG =tan ∠FDB =43, ∵EC =√52, ∴EG =2√53,可得G (116,23), ∴直线CP 的解析式为y =−211x +1, 由{y =−211x +1y =−14x 2+34x +1,解得{x =0y =0或{x =4111y =39121, ∴P (4111,39121),∴PC =41√511, 当MD CQ=BD CP或MD PC=BD CQ时,△QCP 与△MDB 相似,可得CQ =615242或2050363, ∴Q (0,−373242)或(0,−1687363).当点Q 在点C 的下方,点P 在y 的右侧,∠QCP =∠DMB 时,设PC 交x 轴于K .∵tan ∠OCK =tan ∠DMB =2, ∴OK =2OC =2, 即点K 与F 重合,∴直线PC 的解析式为y =−12x +1,由{y =−12x +1y =−14x 2+34x +1,解得{x =0y =1或{x =5y =−32,∴P (5,−32), ∴PC =5√52, 当DM PC=BM CQ或DM CQ=BM PC时,△QCP 与△MDB 相似,可得CQ =556或7522, ∴Q (0,−496)或(0,−5322). 当点Q 在点C 的下方,点P 在y 的右侧,∠QCP =∠DBM 时,同法可得P (253,−919),Q (0,−25718)或(0,115199),当点Q 在点C 上方,∠QCP =∠DMB 时,同法可得P (1,32),Q (0,176)或(0,3722),当点Q 在点C 上方,∠QCP =∠MDB 时,同法可得P (2511,171121),Q (0,617242)或(0,1613363),当点Q 在点C 下方,点P 在y 轴的左侧时,∠QCP =∠DBM 时,同法可得P (−73,−199),Q (0,−5918)或(0,−25199). 6.【2020·湖南怀化】如图所示,抛物线y =x 2﹣2x ﹣3与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与△ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】见解析. 【解析】解:(1)令y =x 2﹣2x ﹣3中x =0,此时y =﹣3, 故C 点坐标为(0,﹣3), 又∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点M 的坐标为(1,﹣4); (2)连接AC ,OP ,设MC 的解析式为:y =kx +m ,代入C (0,﹣3),M (1,﹣4)得{−3=m −4=k +m ,解得{k =−1m =−3∴MC 的解析式为:y =﹣x ﹣3,令y =0,则x =﹣3, ∴E 点坐标为(﹣3,0), ∴OE =OB =3,且OC ⊥BE , ∴CE =CB ,∴∠B =∠E , 设P (x ,﹣x ﹣3), 又∵P 点在线段EC 上, ∴﹣3<x <0,则EP =√(x +3)2+(−x −3)2=√2(x +3),BC =√32+32=3√2, 由题意知:△PEO 相似△ABC , ①△PEO ∽△CBA , ∴EO BA =EP BC,∴34=√2(x+3)3√2, 解得x =−34,满足﹣3<x <0,此时P 的坐标为(−34,−94); ②△PEO ∽△ABC , ∴EO BC =EP BA,∴3√2=√2(x+3)4, 解得x =﹣1,满足﹣3<x <0,此时P 的坐标为(﹣1,﹣2). 综上所述,P 点的坐标为(−34,−94)或(﹣1,﹣2).7.【2020·江苏连云港】在平面直角坐标系中,把与轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线的顶点为,交轴于点、(点在点左侧),交轴于点.抛物线与是“共根抛物线”,其顶点为.(1)若抛物线经过点,求对应的函数表达式;(2)设点是抛物线上的一个动点,且位于其对称轴的右侧.若与相似,求其“共根抛物线” 的顶点的坐标.xOy x 2113:222L y x x =--D x A B A B y C 2L 1L P 2L (2,12)-2L Q 1L DPQ ∆ABC ∆2L P【答案】见解析.【解析】解:(1)当时,,解得或4,,,,由题意设抛物线的解析式为, 把代入, ,解得,抛物线的解析式为. (2)由题意,,,,,,,顶点,, 由题意,不可能是直角, 第一种情形:当时,①当时,, 0y =2132022x x --=1x =-(1,0)A ∴-(4,0)B (0,2)C 2L (1)(4)y a x x =+-(2,12)-(1)(4)y a x x =+-126a -=-2a =22(1)(4)268y x x x x =+-=--5AB =CB =CA =222AB BC AC ∴=+90ACB ∴∠=︒2CB CA =221313252()22228y x x x =--=--∴3(2D 25)8-PDQ ∠90DPQ ∠=︒QDP ABC ∆∆∽12QP AC DP BC ==设,则,,,, ,,解得或(舍弃), ,.②当时, ,, 解得或(舍), ,.第二种情形:当. ①当时,,213(,2)22Q x x x --3(2P 2132)22x x --2213251392()228228DP x x x x =----=-+32QP x =-2PD QP =213923228x x x ∴-=-+112x =323(2P ∴39)8DQP ABC ∆∆∽2QO PD=239324x x x -=-+52x =323(2P ∴21)8-90DQP ∠=︒PDQ ABC ∆∆∽12PQ AC DQ BC ==过点作于.则,, ,,,, ,, ,由,可得,, ,.②当时,过点作于.同法可得,,,,,,由,可得, ,.Q QM PD ⊥M QDM PDQ ∆∆∽∴12QM PQ MD DQ ==3(2M 39)811(2Q 39)88MD ∴=4MQ =DQ ∴=DQ PDDM DQ=10PD =3(2D 25)8-3(2P ∴55)8DPQ ABC ∆∆∽Q QM PD ⊥M 3(2M 21)8-5(2Q 21)8-12DM ∴=1QM =QD =QD PD DM DQ =52PD =3(2P ∴5)8-8.【2020·山东聊城】如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点. (1)求出二次函数和所在直线的表达式;(2)连接,,在动直线移动的过程中,抛物线上是否存在点,使得以点,,为顶点的三角形与相似?如果存在,求出点的坐标;如果不存在,请说明理由.【答案】见解析.【解析】解:(1)将点,,代入, 得:,解得:,二次函数的表达式为:, 当时,,,设所在直线的表达式为:, 将、代入, 得:,解得:,所在直线的表达式为:;24y ax bx ==++x (1,0)A -(4,0)B y C D BC E x l BC P F l x B 24y ax bx =++BC CP CD l P P C F DCE ∆P (1,0)A -(4,0)B 24y ax bx ==++0401644a b a b =-+⎧⎨=++⎩13a b =-⎧⎨=⎩234y x x =-++0x =4y =(0,4)C ∴BC y mx n =+(0,4)C (4,0)B y mx n =+404nm n =⎧⎨=+⎩14m n =-⎧⎨=⎩BC ∴4y x =-+(2)存在,理由如下: 如图所示:由(2)得:, ,又与有共同的顶点,且在的内部, ,只有时,, , 、,,由(2)得:,,的坐标为:, ,, ,, 解得:, 当时,, ∴点的坐标为:,.9.【2020·山东潍坊】如图,抛物线y =ax 2+bx +8(a ≠0)与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC与抛物线的对称轴l 交于点E .//PF DE CED CFP ∴∠=∠PCF ∠DCE ∠C PCF ∠DCE ∠PCF DCE ∴∠≠∠∴PCF CDE ∠=∠PCF CDE ∆∆∽∴PF CFCE DE=(0,4)C 3(2E 5)2CE ∴==154DE =24PF t t =-+F (,4)t t -+CF ∴∴240t ≠∴15(4)34t -+=165t =165t =2216168434()345525t t -++=-+⨯+=P 16(584)25(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =35S △ABC 时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (﹣2,0)和点B (8,0),∴{4a −2b +8=064a +8b +8=0,解得{a =−12b =3, ∴抛物线解析式为:y =−12x 2+3x +8;(2)当x =0时,y =8,∴C (0,8),∴直线BC 解析式为:y =﹣x +8,∵S △ABC =12⋅AB ⋅OC =12×10×8=40, ∴S △PBC =35S △ABC =24,过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设P(t ,−12t 2+3x +8),∴F (t ,﹣t +8),∴PF =−12t 2+4t ,∴S △PBC =12PF ⋅OB =24,即12×(−12t 2+4t)×8=24, ∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)∵C (0,8),B (8,0),∠COB =90°,∴△OBC 为等腰直角三角形,抛物线y =−12x 2+3x +8的对称轴为x =−b 2a =−32×(−12)=3, ∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E (3,5),设M(3,m),N(n ,−12n 2+3n +8),①当MN =EM ,∠EMN =90°,当△NME ~△COB 时,则{m −5=n −3−12n 2+3n +8=m, 解得{n =6m =8或{n =−2m =0(舍去), ∴此时点M 的坐标为(3,8),②当ME =EN ,当∠MEN =90°时,则{m −5=n −3−12n 2+3n +8=5,解得:{m =5+√15n =3+√15或{m =5−√15n =3−√15(舍去), ∴此时点M 的坐标为(3,5+√15);③当MN =EN ,∠MNE =90°时,连接CM ,故当N 为C 关于对称轴l 的对称点时,△MNE ~△COB ,此时四边形CMNE 为正方形,∴CM =CE ,∵C (0,8),E (3,5),M (3,m ),∴CM =√32+(m −8)2,CE =√32+(5−8)2=3√2,∴√32+(m −8)2=3√2,解得:m 1=11,m 2=5(舍去),此时点M 的坐标为(3,11);故在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似,点M 的坐标为:(3,8),(3,5+√15)或(3,11).10.【2020·山东烟台】如图,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC ,抛物线对称轴为直线x =12,D 为第一象限内抛物线上一动点,过点D 作DE ⊥OA 于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与△BOC 相似?若存在,求出m 的值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)设OB =t ,则OA =2t ,则点A 、B 的坐标分别为(2t ,0)、(﹣t ,0),则x =12=12(2t ﹣t ),解得:t =1,故点A 、B 的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y =a (x ﹣2)(x +1)=ax 2+bx +2,解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+x +2;(2)存在,理由:点D (m ,﹣m 2+m +2)(m >0),则OD =m ,DE =﹣m 2+m +2,以点O ,D ,E 为顶点的三角形与△BOC 相似,则DE OE =OB OC 或OC OB ,即DE OE =2或12,即−m 2+m+2m =2或12, 解得:m =1或﹣2(舍去)或1+√334或1−√334(舍去), 故m =1或1+√334.11.【2020·陕西】如图,抛物线y =x 2+bx +c 经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与△AOC 全等,求满足条件的点P ,点E 的坐标.【答案】见解析.【解析】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得{12=9+3b +c −3=4−2b +c ,解得{b =2c =−3, 故抛物线的表达式为:y =x 2+2x ﹣3;(2)抛物线的对称轴为x =﹣1,令y =0,则x =﹣3或1,令x =0,则y =﹣3,故点A 、B 的坐标分别为(﹣3,0)、(1,0);点C (0,﹣3),故OA =OC =3,∵∠PDE =∠AOC =90°,∴当PD =DE =3时,以P 、D 、E 为顶点的三角形与△AOC 全等,设点P (m ,n ),当点P 在抛物线对称轴右侧时,m ﹣(﹣1)=3,解得:m =2,故n =22+2×2﹣5=5,故点P (2,5),故点E (﹣1,2)或(﹣1,8);当点P 在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (﹣4,5),此时点E 坐标同上, 综上,点P 的坐标为(2,5)或(﹣4,5);点E 的坐标为(﹣1,2)或(﹣1,8).。

