第五章 假设检验(1)

合集下载

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

第5章 假设检验

第5章  假设检验
著,这里表现为长白后备种猪的背膘厚度极显著地低于蓝塘后备种猪 的背膘厚度。
9
假设检验的基本步骤
(1) 对样本所属总体提出统计假设,包括无效假 设和备择假设. (2) 测验计算,即在无效假设正确的假定下,依 据统计数的抽样分布,计算因随机抽样而获得实 际差数的概率. (3) 统计推断,即将确定的值与算得的概率相比 较,依据“小概率事件实际不可能性”原理作出 接受或否定无效假设的推断
1.2021.817 13.226** 0.0465
df (n1 1) (n2 1)
=(12-1)+(11-1)=21
3、查临界t值,作出统计推断 当df=21时,查临界值得:t0.01(21)=2.831, |t|>2.831,P<0.01,否定 H 0:1 , 接 2 受 H A:1 ,表明长白后备种猪与蓝塘后备种猪 2 90kg背膘厚度差异极显著,这里表现为长白后备 种猪的背膘厚度极显著地低于蓝塘后备种猪的背 膘厚度。
3、查临界t值,作出统计推断 因为单侧
t 0.10(= 双侧 11)
t 0.05 = 1.796 ,t=2.281 (11 )
> 单侧t0.05(11), P < 0.05 , 否定H0 : =246,
>246,可以认为该批饲料维生素C含量 接受HA :
符合规定要求。
第三节 两个样本平均数的差异 显著性检验
克服假设检验中可能犯的两类错误的方法: ① 适当增加样本容量 ② 精细做好试验以控制试验误差
17
两类错误
影响 II 型错误概率大小的因素 - 显著性水平 - 样本含量 n - 假设分布与真实分布总体平均数之差 - 两个分布的总体方差
检验功效 一个错误的原假设能够被否定的概率 检验功效 = 1 - II 型错误概率 =1-β

假设检验与方差分析

假设检验与方差分析
这是不合理的,应拒绝原假设。
三、假设检验的步骤
1、提出原假设(null hypothesis)和备择假设 (alternative hypothesis)
原假设为正待检验的假设:H0; 备择假设为可供选择的假设:H1 一般地,假设有三种形式:
(1)双侧检验:
H0 : 0; H1 :0 (2)左侧检验:
这两个例子中都是要对某种“陈述”做出判
断:
例1要判明工艺改革后零件平均 长度是否仍为4cm;
进行这种判断 的信息来自
例2要判明该批产品的次品率是 所抽取的样本
否低于3%。
所谓假设检验,就是事先对总体参数或总体分 布形式作出一个假设,然后利用样本信息来判断 原假设是否合理,即判断样本信息与原假设是否 有显著差异,从而决定是否接受或否定原假设
对比来构造检验统计量。
可以证明,若H0为真,则
2
(n 1)S 2
2 0
~
2 (n 1)
因此,可构造2 统计量进行总体方差
的假设检验。
当H0成立时,S2/02 接近于1,2的 值在一个适当的范围内,
当H0不成立时,S2/02远离1,2的值 相当大或相当小。
在例2中,由于所抽样本只为10,为小样本,因 此无法构造Z统 计量进行总体比例的假设检验。
如果总体X~N(,2),在方差已知的情况下,对总体均 值进行假设检验。
由于
因此,可通过构造Z统计量来进行假设检验:
注意: 如果总体方差未知,且总体分布未知,但如果是大样
本(n>=30),仍可通过 Z 统计量进行检验,只不过总体 方差需用样本方差 s 替代。
例3:根据以往的资料,某厂生产的产品的使用寿命服从正 态分布N(1020, 1002)。现从最近生产的一批产品中随机抽取16 件,测得样本平均寿命为1080小时。问这批产品的使用寿命 是否有显著提高(显著性水平:5%)?

第五章 假设检验

第五章  假设检验

Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
假设检验的一般步