初中数学相似三角形几何动点问题模型专题汇总

初中数学相似三角形几何动点问题模型专题汇总

初中数学相似三角形几何动点问题模型专题汇总这节课我们学什么1.动点函数型----横竖型问题2.动点函数型----斜线型问题3.动点几何型----二次相似问题4.动点几何形----A-A问题知识点梳理1.本专项的前半部分为二次函数中动点相似三角形之函数型,主要为有一对等角的两个三角形相似时,对等角的夹边作讨论的题型,简称S.A.S型.题型分为横竖型和斜线型两大类:横竖型:动点在平行于坐标轴的直线上;斜线型:动点在倾斜的直线上.(等角类型分为锐角、钝角;等角的位置有公共角、对顶角、内错角等,还可通过三角比的计算得到等角.)注:求斜线上的点坐标方法可以采用代数方法(两点间距离公式),还可以用几何方法构造相似三角形或是三角比来求解.2.本专项的后半部分为二次函数中动点相似三角形之几何.题型分为A-A和两次相似两大类:A-A:确定一组相等的角,讨论分析另一组角,可以结合等腰三角形的性质或者锐角三角比;两次相似:借助第一次证明的相似三角形相等的角,结合已知条件证明第二次相似.典型例题分析1、动点横竖型问题例1.在平面直角坐标系中,O 为坐标原点,二次函数214y x bx c =-++的图像经过点()4,0A 、()0,2C .(1)试求这个二次函数的解析式,并判断点()2,0B -是否在该函数的图像上; (2)设所求函数图像的对称轴与x 轴交于点D ,点E 在对称轴上,若以点C 、D 、E 为顶点的三角形与ABC ∆相似,试求点E 的坐标.【答案:(1)∵c bx x y ++-=241过点40A (,)、02C (,) ∴2,21==c b ∴211242y x x =-++∵当2x =-时,0y = ∴点(2,0)B -在该二次函数的图像上; (2)∵二次函数的对称轴为直线1x = ∴D ∵点E 在对称轴上,且对称轴平行y 轴 ∴OCD CDE ∠=∠又6AB =,AC =CD =2OC =,1OD =易得OCD OAC ∆∆∽∴OCD OAC ∠=∠, 从而CDE OAC ∠=∠若以点C 、D 、E 为顶点的三角形与ABC ∆相似 则有以下两种情况:.A.C .Oxy 1ⅰ)当AB DC AC DE =时,即6552=DE ,解得:35=DE ∴点E 的坐标为)35,1( ⅰ)当AC DC AB DE =时,即5256=DE ,解得:3=DE ∴点E 的坐标为)3,1( 综上点E 的坐标为)35,1(或)3,1(.】 例2.如图,已知在ABC ∆中,90A ∠=︒,AB AC ==直线DE BC //,分别交边AB 、AC 于点D 和点E ,P 是线段DE 上的一个动点,过点P 分别作PM BC ⊥,PF AB ⊥,PG AC ⊥,垂足分别为点M 、F 、G ,设BM x =,四边形AFPG 的面积为y . (1)求PM 的长;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)联结MF 、MG ,当PMF ∆与∆相似时,求BM 的长.【答案:解:(1)过点A 作AH BC ⊥,垂足为点H ,交DE 于点Q . ∵90BAC ∠=︒,AB AC ==,∴6BC =. 又∵AH BC ⊥,∴132BH CH BC ===,Q 是ABC ∆的重心.∴113QH AH ==. ∵DE BC //,PM BC ⊥,AH BC ⊥,∴1PM QH ==.(2)延长FP ,交BC 于点N .∵90BAC ∠=︒,AB AC =,∴45B ∠=︒.于是,由FN AB ⊥,得45PNM ∠=︒.又由PM BC ⊥,得1MN PM ==,PN =∴1BN BM MN x =+=+,1)FB FN x ==+.∴1))AF AB FB x x =-=+=-,1)1)FP FN PN x x =-=+-. ∵PF AB ⊥,PG AC ⊥,90BAC ∠=︒,∴90BAC PFA PGA ∠=∠=∠=︒.∴四边形AFPG 是矩形.∴1))y FP AF x x =⋅=--, 即所求函数解析式为215322y x x =-+-.定义域为15x <<.(3)∵四边形AFPG 是矩形,∴)5(22x AF PG -==. 由135FPM GPM ∠=∠=︒,可知,当PMF ∆与PMG ∆相似时,有两种情况:PFM PGM ∠=∠或PFM PMG ∠=∠.(ⅰ)如果PFM PGM ∠=∠,那么PF PMPG PM=.即得PF PG =.∴1))22x x -=-.解得3x =.即得3BM =. (ⅰ)如果PFM PMG ∠=∠,那么PF PMPM PG=.即得2PM PF PG =⋅.∴1))1x x --=.解得13x =,23x =-.即得3BM =或3BM =∴当PMF ∆与PMG ∆相似时,BM 的长等于33或3.】2、 动点斜线型问题例3.已知:如图,在平面直角坐标系xOy 中,二次函数213y x bx c =-++的图像经过点1()1,A -和点()2,2B ,该函数图像的对称轴与直线OA 、OB 分别交于点C 和点D .(1)求这个二次函数的解析式和它的对称轴; (2)求证:ABO CBO ∠=∠;(3)如果点P 在直线AB 上,且POB ∆与BCD ∆相似,求点P 的坐标.【答案:(1)解:由题意,得解得∴所求二次函数的解析式为.对称轴为直线1x =.(2)证明:由直线OA 的表达式y x =-,得点C 的坐标为11-(,).∵,,∴AB BC =.又∵,,∴OA OC =.∴ABO CBO ∠=∠.(3)解:由直线OB 的表达式y x =,得点D 的坐标为(1,1). 由直线AB 的表达式,得直线与x 轴的交点E 的坐标为40-(,). ∵POB ∆与BCD ∆相似,ABO CBO ∠=∠ ∴BOP BDC ∠=∠或BOP BCD ∠=∠.10=AB 10=BC 2=OA 2=OC(i )当BOP BDC ∠=∠时,由135BDC ∠==︒,得135BOP ∠=︒. ∴点P 不但在直线AB 上,而且也在x 轴上,即点P 与点E 重合. ∴点P 的坐标为40-(,). (ii )当BOP BCD ∠=∠时,由POB BCD ∆∆∽,得.而,,,∴.又∵,∴.作PH x ⊥轴,垂足为点H ,BF x ⊥轴,垂足为点F . ∵PH BF //,∴.而2BF =,6EF =,∴,.∴.∴点P 的坐标为48(,)55.综上所述,点P 的坐标为(4,0)-或48(,)55.】3、 动点几何型—二次相似问题例4.如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边AB 上的中线,10AB =,4tan 3A =,点P 是CE 延长线上的一动点,过点P 作PQ CB ⊥,交CB 延长线于点Q ,设,EP x BQ y ==. (1)求y 关于x 的函数关系式及定义域;(2)联结PB ,当PB 平分CPQ ∠时,求PE 的长;(3)过点B 作BF AB ⊥交PQ 于F ,当BEF ∆和QBF ∆相似时,求x 的值.22=BO 2=BD 10=BC 102=BE【答案:(1)在Rt ABC 中,︒=∠90ACB ,∵34tan ==AC BC A ,10=AB ∴8=BC ,6=AC ∵CE 是斜边AB 上的中线,∴521===AB BE CE ∴ABC PCB ∠=∠,∵︒=∠=∠90ACB PQC ∴BQC ABC ∆∆∽,∴54==AB BC PC CQ ,即5458=++x y ∴445y x =-,定义域为5x >. (2)过点B 作BM PC ⊥,垂足为M .∵PB 平分CPQ ∠,PQ BQ ⊥,垂足为Q . ∴y BQ BM ==∵52485353=⨯==BC BM ∴524454=-x ∴11=x (3)∵︒=∠=∠90ACB Q ,A QBF ∠=∠ ∴BQF ABC ∆∆∽ 当BEF ∆和QBF ∆相似时,可得BEF ∆和ABC ∆也相似. 分两种情况: 1)当A FEB ∠=∠时,在Rt FBE ∆E 中,︒=∠90FBE ,5=BE ,y BF 35=∴534)454(35⨯=-x ,解得10=x ; 2)当ABC FEB ∠=∠时,在Rt FBE ∆中,︒=∠90FBE ,5=BE ,y BF 35=∴543)454(35⨯=-x ,解得16125=x ; 综合16125=x 或10.】 4、 动点几何型—A -A 问题例5. 如图,已知等边ABC ∆的边长为6,点D 是边BC 上的一个动点,折叠ABC ∆, 使得点A 恰好与边BC 上的点D 合,折痕为EF (点E 、F 分别在边AB 、AC 上). (1)当:5:4AE AF =时,求BD 的长: (2)当ED BC ⊥时,求EB 的值;(3)当以B 、E 、D 为顶点的三角形与DEF ∆相似时,求BE 的长.【答案:(1)∵ABC ∆是等边三角形, ∴,.由题意可知AEF DEF ∆∆≌,∴,,.∴.∵,∴.又∵,∴. ∵,∴BDE CFD ∆∆∽. 方法①∵BDE CFD ∆∆∽,∴. 设,则由知,,, ,.设,则.∴.即整理,得解得,即.︒=∠=∠=∠60C B A CA BC AB ==︒=∠=∠60A EDF AE DE =AF DF =BDF EDF BDE ∠=∠+∠C CFD BDF ∠+∠=∠=∠+∠EDF BDE C CFD ∠+∠C EDF ∠=︒=∠60CFD BDE =∠C B ∠=∠k AE 5=4:5:=AF AE k AF 4=k AE DE 5==k AF DF 4==k BE 56-=k CF 46-=x BD =x CD -=64=x 4=BD ABCDEF方法②∵BDE CFD ∆∆∽, ∴(相似三角形的周长的比等于相似比).∴.又,,∴.解得:.方法③过点E 作,过点D 作设,,依题意易得,,,.在Rt BEM ∆中,,在Rt FDN ∆中,,易证DEM FDN ∆∆∽,.进而可得,整理,得 (1)在Rt FDN ∆中,依据勾股定理可得 (2)整理(2),并将(1)代入(2),可得.解得(不合题意,舍去).即.(2)当时,如图.6==+AB BE DE 6==+AC FC DF BD CD -=64=BD BC EM ⊥AC DN ⊥k AE 5=x BD =k AF 4=k AE DE 5==k AF DF 4==k BE 56-=k CF 46-=x CD -=6k x 2018-=01272=+-x x 31=x 42=x 4=BD BC ED ⊥︒=︒-︒=∠-︒=∠30609090B BED ABCDEFMN.过点作,垂足为., .在Rt BED ∆中,,在Rt DEH ∆中,,在Rt EHF ∆中,.∴.(3)分两种情况讨论:①当以、、为顶点的三角形与DEF ∆相似,顶点、、分别与、、对应时,可得. ∴EF BC //.∴,.易得AEF ∆、DEF ∆、DFC ∆、DEB ∆是四个边长相等的等边三角形.∴.②当以、、为顶点的三角形与DEF ∆相似,顶点、、分别与、、对应时,可得.又,, ∴.易得AEF ∆、DEF ∆、DFC ∆、DEB ∆四个边长相等的等边三角形.∴.综上所述,当以、、为顶点的三角形与DEF ∆相似时,.】E DF EH ⊥H ︒=︒-︒=∠-︒=∠30609090EDF DEH ︒=︒-︒=∠-∠=∠453075DEH DEF FEH B E D B D E D E F DEF BDE ∠=∠︒=∠=∠60B AEF ︒=∠=∠60AEF DEF B E D B D E D F E DFE BDE ∠=∠DFC BDE ∠=∠AFE DFE ∠=∠B E D 3=BE课后练习练1. 在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A在点B 的左侧),点B 的坐标为()3,0,与y 轴交于点()0,3C ,顶点为D . (1)求抛物线的解析式及顶点D 坐标; (2)联结AC 、BC ,求ACB ∠的正切值;(3)点P 是抛物线的对称轴上一点,当PBD ∆与CAB ∆相似时,求点P 坐标.【答案:(1)抛物线2y x bx c =++过点()3,0B ,()0,3C∴9303b c c ++=⎧⎨=⎩∴43b c =-⎧⎨=⎩∴243y x x =-+∴顶点D 的坐标为()2,1- (2)∵抛物线243y x x =-+与x 轴交于点A 、B (A 在B 的左侧) ∴()1,0A 又∵()0,0O ,()0,3C ,()3,0B ∴3BO CO ==∵90COB ∠=︒∴45,OBC BC ∠=︒=过点A 作AH BC ⊥,垂足为H ,∴90AHB ∠=︒∵2AB =∴AH BH =CH BC BH =-=∴1tan 2AH ACB CH ∠=== (3)∵抛物线243y x x =-+的对称轴为直线2x = 点P 是抛物线对称轴上一点,∴可设点P 的坐标为()2,n 把对称轴直线2x =与x 轴的交点记为E ,则点E 的坐标为()2,0∵()2,1D -,()3,0B ∴1,DE BE BD ==∵90BED ∠=︒∴45EDB EBD ∠=∠=︒ ∴45CBO BDE ∠=∠=︒∴当PBD ∆与CAB ∆相似时,点P 在点D 的上方,并存在以下两种情况:1)BD BA DP BC==2n =∴()2,2P 2)BD BC DP BA ==13n =-∴12,3P ⎛⎫- ⎪⎝⎭ 综上所述,当PBD ∆与CAB ∆相似时,点()2,2P 或12,3P ⎛⎫- ⎪⎝⎭.】练2. 如图,二次函数2y ax bx c =++的图像经过点()()()3,0,1,0,0,3A B C -.(1)求此函数的解析式;(2)用配方法(写出配方过程)将此函数化为()2y a x m k =++的形式,并写出其顶点坐标;(3)在线段AC 上是否存在点P (不含A 、C 两点),使ABP ∆与ABC ∆相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案:(1)由题意得:⎪⎩⎪⎨⎧==+-=++30039c c b a c b a ,解得:⎪⎩⎪⎨⎧==-=321c b a .∴此函数解析式为322++-=x x y .(2)322++-=x x y 13)12(2+++--=x x 4)1(2+--=x .∴顶点为14(,). (3)假设存在点P ,使ABP ∆与ABC ∆相似, 则AP AB AC AB =或ABAPAC AB =.当APABAC AB =时,AC AP =.(不合题意,舍去) 当ABAPAC AB =时,328=AP .由题意易得直线AC 的解析式为:3+-=x y , 设()3,+-x x P ,其中03x <<,则()()3283322=+-+-x x . 解得:317,3121==x x (舍去). ∴⎪⎭⎫⎝⎛38,31P .】练3. 如图,已知梯形ABCD 中,AD BC //,AB BC ⊥,4AB =,5AD CD ==,3cot 4C ∠=.点P 在边BC 上运动(点P 不与点B 、点C 重合),一束光线从点A 出发,沿AP 的方向射出,经过BC 反射后,反射光线PE 交射线CD 于点E .(1)当PE CE =时,求BP 的长度;(2)当点E 落在线段CD 上时,设BP x =,DE y =,试求y 与x 之间的函数关系,并写出其定义域;(3)联结PD ,若以点A 、P 、D 为顶点的三角形与PCE ∆相似,试求BP 的长度. 【答案:(1)根据已知,得8BC =,APB EPC ∠=∠ ∵PE CE =∴EPC C ∠=∠∴APB C ∠=∠ (方法一)∵34cot C ∠=∴43=AB BP ∵4AB =∴3BP =即3BP =时,PE CE = (方法二)∴AP DC //∴5PC AD == ∴3BP =即3BP =时,PE CE = (2)延长PE 与AD 的延长线交于点F , ∵BP x =∴8PC x =-,2AF x =∵DE y = 5DC AD ==∴5EC y =- 25DF x =- ∵AF BC // ∴ECDE PC DF =即y yx x -=--5852 ∴()3525+-=x x y∵点E 在线段CD 上 ∴函数定义域为x ≤25<8 (3)∵AD BC //∴DAP APB ∠=∠, ∵APB EPC ∠=∠∴DAP EPC ∠=∠ 若APD ∆与PCE ∆,则有如下两种情况: (ⅰ)ADP C ∠=∠时,推出2BP =时,APD PEC ∆∆∽; (ⅰ)APD C ∠=∠时(法一)又∵ADP DPC ∠=∠∴APD DCP ∆∆∽A DBD(备用图)DA BEP∴PC AD PD ⋅=2∵()22254x PD -+=∴()()x x -=-+855162解得22152,1±=x ,经检验,均符合题意 故22152,1±=x 时,APD PCE ∆∆∽; ∴当BP 为2,2215±时,APD ∆与PCE ∆相似. (法二)过点D 作DH AP ⊥于点H ∵DAP APB ∠=∠∴ADAHAP BP AD DH AP AB ==, ∵224x AP += ∴22165,1620xx AH xDH +=+=∴2216516xx x HP +-+=∵34cot C ∠=∴43cot ==∠DH HP DPH 22216203165164x x x x +⋅=⎪⎪⎭⎫⎝⎛+-+ 解得22152,1±=x 经检验,均符合题意 故22152,1±=x 时,APD PCE ∆∆∽; ∴当BP 为2,2215±时,APD ∆与PCE ∆相似.】课后小测验1.如图,抛物线215222y x x =-+-与x 轴相交于A 、B ,与轴相交于点C ,过点C 作CD x //轴,交抛物线于点D . (1)求梯形ABCD 的面积;(2)若梯形ACDB 的对角线AC 、BD 交于点E ,求点E 的坐标,并求经过A 、B 、E 三点的抛物线的解析式;(3)点P 是射线CD 上一点,且PBC ∆与ABC ∆相似,求符合条件的P 点坐标.【答案:(1)10A (,)、40B (,)、02C -(,)、52D -(,)8ACDB S =梯形.由抛物线的对称性有25=E x 过E 作EN AB ⊥,83=+==CD AB AB BC BE OC EN , 43=EN ,43-=E y ,53(,)24E -2153()324y x =-- (3)当点P 在C 的右侧,由题意有PCA BAC ∠=∠, 若AC ACPC AB=,即3PC =时,PAC BAC ∆∆∽;此时3CP =,32P -(,); 若AC AB PC AC =,=时,PAC ABC ∆∆∽;此时203CP =,2023P -(,).y。

专题13~15相似三角形中的动点问题专练

专题13~15相似三角形中的动点问题专练

专题13~15相似三角形中的动点问题专练
专题13~15 相似三角形中的动点问题专练
【分析】本题主要考查了相似三角形的判定和性质,等腰三角形的性质、勾股定理、解一元一次方程和一元二次方程等知识点,要注意第一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.第二问中等腰三角形每两边相等,共三种情况,不要忽略掉任何一种情况.
【分析】本题主要考查了相似三角形的判定和性质,等腰三角形的性质、勾股定理、解一元一次方程和一元二次方程等知识点,要注意第一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.第二问中等腰三角形每两边相等,共三种情况,不要忽略掉任何一种情况.
【分析】本题考查的是相似三角形的判定和性质、轴对称的性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

相似三角形中的动点问题—2023-2024学年九年级数学下册(苏科版)(解析版)

相似三角形中的动点问题—2023-2024学年九年级数学下册(苏科版)(解析版)

相似三角形中的动点问题【典例1】如图,在矩形ABCD中,AB=4,AD=2,动点P从点A开始以每秒2个单位长度沿AB向终点B运动,同时,动点Q从点C开始沿C−D−A以每秒3个单位长度向终点A运动,它们同时到达终点.连接PQ交AC于点E.过点E作EF⊥PQ,交直线CD于点F.(1)当点Q在线段CD上时,求证:CEAE =32.(2)当DQ=1时,求△APE的面积.(3)在P,Q的运动过程中,是否存在某一位置,使得以点E,F,Q为顶点的三角形与△ABC相似?若存在,求BP的长;若不存在,请说明理由.(1)证明△CQE∽△APE(2)①当点Q在CD上时,如图1,CQ=CD−DQ=3.过点E作AB的垂线交AB于点M,交CD于点N.②当点Q在AD上时,如图2,作EM⊥AB于点M,设EM=ℎ,再利用相似三角形的性质求解三角形的高,再利用面积公式计算即可;(3)分三种情况讨论:①当点Q在CD上时,设CQ=3t,则AP=2t,若点F在Q的右侧,如图3,当△FEQ∽△ABC,则∠1=∠2,作PH⊥CD于点H,而∠B=∠PHQ=90°,∴△ABC∽△PHQ,则PHQH =ABBC=2,从而可得答案;若点F在Q的左侧,如图4,△FEQ∽△ABC,点F与点C重合,从而可得答案;②当点Q在AD上时,如图5,△FEQ∽△ABC,EFEQ =BABC=2,∠FEG=∠B=90°,作EN⊥CD于点N,EG⊥AD于点G.,则∠NEQ=90°,再结合相似三角形的性质建立方程可得答案.(1)当点Q在线段CD上时,由题意可得:AB∥CD,CQ=3t,AP=2t,∴△CQE∽△APE,∴CE AE =CQAP=32.(2)①当点Q在CD上时,如图1,CQ=CD−DQ=3.过点E作AB的垂线交AB于点M,交CD于点N.由CQAP =V点QV点P=32,得AP=2.由△CQE∽△APE,得ENEM =CEAE=32,∴EM=25MN=45,∴S△APE=12AP⋅EM=12×2×45=45.②当点Q在AD上时,如图2,作EM⊥AB于点M,设EM=ℎ.AQ=AD−DQ=1,AP=23(CD+DQ)=103.同理:△AME∽△ABC,∴EM AM =BCAB=12,∴AM=2EM=2ℎ.同理:△PME∽△PAQ,得EMPM =AQPA=1103=310,∴PM=103EM=103ℎ.∴AP=PM+AM=103ℎ+2ℎ=103,解得ℎ=58,∴S△APE=12AP⋅EM=12×103×58=2524.∴△APE 的面积为45或2524.(3)①当点Q 在CD 上时,设CQ =3t ,则AP =2t .若点F 在Q 的右侧,如图3,当△FEQ∽△ABC ,则∠1=∠2.作PH ⊥CD 于点H ,而∠B =∠PHQ =90°, ∴△ABC ∽△PHQ ,则PHQH =ABBC =2, ∴QH =12PH =1.∵HD =AP =2t ,∴CD =CQ +QH +HD =3t +1+2t =4, 解得t =35.∴BP =4−2t =4−65=145.若点F 在Q 的左侧,如图4,△△ABC ,点F 与点C 重合.∵AC =√AB 2+BC 2=√42+22=2√5, 又∵CEAE =32 ∴AE =25AC =4√55. ∵由△FEQ∽△ABC 结合对顶角可得:∠AEP =∠B =90°,而∠PAE =∠BAC , ∴△AEP∽△ABC ,∴AE AB =APAC ,即4√554=2√5,则AP =2,∴BP =AB −AP =2.②当点Q 在AD 上时,如图5,△FEQ∽△ABC ,EFEQ =BABC =2,∠FEG =∠B =90°, 作EN ⊥CD 于点N ,EG ⊥AD 于点G .,则∠NEQ =90°,由∠FEQ =∠NEG =90°,得∠FEN =∠QEG , ∴Rt △FEN∽Rt △QEG , ∴ENEG =EFEQ =2. 同理可得:AGEG =BCAB=12, 设AG =k ,则EG =2AG =2k ,EN =2EG =4k . ∴DG =EN =4k ,AD =AG +DG =5k , 由AD =2,得5k =2,k =25, ∴AG =25,EG =45. 由题意,AQ BP =V 点Q V 点P=6−3t 4−2t=32,设AQ =3x ,则BP =2x ,AP =4−2x ,QG =AQ −AG =3x −25, 由△QGE∽△QAP ,得EGAP =QGQA ,即454−2x =3x−253x,化简,得15x 2−26x +4=0, 解得x 1=13+√10915(舍去),x 2=13−√10915.∴BP =2x =26−2√10915. 综上所述,BP 的长为145或2或26−2√10915.1.(2023秋·江苏常州·九年级常州市第二十四中学校考阶段练习)如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.【思路点拨】(1)由于EF//x轴,则S△PEF=12⋅EF⋅OE,t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则EFOA=BEBO,从而求出EF的长度,得出△PEF(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.即可得解.【解题过程】(1)∵EF//OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴EFOA =BEBO,当t=9时,OE=9,OA=20,OB=15,BE=OB−OE=15−9=6,∴EF=20×615=8,∴S△PEF=12EF⋅OE=12×8×9=36(cm2);(2)不存在.理由:∵△BEF∽△BOA,∴EF=BE⋅OABO =(15−t)⋅2015=43(15−t),∴12×43(15−t)×t=40,整理,得t2−15t+60=0,∵△=152−4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴OPOA =OEOB,即20−2t20=t15,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴OPOB =OEOA,即20−2t15=t20,解得t=8011.∴当t=6s或t=8011s时,△EOP与△BOA相似.2.(2022·四川·九年级专题练习)如图1,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从点A出发,沿AB以1cm/s的速度向点B匀速运动:同时点N从点D出发,沿DA方向以2cm/s的速度向点A匀速运动,点N运动到点A时停止运动,运动时间为t.(1)若△AMN是等腰直角三角形,则t=___________(直接写出结果).(2)是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值,若不存在,请说明理由.(3)如图2,连接CN 、CM ,试求CN +2CM 的最小值. 【思路点拨】(1)根据题意可知只有AM =AN 时,△AMN 是等腰直角三角形,再根据题意可用t 表示出AM =t ,AN =6−2t ,列出等式,解出t 即可;(2)分类讨论①当△ACD ∼△NMA 时和②当△CAD ∼△NMA 时,列出比例式,代入数据,即可求解; (3)取CN 中点E ,作E 点关于CD 的对称点E ′,连接CE ′.作M 点关于BC 的对称点M ′,连接CM ′,E ′M ′.根据作图可知CE ′=CE ,CM ′=CM ,即可知当CE ′+CM ′最小时CN +2CM 最小,即最小值为E ′M ′的长.连接E ′E 并延长,交CD 于点F ,AB 于点G .由作图结合题意易求出E ′G =E ′F +AD =t +6,BG =12AB =32,BM ′=BM =AB −AM =3−t ,从而可求出GM ′=BG +BM ′=92−t .在Rt △E ′GM ′中,利用勾股定理可求出E ′M ′=√E ′G 2+GM ′2=√2(t +34)2+4418,最后根据二次函数的性质,即得出t =0时,√2(t +34)2+4418最小,即此时E ′M ′=152,故可求出CN +2CM 的最小值为15.【解题过程】(1)∵∠MAN =90°,∴若△AMN 是等腰直角三角形时,只有AM =AN .根据题意可知AM =t ,DN =2t AN =AD −DN =6−2t , ∴t =6−2t , 解得t =2, 故答案为:2.(2)∵∠MAN =∠ADC =90°,∴以A 、M 、N 为顶点的三角形与△ACD 相似分为两种情况, ①当△ACD ∼△NMA 时,有ADAN =CDAM ,即66−2t =3t , 解得:t =32;②当△CAD ∼△NMA 时,有ADAM =CDAN ,即6t =36−2t , 解得:t =125.当t =32或t =125时,以A 、M 、N 为顶点的三角形与△ACD 相似;(3)如图,取CN中点E,作E点关于CD的对称点E′,连接CE′.作M点关于BC的对称点M′,连接CM′,E′M′.根据作图可知CE′=CE,CM′=CM,∴CN+2CM=2(CE+CM)=2(CE′+CM′),∴当CE′+CM′最小时CN+2CM最小,∵CE′+CM′≥E′M′,∴CE′+CM′的最小值为E′M′的长,即CN+2CM的最小值为2E′M′的长.如图,连接E′E并延长,交CD于点F,AB于点G.∵作E点关于CD的对称点E′,∴E′F//AD,E′F=EF.又∵E为中点,∴E′F=EF=12DN=t,G为AB中点,∴E′G=E′F+AD=t+6,BG=12AB=32.∵作M点关于BC的对称点M′,∴BM′=BM=AB−AM=3−t,∴GM′=BG+BM′=32+3−t=92−t.在Rt△E′GM′中,E′M′=√E′G2+GM′2=√(6+t)2+(92−t)2=√2(t+34)2+4418,∵t≥0,2>0∴t=0时,√2(t+34)2+4418最小,即E′M′=√2×(34)2+4418=152.∴CN+2CM=2E′M′=15.3.(2022秋·江苏泰州·九年级校联考阶段练习)如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△P AB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.【思路点拨】(1)根据勾股定理得出AC,进而利用相似三角形的判定和性质解答即可;(2)根据全等三角形的性质和勾股定理解答即可;(3)根据相似三角形的判定和性质以及勾股定理解答即可.【解题过程】解:(1)连接BE,由已知:在Rt△ADC中,AC=√AD2+DC2=√32+42=5,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴AD PE =ACPC,即3PE=54,∴PE=125;(2)如图1,当△P AB≌△PEB时,∴P A =PE ,∵AP =m ,则PC =5﹣m , 由(1)得:△ACD ∽△PCE , ∴3PE =55−m, ∴PE =3(5−m)5,由P A =PE ,即3(5−m)5=m ,解得:m =158, ∴EC =√PC 2−PE 2=√(5−158)2−(158)2=52,∴BE =√EC 2+BC 2=√(52)2+32=√312≠AB ,∴△P AB 与△PEB 不全等, ∴不能使得△P AB ≌△PEB ;(3)如图2,延长EP 交AB 于G ,∵BP ⊥PF , ∴∠BPF =90°, ∴∠EPF +∠BPG =90°, ∵EG ⊥AB , ∴∠PGB =90°, ∴∠BPG +∠PBG =90°, ∴∠PBG =∠EPF , ∵∠PEF =∠PGB =90°, ∴△BPG ∽△PFE ,∴BG PE =PGEF,由(1)得:△PCE∽△ACD,PE=3(5−m)5,∴EC DC =PCAC,即EC4=5−m5,∴EC=4(5−m)5,∴BG=EC=4(5−m)5,∴3−3(5−m)54(5−m)5−n=4(5−m)3(5−m)=43,∴5m+4n=16.4.(2023秋·河北保定·九年级统考期末)如图(1),在矩形ABCD中,AB=6cm,tan∠ABD=43,E、F 分别是AB、BD中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D 出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ,设运动时间为ts(0<t<4),解答下列问题:∴t=1(1)当0<t<2.5时,FQ=______.(用含有t的式子表示)(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为______时,△PQF为等腰三角形?(直接写出结果).【思路点拨】(1)先由题目条件求出AD,再利用勾股定理求出DF,当0<t<2.5时,接着判断出点Q的位置,即可求解.(2)先判断出△QMF∽△BEF,进而得出,再利用面积公式建立方程求解即可.(3)分点Q在DF和BF上,利用相似三角形的性质建立方程求解即可得出结论.【解题过程】(1)在矩形ABCD中,∠A=90°∴在直角三角形DBA中tan∠ABD=ADAB =AD6=43∴AD=8∵E、F分别是AB、BD中点,∴EF=12AD=4∵BD=√AB2+AD2=10∴DF=12BD=5∴Q从D到F的时间为52=2.5当0<t<2.5时,Q在线段DF上,∴FQ=DF−DQ=5−2t.故答案为:5−2t.(2)过点Q作QM⊥EF交EF延长线于点M,可知:QM∥BE,∴△QMF∽△BEF,∴QM BE =QFBF,∴QM3=5−2t5,可得QM=35(5−2t),∴S△PFQ=12×PF⋅QM=12×(4−t)×35(5−2t)=0.6=35,解得:t=92(舍去)或t=2,∴当t=2时,△PQF的面积为0.6cm2;故答案为:t=2.(3)当点Q在DF上时,如图PF=QF∴4−t=5−2t∴t=1当点Q在BF上时,如图PF=QF∴4−t=2t−5∴t=3当PQ=FQ时,如图∴12(4−t)2t−5=45∴t=207当PF=PQ时,如图∴12(2t−5)4−t=45∴t=19 6所以t=1或3或207或196时,△PQF为等腰三角形.故答案为:t=1或3或207或196.5.(2023秋·山东青岛·九年级山东省青岛第五十九中学校考阶段练习)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止运动.设运动时间为t秒.(1)用含t的代数式分别表示线段CP=_______________、CQ=_______________.(2)在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,请说明理由.(3)是否存在某一时刻t,使得△CPQ为直角三角形?若存在,求出所有满足条件的t的值;若不存在,请说明理由.【思路点拨】(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长,据此求解即可;(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题;(3)分两种情况,利用相似三角形得出比例式建立方程求解,即可得出结论.【解题过程】(1)解:如图1,∵∠ACB=90°,AC=8,BC=6,∴AB =√62+82=10,∵CD ⊥AB ,∴S △ABC =12BC ⋅AC =12AB ⋅CD , ∴CD =BC·AC AB =6×810=245,由题意得CQ =PD =t ,∴CP =245−t故答案为:t ,245−t ;(2)解:过点P 作PH ⊥AC ,垂足为H ,如图2所示.由题可知CQ =PD =t ,CP =245−t ,∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B ,∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA ,∴ PH AC =PC AB , ∴ PH 8=4.8−t 10,∴PH =9625−45t ,∴S △CPQ =12CQ ⋅PH =12t (9625−45t)=−25t 2+4825t ;存在某一时刻t ,使得S ΔCPQ :S ΔABC =9:100,∵S ΔABC =12×6×8=24,且S △CPQ :S △ABC =9:100,∴(−25t 2+4825t):24=9:100,整理得:5t 2−24t +27=0,即(5t −9)(t −3)=0,解得:t =95或t =3,∵0≤t ≤245, ∴当t =95秒或t =3秒时,S ΔCPQ :S ΔABC =9:100; (3)解:由(2)知∠ACD =∠B ①当∠CPQ =∠BCA =90°时,∴△CPQ ∽△BCA ,∴CP BC =CQ AB ,∴245−t 6=t 10, ∴t =3;②当∠CQP =∠BCA =90°时,∴△CQP ∽△BCA ,∴CP AB =CQ BC ,∴245−t 10=t 6∴t=95,即:t为3秒或95秒时,△CPQ为直角三角形.6.(2022·山东青岛·统考一模)如图,在矩形ABCD中,BD是对角线,AB=6cm,BC=8cm.点E从点D 出发,沿DA方向匀速运动,速度是2cm/s;点F从点B出发,沿BD方向匀速运动,速度是1cm/s,MN 是过点F的直线,分别交AB、BC于点M、N,且在运动过程中始终保持MN⊥BD.连接EM、EN、EF,两点同时出发,设运动时间为t(s)(0<t<3.6),请回答下列问题:(1)求当t为何值时,△EFD~△ABD?(2)设四边形BMEN的面积为S(cm2),求S关于t之间的函数关系式;(3)求当t为何值时,△EFD为等腰三角形;(4)将△EMN沿直线MN t的值;若不存在,请说明理由;【思路点拨】(1)由题意得,DE=2t,BF=t,在Rt△ABD中,BD=10,DF=BD=BF=10-t,当△ABD∼△EFD,利用对应边成比例,即可求出t值;(2)证得△BFM∼△BAD,可求出BM=53t,BN=54t,AM=AB-BM=6-53t,代入面积表达式,即可求出关系式;(3)分种情况进行讨论即可,注意结果是否符合;(4)假设t值存在,则四边形EKCD为矩形,利用勾股定理表示出EN2=EK2+NK2=16916t2−52t+100,EM2=AM2+AE2=616t2−52t+100,可知t=0,不符合题意,可知不存在符合的t值.【解题过程】(1)解:由题意得,DE=2t,BF=t,∵四边形ABCD为矩形,∴∠BAD=90°,在Rt△ABD中,BD=√AB2+AD2=√62+82=10,∴DF=BD=BF=10-t,当△ABD∼△EFD时,则EDAD =DFDB,即2t8=10−t10,解得:t=207.即当t为207时,△EFD~△ABD;(2)∵MN⊥BD,∴∠MFB=90°,∵∠MBF=∠MBF,∴△BFM∼△BAD,∴BF AB =BMBD,即t6=BM10,∴BM=53t,同理BN=54t,∴AM=AB-BM=6-53t,S=S梯形ABNE −S△AME=(8−2t+54t)×62−(8−2t)×(6−53t)2=−53t2+12512t,即S关于t之间的函数关系式为:S=−53t2+12512t;(3)ED=DF时,则2t=10-t,解得:t=103;ED=EF时,过点E作EG⊥BF于G,∵ED=EF,∴△EFD为等腰三角形,又∵EG⊥DF,∴DG=12DF=10−t2,∵∠EDG=∠BDA,∠EGD=∠BAD=90°,∴△EGD∼△BAD,∴DG AD =EDBD,即10−t28=2t10,∴t=5021;EF=FD时,过点F作FH⊥AD,∵EF=FD,∴△EFD为等腰三角形,又∵FH⊥ED,∴HD=12ED=t,∵∠ADB=∠HDF,∠BAD=∠FHD,∴△DHF∼△DAB,即t8=10−t10,∴t=409>3.6(舍去);综上所述,当t=103或5021时,△EFD为等腰三角形;(4)假设存在符合题意的t,则EM=EN,过点E作EK⊥BC交BC于K,则四边形EKCD为矩形,∴ED=CK=2t,EK=CD=6,NK=BC-BN-CK=8−54t−2t=8−134t,∴EN2=EK2+NK2=62+(842=16916t2−52t+100,EM2=AM2+AE2=(6−53t)2+(8−2t)2=616t2−52t+100,∴169 16t2−52t+100=619t2−52t+100,即t1=t2=0,∵t=0不符合题意,∴不存在符合题意的t.7.(2023春·山东青岛·九年级专题练习)已知,在菱形ABCD中,对角线AC,BD相交于点O,AC=6cm,BD=8cm.延长BC至点E,使CE=BC,连接ED,点F从点E出发,沿ED方向向点D运动,速度为1cm s⁄,过点F作FG⊥ED垂足为点F交CE于点G;点H从点A出发,沿AD方向向点D运动,速度为1cm s⁄,过点H作HP∥AB,交BD于点P,当F点停止运动时,点H也停止运动.设运动时间为t(0<t≤3),解答下列问题:(1)求证:∠BDE=90°;(2)是否存在某一时刻t,使G点在ED的垂直平分线上?若存在,求出t值;若不存在,请说明理由.(3)设六边形PCGFDH的面积为S(cm2),求S与t的函数关系式;(4)连接HG,是否存在某一时刻t,使HG∥AC?若存在,求出t值;若不存在,请说明理由.【思路点拨】(1)根据菱形和等腰三角形的性质,得四边形ACED为平行四边形、∠E=∠CDE,从而完成证明;(2)根据平行四边形和垂直平分线的性质分析,即可得到答案;(3)根据菱形和勾股定理的性质,得CE;延长CP,交AD于点M,根据相似三角形的性质,得MD;设AD和BC的距离为ℎ,根据三角形面积的性质,得ℎ=245cm,根据相似三角形的性质得S△GFES△BDE=t6,通过计算即可得到答案;(4)根据相似三角形的性质,得GE=5t3cm,根据平行四边形和一元一次方程的性质计算,即可得到答案.【解题过程】(1)∵菱形ABCD,∴AC⊥BD,AD=BC,AD//BC,AO=CO=12AC,BO=DO=12BD,∴∠CBD+∠ACB=90°,∠CBD=∠CDB,∵CE=BC,∴AD=CE,CD=CE,∴四边形ACED为平行四边形,∠E=∠CDE,∴AC//DE,∴∠ACB=∠E,∴∠CDB+∠CDE=90°,即∠BDE=90°;(2)∵四边形ACED为平行四边形,∴DE=AC=6cm,∵FG⊥ED,∴当EF=DF=12DE时,使G点在ED的垂直平分线上,∴t=12DE1cm s⁄=3s;(3)∵点F从点E出发,沿ED方向向点D运动,速度为1cm s⁄,点H从点A出发,沿AD方向向点D运动,速度为1cm s⁄,∴AH=EF=t(cm),∵AC⊥BD,AC=6cm,BD=8cm,AO=CO=12AC,BO=DO=12BD,∴CE=BC=CD=AD=√(12AC)2+(12BD)2=5cm,∴DH=AD−AH=5−t(cm),∵菱形ABCD,∴∠ADP=∠CDP,∵HP,∴∠HPD=∠CDP,∴∠ADP=∠HPD,∴PH=DH,如图,延长CP,交AD于点M,∵HP,∴∠MHP=∠MDC,∵∠PMH=∠CMD,∴△MPH∽△MCD,∴S△MPH S△MCD =PHCD=DHCD=5−t5,MHMD=MHMH+DH=PHCD=5−t5,∴MH MH+5−t =5−t5,∴MH=(5−t)2t,∴MD=MH+DH=(5−t)2t +5−t=5(5−t)t,设AD和BC的距离为ℎ,∴S△ACD=12AC×OD=12AD×ℎ,∴ℎ=245cm,∵∠BDE=90°,FG⊥ED,∴△GFE∽△BDE,∴S△GFE S△BDE =EFDE=t6,∴六边形PCGFDH的面积,=S△MCD−S△MPH+S△CDE−S△GFE=S△MCD−5−t5×S△MCD+S△CDE−t6×S△BDE=t5×S△MCD+S△CDE−t6×S△BDE=t5×12×MD×ℎ+12×CE×ℎ−t6×12×(BC+CE)×ℎ=t5×12×5(5−t)t×245+12×5×245−t6×12×10×245=12−12t5+12−4t=24−32t5cm,∴S=24−32t5(0<t≤3);(4)∵△GFE∽△BDE,∴GE BE =EFDES,∴GE=EF×BEDE =t×(BC+CE)6=t×106=5t3cm,∵DH=AD−AH=5−t(cm),当GE=DH时,得5t3=5−t,∴t=158,∵AD//BE,GE=DH,∴四边形HGED为平行四边形,∴HG//DE,∵AC//DE,∴HG//AC,∴当t=158时,HG//AC.8.(2022秋·山西运城·九年级校考阶段练习)如图,已知梯形ABCD中,AD∥BC,AD=1,AB=BC=4,CD=5.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B→A→D→C方向,向点C运动:动点Q从点C出发,以1cm/s 的速度,沿C→D→A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①在运动过程中,是否存在这样的t P、D、Q为顶点的三角形恰好是以DP为底的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△COE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.【思路点拨】(1)作DF∥AB交BC于F,即易证四边形ABFD是平行四边形,从而可求出DF=AB=3,BF=AD=1,CF=3.再利用勾股定理逆定理即可证∠ABC=∠DFC=90°,最后利用梯形的面积公式计算即可;(2)①在图1的基础上作QG⊥AB于G,易证四边形BEQG是矩形,即得出BG=EQ,QG=BE.又易证△CEQ∽△CFD,得出EQDF =CECF=CQCD,从而可用t表示出CE=35t,EQ=45t,BG=45t,QG=BE=4−35t.PG=t5,即可利用勾股定理得出PQ2=(15t)2+(4−35t)2,最后根据等腰三角形的定义列出等式,解出t即可;②分类讨论当△PAD∽△QEC时和当△PAD∽△CEQ时,根据对应边成比例计算即可.【解题过程】(1)如图1,作DF∥AB交BC于F,∵AD∥BC,∴四边形ABFD是平行四边形,∴DF=AB=3,BF=AD=1,∴CF=BC−BF=3.∵32+42=52,即CF2+DF2=CD2,∴∠DFF=90°,∴∠ABC=∠DFC=90°,∴S梯形ABCD =12(1+4)×4=10;(2)①如图2,在图1的基础上作QG⊥AB于G,由题意可知t≤6.∵∠B=∠QEB=90°,∴四边形BEQG是矩形,∴BG=EQ,QG=BE.∵EQ∥DF,∴△CEQ∽△CFD,∴EQ DF =CECF=CQCD,∴EQ 4=CE 3=t 5, ∴CE =35t ,EQ =45t ,∴BG =45t ,QG =BE =BC −CE =4−35t .在Rt △PQG 中,PG =BP −BG =t −45t =t 5, ∴PQ 2=PG 2+QG 2=(15t)2+(4−35t)2,由PQ 2=DQ 2得,(15t)2+(4−35t)2=(5−t)2, 解得:t 1=13−√1092,t 2=13+√1092(舍去), ∴当t =13−√1092时,使得以P 、D 、Q 为顶点的三角形恰好是以DP 为底的等腰三角形;②如图3,当△PAD∽△QEC 时,∵∠A =∠QEC =90°,∴PA AD =QE CE,即AP 1=43, ∴AP =43,∴t =4−43=83; 当△PAD∽△CEQ 时,∴PA AD =CE QE ,即PA 1=34,∴PA =34,∴t =4−34=134.综上所述:t =83或134.9.(2022秋·陕西咸阳·九年级期末)在平面直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图①,当t=3时,求DF的长;(2)如图②,当点E在线段AB上移动的过程中,DFDE的大小是否发生变化?若变化,请说明理由;若不变,请求出DFDE的值;(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t<3时的值.【思路点拨】(1)当t=3时,可知DE//OA,DE=12OA=4,则四边形DFAE是矩形,得DF=AE=3;(2)作DM⊥OA于点M,DN⊥AB N,根据两个角相等,可证明ΔDMF∽ΔDNE,得DFDE =DMDN=34;(3)作DM⊥OA于点M,DN⊥AB于点N,则点G为EF的三等分点,利用(2)同理可得E、F的坐标,从而得出点G的坐标,代入直线AD的解析式即可解决问题.【解题过程】(1)当t=3时,E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE//OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)DFDE的大小不变,理由如下:如图,作DM⊥OA于点M,DN⊥AB于点N,∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM//AB,DN//OA,∴BDDO =BNNA,DOBD=OMMA,∵点D是OB的中点,∴M,N分别是OA,OB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴ΔDMF∽ΔDNE,∴DFDE =DMDN=34;(3)作DM⊥OA于点M,DN⊥AB于点N,若AD将ΔDEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点,如图,NE=3−t,由ΔDMF∽ΔDNE得,MF=34(3−t),∴AF=4+MF=−34t+254,∵点G为EF的三等分点,∴G(3t+7112,23 t),设直线AD的表达式为y=kx+b,将A(8,0),D(4,3)代入得{8k+b=04k+b3,解得{k=−34b=6,∴直线AD的表达式为y=−34x+6,将G(3t+7112,23t)代入得:t=7541,∴当t<3时的值为t=7541.10.(2022秋·河北邯郸·九年级邯郸市第二十三中学校考期末)如图(1),在四边形ABCD中,AB∥DC,CB⊥AB,AB=14cm,BC=CD=6cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为1cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<10.(1)用含t的代数式表示AP;(2)当以点A、P、Q为顶点的三角形与△ABD相似时,求t的值;(3)如图(2),延长QP、BD,两延长线相交于点M,当ΔQMB为直角三角形时,直接写出....t的值.【思路点拨】(1)作DH⊥AB于H,得矩形DHBC,则CD=BH=6cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分∠QMB=90°和∠MQB=90°两种情况考虑即可,再由相似三角形的性质即可求得t的值.【解题过程】(1)如图,作DH⊥AB于H则四边形DHBC是矩形∴CD=BH=6cm,DH=BC=6cm∴AH=8cm在RtΔADH中,由勾股定理得AD=√DH2+AH2=√62+82=10(cm)∵DP=tcm∴AP=AD−DP=(10−t)cm(2)①当ΔAPQ∽ΔADB时则有APAQ =ADAB∴10−tt =1014解得:t=356②当ΔAPQ∽ΔABD时则有APAQ =ABAD∴10−tt =1410解得:t=256综上所述,当t=356或256时,以点A、P、Q为顶点的三角形与△ABD相似;(3)①当∠QMB=90°时,ΔQMB为直角三角形如图,过点P作PN⊥AB于N,DH⊥AB于H∴∠PNQ=∠BHD∵∠QMB=90°∴∠PQN+∠DBH=90°∵∠PQN+∠QPN=90°∴∠QPN=∠DBH∴ΔPNQ∽ΔBHD∴QN PN =DHBH=66=1即QN=PN∵PN∥DH∴ΔAPN∽ΔADH∴PN AP =DHAD=610=35,ANAP=AHAD=810=45∴PN=35AP=35(10−t),AN=45AP=45(10−t)∴QN=AN−AQ=45(10−t)−t=8−95t由QN=PN得:8−95t=35(10−t)解得:t=53②当∠MQB=90°时,ΔQMB为直角三角形,如图则PQ∥DH∴ΔAPQ∽ΔADH∴AQ AP =AHAD=45∴AQ=45AP即t=45(10−t)解得:t=409综上所述,当t=53或409时,ΔQMB是直角三角形.11.(2022秋·山东青岛·九年级统考期中)如图1,在RtΔABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)当ΔPQC 是等腰三角形时,请直接写出t 值为 .(2)如图2,在运动过程中是否存在某一时刻t ,使得沿PC 翻折ΔCPQ 所得到的四边形CQPM 是菱形?若存在,求出t 的值;若不存在,请说明理由;(3)如图3,连接BP ,设四边形BPQC 的面积为S .求S 与t 之间的函数关系式;(4)是否存在某一时刻t ,使得P 、Q 、B 三点共线?若存在,求出t 的值;若不存在,请说明理由. 【思路点拨】(1)根据勾股定理及等面积法可求CD ,由等腰三角形的性质分PC =QC 、PC =QP 、PQ =CQ 三种情况讨论即可求解;(2)根据菱形的性质可知,当PQ =CQ 时复合题意,过点Q 作QF ⊥CD ,证ΔABC ∼ΔQCF ,得CF =35t ,由PC =2×35t =245−t ,即可求解;(3)过点Q 作QH ⊥CD ,证ΔABC ∼ΔQCH ,得10t=8QH,即QH =45t ,证ΔABC ∼ΔBCD ,得BD =185,由S =S Δ⬚PCQ +S ΔBPC =12PC ⋅QH +12PC ⋅BD 即可求解; (4)过点P 作PG ⊥BC ,可得,ΔABC ∼ΔCPG ,得245−t 10=CG8,即CG =45(245−t),BG =6−45(245−t),由S ΔPBC =12PC ⋅BD =12BC ⋅PG 可得PG =35(245−t),由CQPG =66−45(245−t),当ΔBCQ ∼ΔBGP 时,B 、P 、Q 三点共线,得t35(245−t)=66−45(245−t),即可求解;【解题过程】(1)解:∵∠ACB =90°,AC =8,BC =6, ∴AB =√AC 2+BC 2=√82+62=10, ∵CD ⊥AB , ∴CD =AC⋅BC AB=6×810=245,∵ΔPQC 是等腰三角形,①当PC =QC 时,即245−t =t ,解得:t =125;②当PC =QP 时,如图,过点P 作PE ⊥AC ,∵PC =QP ,PE ⊥AC , ∴QE =CE ,∵PE ⊥AC ,CD ⊥AB ,∠ACB =90°, ∴∠A =∠ACD , ∴ΔABC ∼ΔPCE , ∴AB PC=BC EC, 即,10245−t=612t,解得:t =14455.③当PQ =CQ 时,过点Q 作QF ⊥CD ,∵∠A =∠ACD , ∴ΔABC ∼ΔQCF , ∴ABQC =BCCF,即10t =6CF , ∴CF =35t ,∵PQ =CQ ,QF ⊥CD , ∴CF =PF =35t , ∴PC =2×35t =245−t ,解得:t=2411,故当ΔPQC是等腰三角形时,t值为125或14455或2411.(2)当PQ=CQ时,四边形CQPM是菱形,过点Q作QF⊥CD,∵∠A=∠ACD,∴ΔABC∼ΔQCF,∴AB QC =BCCF,即10t=6CF,∴CF=35t,∵PQ=CQ,QF⊥CD,∴CF=PF=35t,∴PC=2×35t=245−t,解得:t=2411,(3)如图,过点Q作QH⊥CD,∵∠A=∠ACD,∴ΔABC∼ΔQCH,∴AB QC =ACQH,即10t=8QH,∴QH =45t ,易证ΔABC ∼ΔBCD ,AB BC=BC BD ,即106=6BD ,解得:BD =185.S =S Δ⬚PCQ +S ΔBPC =12PC ⋅QH +12PC ⋅BD =12×(245−t)(45t +185)=−25t 2+325t +21625;(4)如图过点P 作PG ⊥BC ,可得,ΔABC ∼ΔCPG ,∴CPAB =CGAC ,即245−t 10=CG 8,∴CG =45(245−t), ∴BG =6−45(245−t),∵S ΔPBC =12PC ⋅BD =12BC ⋅PG , ∴PG =PC⋅BD BC =(245−t)×1856=35(245−t),∴CQPG =t 35(245−t),BCBG =66−45(245−t),当ΔBCQ ∼ΔBGP 时,B 、P 、Q 三点共线, 所有t35(245−t)=66−45(245−t),解得:t 1=12√6−185,t 2=−12√6−185(舍去), ∴当t =12√6−185时,P 、Q 、B 三点共线.12.(2023秋·浙江金华·九年级统考期末)如图1,在矩形ABCD 中,AB =6,BC =3,动点P 从点A 出发,沿AB 边以每秒2个单位的速度向点B 运动,同时,动点Q 从点B 出发,沿BC −CD 匀速向终点D 运动,点P 、Q 同时到达终点,BD 与PQ 交于点E .过点B 作BF ⊥PQ 于点F .设点P 、Q 的运动时间为t 秒.(1)求点Q的运动速度.(2)如图2,当点Q与点C重合时,求BE的长.(3)在点P、Q的运动过程中,是否存在某一时刻,使得以B、E、F为顶点的三角形与△BCD相似?若存在,求运动时间t的值;若不存在,请说明理由.【思路点拨】(1)求出点P运动的时间即Q运动的时间计算解题即可;(2)当点Q与点C重合时,求出BD长,利用△EPB∽△ECD解题即可;(3)分①点Q在BC边上,②点Q在DC边上,点Q在P的右侧时,③点Q在DC边上,点Q在P的左侧时三种情况利用三角形相似解题即可.【解题过程】(1)解:由题可知点P运动的时间为62=3s,点Q运动的速度为:3+63=3,(2)如图,当点Q与点C重合时,∴t=33=1∴BP=AB−AP=6−2×1=4,在Rt△BDC中,BD=√BC2+CD2=√32+62=3√5,∵AB∥CD∴△EPB∽△ECD∴BE ED =BPCD即3√5−BE=46解得:BE =65√5(3)解:∵BF ⊥PQ ∴∠BFE =∠C =90°,当△BEF ∽△BDC 时,则∠BEF =∠BDC ∴PQ ∥CD 不符合题意, 当△BEF ∽△DBC 时, ∴∠BEF =∠DBC , 当点Q 在BC 边上∴BQ =EQ =3t ,EP =PQ −3t 过点Q 作QH ∥CD 交BD 于点H , 则AB ∥CD ∥QH ,∴HQBP =EQ EP ,HQCD=BQ BC∴HQ =EQ×BP EP =3t(6−2t)PQ−3t,∴3t(6−2t)PQ−3t6=3t 3,解得:PQ =2t +3,在Rt △PQB 中,PB 2+BQ 2=PQ 2 即(2t +3)2=(6−2t)2+(3t)2, 解得:t =1或t =3(舍去)当点Q 在DC 边上,点Q 在P 的右侧时, 如图,过Q 作QH ∥BC 交AB 、BD 于点H 、M ,则HB=QC=3t−3,DQ=9−3t ∵QH∥BC,BC∥AD∴QH∥BC∥AD,∴△BMH∽△BDA∴HM AD =HBAB即3t−36=HM3解得HM=32t−32,∴QE=MQ=3−(32t−32)=92−32t,PH=6−2t−(3t−3)=9−5t∵AB∥CD∴△BPE∽△DQE∴PB DQ =PEEQ即6−2t9−3t =PE92−32t,解得PE=3−t∴PQ=PE+EQ=3−t+92−32t=152−52t在Rt△PQH中,PH2+HQ2=PQ2即(152−52t)2=(9−5t)2+32解得t=95或t=1(舍去);如图,当点Q在P的左侧时,过Q作QH∥BC交AB、BD于点H、M,则∠PEB=∠EDQ=∠DEQ=∠PBE∴PE=PB=6−2t,EQ=QD=9−3t,∴PQ=6−2t+9−3t=15−5t在Rt △PQH 中,PH 2+HQ 2=PQ 2 即(15−5t)2=(9−5t)2+32 解得t =94综上所述,当t =1或t =95或t =94时,以B 、E 、F 为顶点的三角形与△BCD 相似13.(2023秋·江苏无锡·九年级无锡市南长实验中学校考阶段练习)如图,在平面直角坐标系中,点B (6,5),过点B 作x 轴的垂线,垂足为A ,作y 轴的垂线,垂足为C .点D 从O 出发,沿y 轴正方向以每秒1个单位长度运动;点E 从O 出发,沿x 轴正方向以每秒3个单位长度运动;点F 从B 出发,沿BA 方向以每秒2个单位长度运动.当E 点运动到点A 时,三点随之停止运动.运动过程中△ODE 关于直线DE 的对称图形是△O ′DE ,设运动时间为t .(1)用含t 的代数式分别表示点E ,点F 的坐标;(2)若△ODE 与以点A ,E ,F 为顶点的三角形相似,求t 的值;(3)是否存在这样的t ,使得以D ,E ,F ,O′所围成的四边形中有一组对边平行?若存在,求出t 的值;若不存在,请说明理由. 【思路点拨】(1)由题可得OE =3t ,OD =t ,BF =2t ,易证四边形OABC 是矩形,从而得到AB =OC ,BC =OA ,即可求出AF , OE ,即可求出点E ,点F 的坐标(2)只需两种情况讨论①当△ODE ∽△AEF ,②当△ODE ∽△AFE ,然后运用相似三角形的性质即可求解;(3)过点O′作x轴的平行线与y轴交于点M,与过点E的y轴的平行线交于点N,如图1,易得△MDO′∽△NO′E,设MO′=a,根据相似三角形的性质可得出a=35t,然后分两种情况讨论即可求解.【解题过程】(1)由题可得OE=3t,OD=t,BF=2t,∵BA⊥x轴,BC⊥y轴,∠AOC=90°,∴∠AOC=∠BAO=∠BCO=90°,∴四边形OABC是矩形,∴AB=OC,BC=OA,∵B(12,10),∴BC=OA=12,AB=OC=10,∴AF=10−2t,OE=12−3t,∴点E的坐标为(3t,0),点F的坐标为(12,10−2t);(2)①当△ODE∽△AEF时,则有ODAE =OEAF,∴t 12−3t =3t10−2t,解得t1=0(舍去),t2=267,②当△ODE∽△AFE时,则有ODAF =OEAE,∴t 10−2t =3t12−3t,解得t1=0(舍去),t2=6,∵点E运动到点A时,三点随之停止运动,∴3t≤12,∴t≤4,∴t=6舍去,综上所述:t的值为267;(3)过点O′作x轴的平行线与y轴交于点M,与过点E的y轴的平行线交于点N,如图1,则有∠DMN=90°,∠N=90°,由折叠可得:DO′=DO=t,O′E=OE=3t,∠DO′E=∠DOE=90°,∴∠DMO′=∠N=90°,∠MDO′=90°−∠MO′D=∠NO′E,∴△MDO′∽△NO′E,∴MO′NE =MDNO′=O′DEO′=t3t=13,∴NE=3MO′,NO′=3MD,设MO′=a,则有OM=NE=3a,NO′=3t−a,MD=3a−t,∴3t−a=3(3a−t),解得:a=35t,∴MO′=35t,OM=95t,∴点O′的坐标为(35t,95t),①若DO′∥EF,如图2,延长O′D交x轴于S,则有O′M∥OS,∠DSE=∠FEA,∴∠MO′D=∠DSE=∠FEA,∵∠O′MD=∠EAF=90°,∴∠O ′MD ∽∠EAF ,∴MO ′AE =MD AF , ∴35t 6−3t =95t−t 5−2t ,解得:t 1=0(舍去),t 2=32, 经检验:t =32是分式方程的解, ②若OF∥DE ,如图3,过点O ′作x 轴的平行线与AB 交于点Q ,延长DE 交 BA 的延长线于点T ,同①可得 :△DOE ∽△FQO ′,∴OD QF =OE QO ′,t95t−(5−2t )=3t 6−35t ,解得t 1=0(舍去),t 2=74,综上所述:t 的值为32或74. 14.(2023秋·吉林长春·九年级长春市解放大路学校校考阶段练习)如图,在Rt △ABC 中,∠C =90°,AC =3,AB =5,点D 为边AB 上一点且BD =2.动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,且点P 不与点A 、B 、D 重合.过动点P 作PQ ⊥AB 交折线AC −CB 于点Q ,作点P 关于点D 的对称点E ,连结QE .设点P 的运动时间为t 秒.(1)当点Q 与点C 重合时,t =________;(2)用含t的代数式表示PE的长;(3)当△PEQ∽△CAB时,求t的值;(4)当Q在BC上运动时,若△BEQ为等腰三角形,直接写出此时t的值.【思路点拨】(1)利用面积计算即可;(2)分两种情况讨论即可;(3)由△PEQ∽△CAB可得PEAC =PQBC,代入线段计算即可;(4)画出图形,分类讨论即可.【解题过程】(1)∵∠C=90°,AC=3,AB=5,∴BC=√AB2−AC2=4,当点Q与点C重合时,S△ABC=12AC⋅BC=12PQ⋅AB∴S△ABC=12×3×4=12PQ×5∴PQ=125,∴PA=√AC2−PQ2=95,∴t=PA÷1=95,故答案为:95;(2)由题意可得,PA=t,PB=AB−PA=5−t,AD=AB−BD=3∵点P关于点D的对称点E,∴PD=DE,∴PE=2PD,当点P在点D的右边时,0<t<3,此时PD=AD−PA=3−t=DE,∴PE=2PD=6−2t,当点P在点D的左边时,3<t<5,此时PD=PA−AD=t−3=DE,∴PE=2PD=2t−6,综上所述,PE ={6−2t(0<t <3)2t −6(3<t <5)(3)当0<t ≤95时,点Q 在AC 边上,点P 在点D 的右边,PE =6−2t ∵∠APQ =∠ACB =90°∴△PAQ ∽△CAB ,∴PA AC=PQ BC , ∴t 3=PQ 4∴PQ =43t ∵△PEQ ∽△CAB∴PE AC =PQ BC ∴6−2t 3=43t 4 ∴t =2(舍)当95<t <3时,点Q 在BC 边上,点P 在点D 的右边,PE =6−2t ,∵∠BPQ =∠ACB =90°∴△PBQ ∽△CBA ,∴BP BC =PQ AC =BQ AB , ∴5−t 4=PQ 3=BQ 5 ∴PQ =34(5−t),BQ =54(5−t)∵△PEQ ∽△CAB∴PE AC =PQ BC ∴6−2t 3=34(5−t)4t =5123,当3<t<5时,点Q在BC边上,点P在点D的左边,此时PQ=34(5−t),PE=2t−6∵△PEQ∽△CAB∴PE AC =PQBC∴2t−63=34(5−t)4t=141 41综上,当△PEQ∽△CAB时,t=5123,t=14141(4)当当Q在BC上运动时,95<t<5,当95<t<3时,点Q在BC边上,点P在点D的右边,PE=6−2t,PQ=34(5−t)此时△BEQ为钝角三角形,若△BEQ为等腰三角形,则EB=EQ=AB−PE−PA=5−(6−2t)−t=t−1,在Rt△PQE中,PQ2+PE2=QE2,∴[34(5−t)]2+(6−2t)2=(t−1)2,此方程无解当3<t<5时,点Q在BC边上,点P在点D的左边,PE=2t−6,PQ=34(5−t),BE=PA−PE=t−(2t−6)=6−t,BQ=54(5−t)。

相似三角形复习专题相似与一次函数-动点问题 打印

相似三角形复习专题相似与一次函数-动点问题  打印

初三 ——相似形三角形与一次函数一、例题讲解二、练习巩固 1.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x 轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。

试求:(1)AN ∶AM 的值;(2)一次函数y kx b =+的图象表达式。

x四边形OABC 是放在直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将BC 边折叠,使点B 落在边OA 的点D 处,已知 43DA AE ,55CE == 是否相似?说明理由与判断DAE COD 1.∆∆2、根据相似和已知条件你能求解出那些结论?3、求直线CE 与x 轴的交点P 的坐标4、是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,试写出其解析式并画出相应的直线;如果不存在,试说明理由。

三、自我提高.1如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y 轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2设一次函数y=12x+2的图象为直线l ,直线l 与x 轴、y 轴分别交于点A 、B ,如图:(1)求点A 和点B 的坐标;(2)直线m 过点P (-3,0),若直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似,求直线m 与y 的交点N 的坐标.。

九年级数学动点问题之相似三角形

九年级数学动点问题之相似三角形

因动点产生的相似三角形问题(一)例1、直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.三点.(1) 写出点A 、B 、C 、D 的坐标;的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.的坐标;若不存在,请说明理由.图1 思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角..图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角. 2.用待定系数法求抛物线的解析式,用配方法求顶点坐标..用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.°是解题的前提.4.△ABQ 与△COD 相似,相似,按照直角边的比分两种情况,按照直角边的比分两种情况,按照直角边的比分两种情况,每种情况又按照点每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.个. 例2、Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)ky k x =¹在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO与△EFP 相似,求点P 的坐标.的坐标.图1 思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.的坐标,是解题的突破口. 2.第(2)题留给第(3)题的隐含条件是FD //x 轴.轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况.相似,因为夹角相等,根据对应边成比例,分两种情况. 例3、如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36为S,A1、B1的坐标分别为的坐标;时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、的值;若不存在,请说明理由.抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2 思路点拨1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注.通过代数变形就可以了.意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴轴的上方.的下方,或者假设交点G在x轴的上方.例4、如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n上.=++上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边为菱形,求平移后抛物线的表达式;形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.图1 思路点拨1.点A与点B的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法的长. 中;第(2)题用来计算平移的距离;第(3)题用来求点B′的坐标、AC和B′C的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变..抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC与△B′CD相似,根据菱形的性质,∠BAC=∠CB′D,因此按照夹角的两边对应成比例,分两种情况讨论.两边对应成比例,分两种情况讨论.例5、如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.)三点.(1)求此抛物线的解析式;)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;存在,请说明理由; (3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便.轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长..数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.3.按照两条直角边对应成比例,分两种情况列方程..按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .例6、如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.的长;若不存在,请说明理由.图1 备用图备用图 备用图备用图思路点拨 1.先解读背景图,△ABC 是等腰三角形,那么第(3)题中符合条件的△DEF 也是等腰三角形.腰三角形.2.用含有x 的式子表示BD 、DE 、MN 是解答第(2)题的先决条件,注意点E 的位置不同,DE 、MN 表示的形式分两种情况.表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.合题意.4.第(3)题按照DE 为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.们轻松解题.。

相似三角形与动点问题练习题(带答案

相似三角形与动点问题练习题(带答案

∵将
沿直线 翻折后,顶点 恰好落在 边上的点 处,

,且











∵在
中,



∴ 四边形 故选: .


, ,

2
【标注】【知识点】相似A字型
3. 如图,矩形 ,
中, 是 的中点,将 ,则 的长为( ).
沿 折叠后得到
.延长 交 于 点.若
A.
B.
C.
D.
【答案】 B 【解析】 方法一:连接 ,
.④
沿 折叠,点 恰落在边 上的点 处,有下列结论:①
.其中正确的是( ).
A. 个
B. 个
C. 个
6
D. 个
【答案】 C
【解析】 ①∵ 将 ∴ ∴ ②在 ∴ 设 在 ∴ ∴ ∴ ③∵ ∴ ∴ 而 ∴ ∴ ∴ ∴ 而 ∴ ∴ ④∵ ∴
沿 折叠,点 恰落在边 上的点 处.点 在
沿 折叠,点 恰落在线段 上的点 处,
4. 如图,将正方形
折叠,使顶点 与 边上的一点 重合( 不与端点 , 重合),折痕交
于点 ,交 于点 ,边 折叠后与边 交于点 .设正方形
的周长为 ,
的周长为
,则 的值为( ).
A.
B.
C.
D. 随 点位置的变化而变化
【答案】 B
【解析】 方法一:设













又∵






专题13 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(解析版)

专题13 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(解析版)

专题13难点探究专题:相似三角形中动点问题压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】 (1)【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】 (9)【考点三相似三角形动点中求线段及线段和最值问题】 (17)【考点四相似三角形中的动点问题与函数图像问题】 (25)【考点五相似三角形中的动点问题与几何综合问题】 (31)【考点六相似三角形中的动点探究应用问题】 (40)【典型例题】【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】【答案】185或367或365【分析】根据题意可知B B∠=∠【详解】解:∵在Rt ABC△中,【变式训练】【答案】经过0.8s或2s秒时,△△【分析】设经过t秒时,QBP边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQ(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为24 5【答案】(1)3050 1113或;(2)2或3.∵QE⊥AO,BO⊥AO,∴QE∥BO,∴△AEQ∽△AOB,∴45 QE BO AQ AB==(1)填空:当t=___________时,AF CE=,此时BH (2)当BEF△与BEH△相似时,求t的值.当BEF BHE △∽△时:BE BF BH BE=即()24212t t =-⨯,解得:317t =+(负值已舍);综上,t 的值为2或4或317+【点睛】此题考查了相似图形,掌握相似三角形的判定和性质等相关知识是解题的关键.【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】例题:(2023春·江西九江·九年级统考期中)如图,菱形16BD =,点P 是AD 上一点,【答案】8或294或6465-【分析】分三种情况讨论:当角形的判定与性质即可求解.【详解】解:∵四边形ABCD∴7DF =,∵90,QFD AOD QDF ∠=∠=︒∠∴QDF ADO ∽ ,∴AD OD QD FD =,即1087QD =,∴354QD =,∴OA PE ∥,∴AOD PED ∽ ,∴AD AO OD PD PE ED==,即10106-∴1216,55PE ED ==,12【变式训练】【答案】2或8【分析】由矩形的性质,垂直的定义推出=,列出关于x的方程,求出设DE x=,【详解】解:设DE x【答案】487或163【分析】分两种情形:如图明BPM BDC ∽△△,利用相似三角形的性质列式计算即可;设CM PM PN CN ===∵PM CD ∥,∴BPM BDC ∽△△,∴PM BM CD BC =,设MC MP y ==.∵16AB =,12BC =,∴22BD BC CD =+=由折叠的性质得PD =【答案】4或134或11926【分析】由翻折变换的性质得:AE则BG FG ==12BF ,90BCG B A ∠=︒-∠=∠,又90CGB ACB ∠=∠=︒,∴CGB ACB ∽,【答案】53或634或6【分析】通过直角三角形未确定直角分三种情况进行讨论,利用互余关系,得到三角形相似,得到边长比例关系进行求解即可.∴90AED CEP∠+∠= ,∵矩形ABCD,∴90C D∠∠== ,∴90CEP CPE∠+∠= ,∵90DAE BAE BAE BAP ∠+∠=∠+∠=同理得到ADE ABP ,∴1259AD DE AB PB BP===,同理得:ABP PCE ~ ,∴9124AB BP x PC CE x ===-,∴126x x ==,【考点三相似三角形动点中求线段及线段和最值问题】【答案】8 5【分析】作点理可求得AB=点H,交AB于点则PC PC '=,90ACB ∠=︒ ,90C HC '∴∠=︒,此时,PH PC PC '+=+C H BC '∥ ,【变式训练】【答案】32【分析】取BE 的中点,连接12BH BE =,可得到BH BF BF BC =1DF FC DF FH +=+,当点∵BEM △沿着BM 翻折得到 ∴BF BE =,∵4BC =,E 是BC 中点,∴122BE BC ==,4【点睛】本题主要考查了一次函数与几何综合,平行四边形的性质与判定,勾股定理,轴对称的性质,相似三角形的性质与判断,等腰直角三角形的性质与判定等等,正确作出辅助线确定是解题的关键.【考点四相似三角形中的动点问题与函数图像问题】例题:(2023春·河南安阳·九年级统考期末)如图,正方形ABCD 一边AB 在直线l 上,P 是直线l 上点A 左侧的一点,24AB PA ==,E 为边AD 上一动点,过点P ,E 的直线与正方形ABCD 的边交于点F ,连接BE BF ,,若设DE x =,BEF △的面积为S ,则能反映S 与x 之间函数关系的图象是()....【答案】B【分析】分别求出点F 在边重合时时,点F 在边即可求解.【详解】解:24AB PA ==,【变式训练】1.(2023·河南焦作·统考二模)如图,在Rt ABC △中,90,3,4ACB AC BC ∠=︒==,点P 为边AB 上一动点,过点P 作直线l AB ⊥,交折线ACB 于点Q .设,AP x CQ y ==,则y 关于x 的函数图象大致是()A .B .C .D .【答案】B⊥,∵直线l AB∠=∠=∴BPQ ACB ∵B B∠=∠,A...D.【分析】分三种情况讨论得出y关于x的函数关系式即可得出答案.与点A重合时,【点睛】本题考查动点问题函数图像,考查了相似三角形的判定与性质,正方形的性质,反比例函数及一次函数的图像.解题的关键和难点在于根据点3.(2023·黑龙江·模拟预测)如图,已知直线下方的l上的一动点AB=,设AD若6....【答案】B【分析】根据AE BD ∥得∠,根据直线l 是线段AB 的中垂线可得132BC AB ==,再证 ,然后根据相似三角形列比例式化简可得定函数图像即可即可解答.【考点五相似三角形中的动点问题与几何综合问题】例题:(2023春·山东济宁·八年级统考期末)如图,在平面直角坐标系中,O 是坐标原点,矩形OABC 的两(1)点P 的坐标为______,点Q 的坐标为(2)请判断四边形APCQ 的面积是否会随时间(3)若A ,P ,Q 为顶点的三角形与△【答案】(1)()3,0t ,()12,2t (2)四边形APCQ 的面积不会随时间【变式训练】【答案】(1)DG BE =;(2)12DG BE DG BE =⊥,.理由见解析;(3)2;(4)410∵矩形ECGF 、矩形ABCD ,∴90ECG BCD ∠=∠=︒,∴DCG BCE ∠=∠,∵:2:41:2CD CB ==,:CG CE ∴::CD CB CG CE =,则90ENC CMG ∠=∠=︒,∵90ECG ∠=︒,∴ECN GCM GCM ∠+∠=∠+∠根据解析(3)可知,点G 的运动轨迹是直线∵DG GG '=,∴BG DG BG GG BG ''+=+=,∵两点之间线段最短,∴此时BG GD +的值最小,最小值为特例故知:(1)勤奋小组从特殊情况入手:如图1,45B ∠=︒,E 为AB 的中点,则变式探究(2)希望小组受此启发,作了如下改变:如图2,将(1)中“B ∠进行解答即可;(3)过点E 作,EM AD EN BC ⊥⊥,垂足分别为,M N ,证明EMG ENF △∽△,结合解直角三角形的知识进行解答即可.【详解】解:(1)过点E 作,EM AD EN BC ⊥⊥,垂足分别为,M N ,∵90CAB ∠=︒,AD BC ⊥,45B ∠=︒,∴45MAE NBE ∠=∠=︒,∵90AME ENB ∠=∠=︒,∴AME △和ENB △为等腰直角三角形,∵E 为AB 的中点,∴AE BE =,∴EM EN =,∵AD BC ⊥,,EM AD EN BC ⊥⊥,∴四边形M END 是矩形,∴90MEN ∠=︒,∵EF CE ⊥,∴MEG CEN CEN NEF ∠+∠=∠+∠,∴MEG NEF ∠=∠,在MEG 和NEF 中,MEG NEF EM EN EMG ENF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)MEG NEF ≌,∴EF EG =,故答案为:EF EG =;(2)过点E 作,EM AD EN BC ⊥⊥,垂足分别为,M N ,同理可得四边形M END 是矩形,∴90MEN ∠=︒,∵EF CE ⊥,∴MEG CEN CEN ∠+∠=∠+∠同(2)可得EMG ENF △∽△,∴EG EM EF EN=,∵B α∠=,AE kBE =,【考点六相似三角形中的动点探究应用问题】5BC 【答案】(1)证明见解析;(2)①证明见解析;②AE MN ∥,理由见解析;(3)223或4.【分析】(1)根据题可得90AEC ACE ∠+∠=︒、90ACD ACE ∠+∠=︒(2)①90EAC BAD ∠=∠=︒ .EAC BAC BAD BAC ∴∠-∠=∠-∠,即BAE CAD ∠=∠.AB AD = ,由(1)知AEC ACD ∠=∠,(ASA)BAE DAC ∴ ≌.BE DC ∴=.∵M ,F 分别是BD ,BC 的中点,MF ∴是BCD △的中位线.2CD MF ∴=.2BE MF ∴=.②//AE MN ,理由如下:(3)解:①如图:当点E在线段CF交于点K,335,AB AB BC == ,∴5BC =∵四边形ABCD 是矩形,∴90BCD AB CD ∠=︒⊥,,∴90OHC BCD OPC ∠=∠=∠=∴四边形OHCP 是矩形,同理可得OPF OHE ∽,即∴3354CF CP PF =+=+=【变式训练】【基础巩固】(1)参照小慧提供时思路,利用图(2)请证明上述结论;(2)A 、B 、C 、是同一直线l 上从左到右顺次的点,点P 是直线外一动点,【尝试应用】①若2AB =,1BC =,延长AB 至D ,使CD BC =【拓展提高】②拓展:若AB m =,BC n =,()m n ≠,P 点在长为___________(用含m 、n 的式子表示).【答案】(1)见解析;(2)见解析;【尝试应用】①2,【拓展提高】∥,交作CE AP∴∽APB CEBPA AB∴=,CE BC∠PB平分APC∴∠=∠APB CPB∴∠=∠,CPB E=延长PC至T,使CT PC延长PC 至Q ,使PQ AP =PCD QCB ∴∽ ,PD PC BQ CQ∴=,PB 平分APC ∠,AP AB m PC BC n∴==,不妨设AP ma =,PC na =由上知:PAB QPB ≌ ,BQ AB m ∴==,(1)操作推断如图1,点P是正方形纸片ABCD的边AD的中点,沿BP折叠,使点A落在点连接PF.则BPF∠=︒.(2)迁移探究小华在(1)的条件下,继续探究:如图2,延长PM交CD于点E,连接设BF与AD交于E,∵DF AB∥,∴ABE DFE∽,∴AB AE BE DF DE EF==,∵DF AB∥,∴ABH DFH∽,∴AB AH BH DF DH FH==,。

相似三角形之动点问题-含参考答案

相似三角形之动点问题-含参考答案

中考数学复习之相似之动点问题(学案)知识与方法梳理1.研究基本图形,标注基本图形是动点运动的背景,需要研究边和角,寻找模型或结构,或者转化坐标和表达式.2.分析运动过程,分段,定范围关注起点、终点和状态转折点.状态转折点是图形状态发生变化的点,常见的状态转折点有拐点、相遇点等.3.根据不变特征建等式依分段画图形,表达相关线段长,根据不变特征建等式,结合范围验证结果.表达的常用手段有s=vt、相似、勾股定理等;根据不变特征建等式需要把不变特征跟基本图形信息结合起来考虑,常见不变特征有相似、直角、等腰等.例1:如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.点P从点B出发沿BA方向向点A匀速运动,速度为1cm/s,同时点Q从点A出发沿AC方向向点C匀速运动,速度为2cm/s,当一个点到达终点时,另一个点也随之停止运动,连接PQ.设运动时间为t(s).(1)当t为何值时,以A,P,Q为顶点的三角形与△ABC相似?(2)在运动过程中,是否存在某一时刻使△APQ为等腰三角形?若存在,求出相应的t值;若不存在,请说明理由.(1)1025713t=或;(2)525321t=或.解:(1)若A、P、Q与ABC相似时,∆APQ为直角三角形;1.若∠APQ=90°时,易知∆APQ~∆ACB,AP AQAC AB=即有5245t t-=得t=2513Q2.若∠AQP=90°时,∆APQ~∆ABC ,AP AQ AB AC =即有5254t t -=得t=107(2)1.当PA=PQ 时,作PD ⟂AQ 于点D ,AQ=2t ,则AD=t ,AP=5-t ,∆APD~∆ABC ,AP AD AB AC =,即有554t t -=,t=209>2,故舍去.2.当AP=AQ 时,即有5-t=2t ,即t=53;3.当QA=AP 时,作QF ⟂AP 于点F ,易知∆AQF~∆ABC ,AF AQ AC AB =,即有52245tt-=,t=2521练习题1.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3.点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿折线B→C→A 向点A运动,速度为2cm/s,当一个点到达终点时,另一个点也随之停止运动.设运动时间为x(s).(1)设△PBQ的面积为y(cm2),求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当Q在BC上运动时,是否存在以点B,P,Q为顶点的三角形与△ABC相似?若存在,请求出x的值;若不存在,请说明理由.(3)当Q在CA上运动,且PQ⊥AB时,以点B,P,Q为顶点的三角形与△ABC是否相似?请说明理由.CA BCA BCA B2.如图,直角梯形OABC在平面直角坐标系中,O为坐标原点,OA∥CB,A(4,0),B(3,3).点M从点O出发以每秒2个单位长的速度向点A运动,同时点N从点B出发,以每秒1个单位长的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动.过点N作Array NP⊥x轴于点P,连接AC交NP于点Q,连接MQ.设运动时间为t(秒).(1)使线段AQ,QM,MA能围成三角形的t的取值范围是_____________.(2)求△AQM的面积S与运动时间t之间的函数关系式.(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.3.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=B=45°.动点M从点B出发,沿线段BC以每秒1个单位长的速度向终点C运动,动点N同时从点C出发,沿折线C→D→A以同样速度向终点A运动,当一个点到达终点时,另一个点也随之停止运动.设运动时间为t(秒).(1)求在运动过程中形成的△MCN的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围.(2)当N在CD上运动时,△MCN能否成为等腰三角形?若能,求出相应的t值;若不能,请说明理由.A DB CA DB CA DB C4.如图,直角梯形OABC在平面直角坐标系中,O为坐标原点,OA∥CB,A(15,0),B(10,12).动点P,Q分别从O,B两点同时出发,点P以每秒2个单位长的速度沿OA方向向终点A运动,点Q以每秒1个单位长的速度沿BC方向向终点C运动,当一个点到达Array终点时,另一个点也随之停止运动.线段OB,PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点P,Q的运动时间为t(秒).(1)当t为何值时,四边形P ABQ是平行四边形?(2)当t=2秒时,求梯形OFBC的面积;(3)当t为何值时,△PQF是等腰三角形?5. 如图,在平面直角坐标系中,△OAB 的顶点O 与坐标原点重合,点A ,B 坐标分别为(8,6),(16,0).点P 从点O 出发沿OA 方向向终点A 运动,速度为每秒1个单位,点Q 从点B 出发沿BO 方向向终点O 运动,速度为每秒2个单位.如果P ,Q 同时出发,用t (秒)表示运动时间,当一个点到达终点时,另一个点也随之停止运动.(1)设△OPQ 的面积为y ,求y 与t 之间的函数关系式. (2)△OPQ 与△OAB 能否相似?若能,求出相应的t 值; 若不能,请说明理由.6.如图,直线y=-4x-4与x轴交于点A,与y轴交于点C,直线y=43x-b过点C,与x轴交于点B.动点D从点A出发,沿线段AB向终点B运动,同时动点E从点B出发,沿线段BC向终点C运动,速度均为每秒1个单位长度,设运动时间为t (秒),当一个点到达终点时,另一个点也随之停止运动.(1)连接ED,设△BDE的面积为S,求S与t之间的函数关系式;(2)在运动过程中,当△BDE为等腰三角形时,求t的值.【参考答案】1.(1)2248035351423755x x x y x x x ⎧-+<⎪⎪=⎨⎪-+<<⎪⎩≤.(2)存在,3013x =.(3)不相似 2.(1)0≤t <2(2)23332442S t t t =-++<(0)≤(3)存在,M (2,0)或M (2619,0)3.(1)22405522058t tt S t t ⎧-+⎪=⎨⎪-+⎩<<≤≤(2)能成为等腰三角形,50511t =或 4. (1)t =5(2)174(3)t =13或56或43或1935.(1)232455y t t =-+(08)t <<(2)能相似,12840219t t ==或 6.(1)22855S t t =-+(2)202421111t =或或。

相似三角形之动点问题(解析版)九年级数学下册常考点微专题提分精练(人教版)

相似三角形之动点问题(解析版)九年级数学下册常考点微专题提分精练(人教版)

专题15 相似三角形之动点问题1.如图,在Rt ABC 中,9034C AC BC ∠=︒==,,,点E 是直角边AC 上动点,点F 是斜边AB 上的动点(点F 与A B 、两点均不重合).且EF 平分Rt ABC 的周长,设AE 长为x .(1)试用含x 的代数式表示AF = ;(2)若AEF △的面积为165,求x 的值; (3)当AEF △是等腰三角形时,求出此时AE 的长. 证明FDA BCA ∽,根据相似三角形的性质得出即可求解; AE =,②AE EF =,③Rt ABC 中,由勾股定理得:∴ABC 的周长512=.AE AF +=6AF AE =-故答案为:(2)过点AC .∴BC AC FD AC ⊥⊥,,∴FDA BCA ∽.BC DF AB AF =,即456=2445x DF -=, AEF △的面积为165∴90EMA C EAM CAB ∠=∠=︒∠=∠,,∴EAM BAC ∽,AE AM AB AC=, 1(6)253x x -=,同理FAN BAC∽,ANAC=,123xx=,3611,.如图,在ABC中,秒5个单位长度的速度向终点B运动,当点P不与点A、B重合时,作点P关于直线AC的对称点Q,连结PQ,以PQ、PB为边作PBMQ.设PBMQ与ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)直接用含t的代数式表示线段PQ的长并写出t的取值范围;(2)当点M落在边AC上时,求t的值及此时PBMQ的面积;(3)求S与t之间的函数关系式;(4)当PBMQ的对角线的交点到ABC的两个顶点的距离相等时,直接写出t的值.由意得5AP t =,PO QO =,在Rt ABC △中,AB =4,BC =3,11ABC S =△AB BM ∴=∴四边形PQMB PQ BM ∴=PBMQ S BM =3)当0<4196PQMB S S -△BT AC⊥125AB BCBTAC∴==22AT AB BT∴=-=AOP ABC∽△△::AP OA OP AC∴=3OP t∴=OT AT∴=∴(12S OP=则AK CK=,设AK CK x==.Rt CBK中,(234=+-258x=,=,∴OL AB∥,QO OB-+=x x14480根,连结BD,动点P从B出发,以1个单位每秒速度,沿BD方向运动,同时,动点Q从点D出发,以同样的速度沿射线DA运动,当点P到达点D时,点Q即停止运动,设运动时∆,使点M落在线段BD上.间为t秒.以PQ为斜边作Rt PQM(1)求线段BD 的长度;(2)求PDQ ∆面积的最大值;(3)当PQM ∆与BCD ∆相似时,求t 的值. DBA ∆4t 50BDC ∆时PM BC958t - 50DBC ∆时PM DC956t - 40DBC ∆时BDC ∆时综上,当5013t =或【点睛】本题考查相似三角形的动点问题,别注意分类讨论..如图,在ABC 中,P A B 2cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm /s 的速度移动,如果P Q , 分别从A B , 同时出发,问经过几秒钟,△△PBQ ABC .△ABC ,△ABC ,则20cm BC =420t ,解方程得,△ABC ,则2t ,解方程得,或5s 2时,△△ABC ,故答案是:1s 或5s 2【点睛】本题主要考查相似三角形性质的应用,掌握相似三角形的性质是解题的关键..如图,在ABC 中,90C ∠=︒,一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED 相似,求BED 的面积.在ABC 中,2AB AC =E 为AB 上动点可与5x =时,C 到AB 的距离为AC CB h AB ⨯=BEH BAC ∴∽EH BE AC AB= 35AC BE EH x AB ⋅== 12DEBS BD EH =⋅=6165y x =(2)由题意知90BEF ∠≠︒,故可以分两种情况.为顶点的三角形与BED 相似,又知EH BC H ⊥于综上所述,BED 的面积是【点睛】本题主要考查了相似三角形的性质,函数关系式.注意(2)中都要分情况进行讨论:要分BEF ∠时钝角还是锐角进行分类讨论,不要丢掉任何一种情况. 6.如图,矩形ABCD 中,AD AB ==25 , ,P 为CD 边上的动点,当ADP △与BCP 相似时,求DP 长.【答案】1DP = 或4 或2.5PBC ∽分两类情况讨论即可;PBC ∽时,2x 1 或4x = 1= 或4 本题考查了相似三角形与动点问题;在ABC 中,的速度向终点A 运动,另一动点Q 同时从点A 出发沿着AC 方向以1cm/s 的速度向终点C 运动,P 、Q 两点同时到达各自的终点,设运动时间为t (s ).APQ 的面积为2cm S .(1)求BC的长;(2)求S与t的函数关系式,并写出的取值范围;(3)当t为多少秒时,以P、C、Q为顶点的三角形和ABC相似?∴APH ABC ∆∆,PH BC, 6cm AB ==,2106t PH =, 486t -,AQ AC.如图,在ABC中,同时点Q从C出发,以3cm/s的速度向A运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为s t,(1)则AP=;AQ=____ (用含t的代数式表示)(2)求运动时间t的值为多少时,以A、P、Q为顶点的三角形与ABC相似?为顶点的三角形与ABC 相似,为顶点的三角形与ABC 相似.相似三角形的动点问题,=8cm BC ,,动点边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒()02t <<,连接PQ .(1)若BPQ 与ABC 相似,求t 的值;(2)直接写出BPQ 是等腰三角形时t 的值;(3)如图2,连接AQ 、CP ,若AQ CP ⊥,求t 的值.(2)BPQ 是等腰三角形时78t =【分析】(1)根据勾股定理可得①BPQ BAC ~,②BPQ BCA ~,根据相似三角形的性质将10cm 8cm BC =,代入计算即可得;BGQ BCA ~,得到比例式进而即可求解;(3)设AQ ,CP 交于点得3cm PM t =,BM ,再证出ACQ CMP ~,根据相似三角形的性质即可得.(1)解:∴=90ACB AC ∠︒,当BPQ BAC ~时,84=8t -, =1;当BPQ BCA ~时,BP BC 84=10t -, 4132=, 综上,t 的值为1或4132;15∴BGQ BCA ~,BG BQ BC BA =即582=810t -解得:6457t =; 综上所述:BPQ 是等腰三角形时解:如图,设AQ ,CP∴=90PM BC ACB ⊥∠︒,,BAC △,PM BM AC BC =,即3cm t =,BM (=8BC BM -+=90NCA ∠∠∴ACQ CMP ~,AC CQ CM MP=,即68-解得78t =, 经检验78t =是该分式方程的解.,在ABC 中,线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生∴若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE= ; (2)问题延伸:在(1)的情况下,将若∴DPE 绕着点P 旋转到图2的位置,PD PE 的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE,若PDE与ABC相似,求BP的值.是ABC的中位线,利用中位线定理即可得解;PM BC PN∥是ABC的中位线,得到,PNE,得到,即可得证;︒=︒,CAB∽△,利用90180,利用相似比即可得解,当(3)如图3,当PDE CBA △∽△时,则PDE B ∠=∠,165段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)当t为何值时,∴APQ与∴AOB相似?(2)当t为何值时,∴APQ的面积为24 5∴QE∴AO,BO∴AO,以1cm/s的速度沿DC、BA向终点C、A运动,点G、H分别为AE、CF的中点,设运动时间为t(s).(1)求证:四边形EGFH是平行四边形.(2)填空:①当t为______s时,四边形EGFH是菱形;②当t为______s时,四边形EGFH是矩形.∴四边形EGFH是菱形,G是AE的中点.点,连结DE ,点P 从点B 出发,沿折线BD -DE -EA 运动,到点A 后立即停止.点P 在BD 的速度运动,在折线DE -EA 上以1cm/s 的速度运动.在点P 的运动过程中,过点P 作PQ ∴BC 于点Q ,以PQ 为边作正方形PQMN ,点M 在线段BQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上时,求正方形PQMN 的边长.(2)当点N 落在边AB 上时,求t 的值.(3)在点P 的整个运动过程中,记正方形PQMN 与∴ABC 重叠部分图形面积为S (cm ²),求S 与t 的函数关系式,写出相应t 的取值范围.(2)(3)∴PQ∥AC,∴DP=t-2,PQ=MQ=2,20∴PE=t-2-4=t-6,∴PE =t-6,P A 的速度向点B 匀速移动,动点Q 从点D 出发,沿DA 边以1/s cm 的速度向点A 匀速移动,一个动点到达端点时,另一个动点也停止运动,点P ,Q 同时出发,设运动时间为s t .(1)当t 为何值时,APQ △的面积为216cm(2)t 为何值时,以A ,P ,Q 为顶点的三角形与ABC 相似.为顶点的三角形与ABC APQ 的面积为(12102t ∴⋅⋅解得2t =或07.5t<< ABC∠=∴当BCAB=为顶点的三角形与ABC相似,1010 152∴=解得307t=为顶点的三角形与ABC相似.一元二次方程的解法等知识,角形的判定是解题的关键,同时注意分类讨论思想的运用.如图是两位同学对一道习题的交流,请认真阅读下列对话并完成相应的任务.解决问题:(1)写出正确的比例式及后续解答.(2)指出另一个错误,并给出正确解答.拓展延伸:(3)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,是否存在时刻t,使以A,M,N为顶点的三角形与∴ACD相似?若存在,直接写出t的值;若不存在,请说明理由.DE AD )根据题意可知有两种情况分别是AMNDCA 和AMN DAC ,然后列出方程进行∴ADEABC 正确比例式是:DE BC =AD AB BC AB ⋅=()AB BD AB -5⨯5 另一个错误是没有进行分类讨论,如图,过点DE AD 第一种:当AMN DCA 时,,则AN =6-2t ,第二种:当AMN DAC时,AN,DC,,向点A以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当POQ与AOB相似时t的值.【答案】4或2∴ 当t=4或t=2时,∴POQ与∴AOB相似.【点睛】本题考查相似三角形的性质、解一元一次方程,熟练掌握相似三角形的对应边成比例是解答的关键.17.如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s 的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的∴Q与射线BA、线段BC分别交于点D,E,连接DP.(1)当t为何值时,线段DP与∴Q相切;(2)若∴Q与线段DP只有一个公共点,求t的取值范围;(3)当△APC是等腰三角形时,直接写出t的值.1 DE AN∴AB=AC=10cm,BC=16cm,AN∴BC,则2t =10,5个单位长度的速度沿折线BA ﹣AC 运动,点Q 以每秒3个单位长度的速度沿折线BC ﹣CA 运动,当点P ,Q 相遇时,两点同时停止运动,设点P 运动的时间为t 秒,∴PBQ 的面积为S .(1)当P ,Q 两点相遇时,t = 秒;(2)求S 关于t 的函数关系式,并直接写出t 的取值范围.2(02)824(2)3896(3)3t t t t <+<+.02t <时,当823t <时,当833t 时,利用三角形相似和三角形的的关系式.90C ∠=6AC =, AB ∴=53t t ∴+3.∴当P ,两点相遇时,3t =秒,故答案为:(2)02t <时,当823t <时,ABC ∆中,过点P 作PH ⊥90PHB C ∴∠=∠=︒,B ∠∠=ΔABC ∴∽∴PH BP AC AB=5BP t =,3PH t ∴=3BQ t =,132S ∴=⨯当823t <时,如图,165PCt =-,833t 时,如图,248PQ t =-,2(02)824(2)3896(3)3t t t t <+<+. 【点睛】本题主要考查了动点问题的函数图象,解决问题的关键是理清图象的含义即会识图.通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、中,∴C =90°以每秒 2 个单位长度的速度向终点 A 运动,同时动点 Q 从点 A 出发,沿折线 AC —CB 以每秒 2 个单位长度的速度向点 B 运动.当点 P 到达终点时,点 Q 也停止运动.设运动的时间为 t 秒.(1)AB = ;(2)用含 t 的代数式表示线段 CQ 的长;(3)当Q 在AC 上运动时,若以点A、P、Q为顶点的三角形与∴ABC 相似,求t 的值;(4)设点O 是P A 的中点,当OQ 与∴ABC 的一边垂直时,请直接写出t 的值.∴(4)OP OB =∴QP QB =点 O 是12OP ∴=B B ∠=∠BOQ BCA ∴∽,BQ OB AB BC∴=, ()1202222016t t -∴=, 解得50t =, AC BC ⊥OQ AC ∴∥BOQ BAC ∴∽,BQ OB BC AB∴=, ()1202221620t t -∴=, ∴207t =,AOQ ABC ∴∽,AQ AO AC AB∴=, 2AQ AC BC t =+-=122AO AP PB t =+=+2821012t t -+∴解得11013t =【点睛】本题考查了勾股定理,动点问题,相似三角形的性质与判定,分类讨论是解题的关20.如图,抛物线3y ax bx =+-交轴于,两点,与轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由. 若AON ABC ∽,②若AON ACB ∽,由相似三角形的性质可求出点坐标,联立直线ON 和抛物线的解析式可求出答案.交x 轴于()30A -,,()10,两点,S=PEG12PG4PG=2为顶点的三角形与ABC相似,可分两种情况:∽,若AON ABCOA=,AB3=,49∽,若AON ACBOA=,AC3=,32=,22)--,,12。

2023年九年级数学中考压轴复习专题几何综合——动点问题课件

2023年九年级数学中考压轴复习专题几何综合——动点问题课件
6−5

=

4

Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,

25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,

4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,


∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我

部编数学九年级下册专题15相似三角形之动点问题(解析版)含答案

部编数学九年级下册专题15相似三角形之动点问题(解析版)含答案

专题15 相似三角形之动点问题1.如图,在Rt ABC V 中,9034C AC BC Ð=°==,,,点E 是直角边AC 上动点,点F 是斜边AB 上的动点(点F 与A B 、两点均不重合).且EF 平分Rt ABC V 的周长,设AE 长为x .(1)试用含x 的代数式表示AF = ;(2)若AEF △的面积为165,求x 的值;(3)当AEF △是等腰三角形时,求出此时AE 的长.∵BC AC FD ⊥,∴BC DF ∥.∴FDA BCA ∽V V ∴BC DF AB AF =,即∵EMA C Ð=Ð=∴EAM BAC ∽V V ∴AE AM AB AC=,1(6)x -同理FAN BAC ∽V V ∴FA AN AB AC=,∴16253x x -=,2.如图,在ABC V 中,90ABC а=,4AB =,3BC =,点P 从点A 出发,沿线段AB 以每秒5个单位长度的速度向终点B 运动,当点P 不与点A 、B 重合时,作点P 关于直线AC 的对称点Q ,连结PQ ,以PQ 、PB 为边作PBMQ Y .设PBMQ Y 与ABC V 重叠部分图形的面积为S ,点P 的运动时间为t 秒.(1)直接用含t 的代数式表示线段PQ 的长并写出t 的取值范围;(2)当点M 落在边AC 上时,求t 的值及此时PBMQ Y 的面积;(3)求S 与t 之间的函数关系式;(4)当PBMQ Y 的对角线的交点到ABC V 的两个顶点的距离相等时,直接写出t 的值.由意得5AP t =,PO QO =∴225AC AB BC +==,∵ABC AOP ∽△△,AC BC \=1122ABC S AB BC AC =×=Q △125AB BC BM AC ×\==∵四边形PQMB 是平行四边形,(45PQMB TQO S S S t =-=-Y △当2455t << 时,如图3﹣BT AC⊥Q 125AB BC BT AC \==g 2224AT AB BT \=-=则AK CK =,设AK CK =在Rt CBK V 中,2CK BC =∴()22234x x =+-,解得258x =,∵OL AB ∥,QO OB = ,∴直线OL 平分QP ,∴点L 在线段PQ 上,且AL ∴5t =.3.如图,在矩形ABCD 中,BC CD >,,BC CD 分别是一元二次方程214480x x -+=的两个根,连结BD ,动点P 从B 出发,以1个单位每秒速度,沿BD 方向运动,同时,动点Q 从点D 出发,以同样的速度沿射线DA 运动,当点P 到达点D 时,点Q 即停止运动,设运动时间为t 秒.以PQ 为斜边作Rt PQM D ,使点M 落在线段BD 上.(1)求线段BD 的长度;D面积的最大值;(2)求PDQ(3)当PQMD与BCDD相似时,求t的值.4.如图,在ABC V 中,10cm AB = ,20cm BC =,点P 从点A 开始沿AB 边向B 点以2cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm /s 的速度移动,如果P Q , 分别从A B , 同时出发,问经过几秒钟,△△P B Q A B C : .5.如图,在ABC V 中,90C Ð=°,6AC =,8BC =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF Ð=°,EF 交射线BC 于点F .设BE x =,BED V 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED V 相似,求BED V 的面积.【点睛】本题主要考查了相似三角形的性质,函数关系式.注意(2)中都要分情况进行讨论:要分BEF Ð时钝角还是锐角进行分类讨论,不要丢掉任何一种情况.6.如图,矩形ABCD 中,AD AB ==25, ,P 为CD 边上的动点,当ADP △与BCP V 相似时,求DP 长.7.如图,在ABC V 中,908C AC Ð=°=,cm ,动点P 从点C 出发沿着C B A --的方向以2cm/s 的速度向终点A 运动,另一动点Q 同时从点A 出发沿着AC 方向以1cm/s 的速度向终点C 运动,P 、Q 两点同时到达各自的终点,设运动时间为t (s ).APQ V 的面积为2cm S .(1)求BC的长;(2)求S与t的函数关系式,并写出的取值范围;V相似?(3)当t为多少秒时,以P、C、Q为顶点的三角形和ABC8.如图,在ABC V 中,8cm 10cm AB AC ==、,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为s t ,(1)则AP = ;AQ = ____ (用含t 的代数式表示)(2)求运动时间t 的值为多少时,以A 、P 、Q 为顶点的三角形与ABC V 相似?9.如图1,在Rt ABC △中,=90=6cm =8cm ACB AC BC а,,,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒()02t <<,连接PQ .(1)若BPQ V 与ABC V 相似,求t 的值;(2)直接写出BPQ V 是等腰三角形时t 的值;(3)如图2,连接AQ 、CP ,若AQ CP ⊥,求t 的值.则12BG PB ==∵=QBG ABC ÐÐ∴BGQ BCA ~V V BG BQ =5∵PM BC ACB ⊥Ð,∴PM AC ∥,10.如图1,在ABC V 中,90,3,4BCA AC BC а===,点P 为斜边AB 上一点,过点P 作射线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生∶若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE= ;(2)问题延伸:在(1)的情况下,将若∠DPE 绕着点P 旋转到图2的位置,PD PE 的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE ,若PDE V 与ABC V 相似,求BP 的值.(3)如图2,连接CP,如图3,当PDE △∽△∵90DPE ACB Ð+Ð=°∴点C 、D 、P 、E 共圆,综上所述:165BP =或【点睛】本题考查相似三角形的判定和性质.通过添加合适的辅助线证明三角形相似是解题的关键.同时,本题考查了三角形的中位线定理,以及利用四点共圆证明角相等,是一道综合题.11.如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为245∵QE⊥AO,BO⊥AO,∴QE∥BO,∴△AEQ∽△AOB,∴45QE BOAQ AB==44812.如图,在矩形ABCD中,12AB=cm,=3AD cm,点E、F同时分别从D、B两点出发,以1cm/s 的速度沿DC、BA向终点C、A运动,点G、H分别为AE、CF的中点,设运动时间为t(s).(1)求证:四边形EGFH是平行四边形.(2)填空:①当t为______s时,四边形EGFH是菱形;②当t为______s时,四边形EGFH是矩形.13.如图,在Rt △ABC 中,∠C =90°,AC =4cm ,BC =8cm ,点D ,E 分别为边AB ,AC 的中点,连结DE ,点P 从点B 出发,沿折线BD -DE -EA 运动,到点A 后立即停止.点P 在BD 的速度运动,在折线DE -EA 上以1cm/s 的速度运动.在点P 的运动过程中,过点P 作PQ ⊥BC 于点Q ,以PQ 为边作正方形PQMN ,点M 在线段BQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上时,求正方形PQMN 的边长.(2)当点N 落在边AB 上时,求t 的值.(3)在点P 的整个运动过程中,记正方形PQMN 与△ABC 重叠部分图形面积为S (cm ²),求S 与t 的函数关系式,写出相应t的取值范围.14.如图,矩形ABCD 中,15AB cm =,10BC cm =,动点P 从点A 出发,沿AB 边以2/s cm 的速度cm的速度向点A匀速移动,一个动点到达端向点B匀速移动,动点Q从点D出发,沿DA边以1/s点时,另一个动点也停止运动,点P,Q同时出发,设运动时间为s t.(1)当t为何值时,APQ△的面积为216cm(2)t为何值时,以A,P,Q为顶点的三角形与ABCV相似.【点睛】本题主要考查了相似三角形的判定,一元二次方程的解法等知识,熟练掌握相似三角形的判定是解题的关键,同时注意分类讨论思想的运用.15.阅读与思考如图是两位同学对一道习题的交流,请认真阅读下列对话并完成相应的任务.解决问题:(1)写出正确的比例式及后续解答.(2)指出另一个错误,并给出正确解答.拓展延伸:(3)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,直接写出t的值;若不存在,请说明理由.16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA向点A 以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当V POQ与V AOB相似时t的值.17.如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的⊙Q与射线BA、线段BC分别交于点D,E,连接DP.(1)当t为何值时,线段DP与⊙Q相切;(2)若⊙Q与线段DP只有一个公共点,求t的取值范围;(3)当△APC是等腰三角形时,直接写出t的值.18.如图,在△ABC中,∠C=90°,BC=8,AC=6,点P,Q同时从点B出发,点P以每秒5个单位长度的速度沿折线BA﹣AC运动,点Q以每秒3个单位长度的速度沿折线BC﹣CA运动,当点P,Q相遇时,两点同时停止运动,设点P运动的时间为t秒,△PBQ的面积为S.(1)当P,Q两点相遇时,t= 秒;(2)求S关于t的函数关系式,并直接写出t的取值范围.90PHB C \Ð=Ð=°,B B ÐÐ=Q ,ΔΔABC PBH \∽,\PH BP AC AB=,165PC t =-,113(16522S PQ PC t t =´=´´-当833t ……时,如图,248PQ t =-,118(248)22S PQ BC t =´=´-=-19.如图,在Rt△ABC 中,∠C=90°,AC=16,BC=12.动点P 从点B 出发,沿线段BA 以每秒 2 个单位长度的速度向终点 A 运动,同时动点Q 从点 A 出发,沿折线AC—CB 以每秒 2 个单位长度的速度向点 B 运动.当点P 到达终点时,点Q 也停止运动.设运动的时间为t 秒.(1)AB= ;(2)用含t 的代数式表示线段CQ 的长;(3)当Q 在AC 上运动时,若以点A、P、Q为顶点的三角形与△ABC 相似,求t 的值;(4)设点O 是PA 的中点,当OQ 与△ABC 的一边垂直时,请直接写出t 的值.【点睛】本题考查了勾股定理,动点问题,相似三角形的性质与判定,分类讨论是解题的关键.20.如图,抛物线23y ax bx =+-交x 轴于()30A -,,()10B ,两点,与y 轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE V 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC V 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.【分析】(1)把()30A -,和()10B ,的坐标代入抛物线解析求出a 和b 即可求解;(2)求出直线AC 的解析式为3y x =--,设()223P n n n +-,,则()3G n n --,,由三角形面积可得出1n =-或2n =-,则可得出答案;(3)分两种情况,①若AON ABC V V ∽,②若AON ACB V V ∽,由相似三角形的性质可求出ON 的长,求出N 点坐标,联立直线ON 和抛物线的解析式可求出答案.(1)解:∵抛物线y =a 2x +bx -3交x 轴于()30A -,,()10B ,两点,∴933030a b a b --=ìí+-=î ,解得12a b =ìí=î,∴该抛物线的解析式为223y x x =+-;(2)解:∵抛物线的解析式为223y x x =+-,∴0x =时,=3y -,∴()03C -,,∴AO OC =.∵=90AOC а,∴45CAO Ð=°.∵PM OA ⊥,PE AC ⊥,∴45PGM PGE GPE Ð=Ð=Ð=°,设直线AC 的解析式为y kx m =+,∴303k m m +=ìí=-î ,∴13k m =-ìí=-î,∴直线AC 的解析式为3y x =--,设()223P n n n +-,,则()3G n n --,,∴94 AK=,∴93344 OK=-=,∴39,44Næö--ç÷èø,∴直线ON的解析式为3y=。

动点在相似三角形中的分类讨论问题 2020年中考数冲刺几何难点突破 动点问题(解析版)

动点在相似三角形中的分类讨论问题 2020年中考数冲刺几何难点突破 动点问题(解析版)

2020年中考数冲刺几何难点突破动点问题专题八动点在相似三角形中的分类讨论问题【专题说明】动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。

相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个:定理1:两个角对应相等,两三角形相似‘AA”定理2:两边对应成比例且夹角相等“SAS”定理3:三边对应成比例。

“SSS”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等。

判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组)。

两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似。

(2)两条直角边对应成比例的两个直角三角形相似.(3)斜边和一条直角边对应成比例的两个直角三角形相似。

如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题。

由动点产生的相似三角形问题一般在函数和几何图中出现,函数一般是一次函数和二次函数,几何图形一般是三角形和四边形。

题型一般有是否存在点P,使得:①△PDE∽△ABC ②以P、D、E为顶点的三角形与△ABC相似。

一般以大题为主,也有出现在填空后两题。

函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

相似三角形的动点问题题型(整理)word版本

相似三角形的动点问题题型(整理)word版本

相似三角形的动点问题一、动点型例1、如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动,设运动时间为t(s),(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?2、如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1)求证:△ACD∽△BAC;2)求:DC的长;3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M 是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.二、动点加动线例1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.迁移应用1、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值.2、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF ⊥AE 于F .(1)求证:△PFA ∽△ABE ;(2)当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,说明理由.3、如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O →A →B →O →)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ 的面积S 与时间t 之间的关系式;并求出△OPQ 的最大面积; (2)在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标;(3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB ,点A 、C 的坐标分别为A(-3,0),C(1,0),43AC BC , (1)求过点A 、B 的直线的函数表达式;(2)在X 轴上找一点D,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点Dyx O AB的坐标;(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似,如存在,请求出m的值;如不存在,请说明理由.5、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在Y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=55,且43DAEA(1)判断OCD与△ADE是否相似?请说明理由;x(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线L,使直线L、直线CE与x轴所围成的三角形和△CDE相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存Array在,请说明理由.6、△ABC中,AB=AC=5,BC=6,点P从点B开始沿BC边以每秒1的速度向点C运动,点Q从点C开始沿CA边以每秒2的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A时,点Q、p停止运动,设它们运动的时间为x.1)当x= 秒时,射线DE经过点C;2)当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x 的值;若不存在,请说明理由.7、如图,梯形ABCD中,AD∥BC,AB=CD=20cm,AD=40cm,∠D=120°,点P、Q同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D,点P也随之停止运动.设运动时间为t(s)(1)当t为何值时,△CPQ与△ABP相似;(2)设△APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD 的交点为E ,与折线A-C-B 的交点为Q .点M 运动的时间为t (秒). (1)当t=0.5时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值; (3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.9、如图1,直角梯形ABCD 中,∠A=∠B=90°,AD=AB=6cm ,BC=8cm ,点E 从点A 出发沿AD 方向以1cm/s 的速度向中点D 运动;点F 从点C 出发沿CA 方向以2cm/s 的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1)当t为何值时,△AEF和△ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△AFE的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为。

相似三角形难题集锦(含答案)

相似三角形难题集锦(含答案)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

(word完整版)相似三角形动点问题题型

(word完整版)相似三角形动点问题题型

动点问题 题型方法归纳动态几何特点—---问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置.) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨. 一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;图(3)B图(1)B图(2)2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;t s.问当t (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位(3)若OC OB的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.Array注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学相似三角形动点问题专题复习一、几何动点问题
例题:如图,在△ABC 中,AB=8cm,BC=16cm,点P 从点A 出发沿AB 边向点B 以2cm/s 的速度移动,点Q 从点B 出发沿BC 边向点C 以4cm/s 的速度移动(有一点到达端点后即停止移动),如果P,Q 同时出发,经过几秒后△PBQ 和△ABC 相似?
1、如图,Rt△ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm,D 为BC 的中点,若动点E 以1cm/s的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t<6),连DE,当△BDE 是直角三角形时,t 的值为
2、如图,Rt△ABC 中,∠C=90°,AC=8,BC=6,点D 是BC 边的中点,动点P 从点C 出发,沿C→A→B 的方向在AC、AB 边上以每秒2 个单位的速度向点B 移动,运动至点B 即停止。

连接PD,当点P 运动时间t 为何值时,线段PD 截
Rt△ABC 为两部分,所得的三角形与Rt△ABC 相似.
3、如图,在直角梯形ABCD 中, D 900 ,AB=10cm,BC=6cm,AB ∥CD , AC BC , F点以2cm / s 的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm / s 的速度在线段BC上由B 向C 匀速运动,设运动的时间为t (0<t <5). (1)求证:△ ACD ∽△BAC ;
(2)求DC 的长
(3)当t 为何值时,△ FEB 为直角三角形?
4、已知,在矩形ABCD 中,AB=a,BC=b,动点M 从点A 出发沿边AD 向点D 运动.
(1)如图1,当b=2a,点M 运动到边AD 的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a 时,点M 在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a 时,(2)中的结论是否仍然成立?请说明理由.
5、如图,点B 在线段AC 上,点D,E 在AC 同侧,∠A =∠C=900,BD⊥BE ,AD = BC .
(1)求证:AC=AD+CE
(2)若AD=3,CE=5,点P 为线段AB 上的动点,连接DP,作PQ ⊥DP ,交直线BE 与点Q;
i)当点P 与A,B 两点不重合时,求DP
PQ
的值;
ii)当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
6、如图 1,点 C 将线段 AB 分成两部分,如果AC BC AB AC
=,那么称点 C 为线段 AB 的黄金分割点。

某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为 S 的图形分成两部分,这两部分的面积分别为 S1 、 S2 ,如果121
S S S S =,那么称直线为该图形的黄金分割线. (1)如图 2,在△ ABC 中,∠A =36 °, AB = AC ,∠C 的平分线交 AB 于点 D ,请问点 D 是否是 AB 边上的 黄金分割点,并证明你的结论;
(2)若△ ABC 在(1)的条件下,如图(3),请问直线 CD 是不是△ ABC 的黄金分割 线,并证明你的结论;
(3)如图 4,在直角梯形 ABCD 中,∠D = ∠C =900 ,对角线 AC 、 BD 交于点 F , 延长 AB 、 DC 交于点 E ,连接 EF 交梯形上、下底于 G 、 H 两点,请问直线 GH 是
不是直角梯形 ABCD 的黄金分割线,并证明你的结论
.
7、在Rt△ ABC,∠C=90°,D 为AB 边上一点,点M、N 分别在BC、AC 边上,且DM⊥DN.作MF⊥AB 于点F,NE⊥AB 于点E.
(1)特殊验证:如图1,若AC=BC,且D 为AB 中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.
①如图2,若D 为AB 中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M 在BC 边上”改为“点M 在线段CB 的延长线上”,其它条件不变,请探究AE 与DF 的数量关系并加以证明.
二、函数动点问题
例题:如图,直线y1 = kx +2 的图象与x 轴、y 轴分别交于点A,B,点C 是直线与的一个交点,过点C 作CD⊥y 轴,垂足为D,且△BCD 的面积为1。

双曲线y =m
x
(1)求双曲线的解析式与直线AB 的解析式;(2)若在y 轴上有一点E,使得以E、A、B 为顶点的三角形与△BCD相似,求点E 的坐标.
1、如图,抛物线经过A(4,0),B(1,0),C(0,-2) 三点.
(1)求出抛物线的解析式;
(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M,是否存在P 点,使得以A,P,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;
2、如图,在平面直角坐标系xOy 中,抛物线y=1
2
x2 + bx +c 经过点A(1, 3) ,B(0,1) .
(1)求抛物线的表达式及其顶点坐标;
(2)过点A 作x 轴的平行线交抛物线于另一点C,
①求△ABC 的面积;
②在y 轴上取一点P,使△ABP 与△ABC 相似,求满足条件的所有P 点坐标.
3、如图,抛物线的顶点为A(2,1),且经过原点O,与x 轴的另一个交点为B.(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB 的面积是△AOB 面积的3 倍;
(3)连结OA,AB,在x 轴下方的抛物线上是否存在点N,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.
4、矩形OABC 在平面直角坐标系中位置如图所示,A、C 两点的坐标分别为A(6,
0),C(0,-3),直线y =
3
4
-x 与BC 边相交于D 点.
(1)求点D 的坐标;
(2)若抛物线y=ax 29
4
-x 经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD 交于点M,点P 为对称轴上一动点,以P、O、M 为顶点的三角形与△OCD 相似,求符合条件的点P 的坐标.
5、如图,已知抛物线y=x2-1 与x 轴交于A、B 两点,与y 轴交于点C.
(1)求A、B、C 三点的坐标.
(2)过点A 作AP∥CB 交抛物线于点P,求四边形ACBP 的面积.
(3)在x 轴上方的抛物线上是否存在一点M,过M 作MG⊥x 轴于点G,使以A、M、G三点为顶点的三角形与△PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.。

相关文档
最新文档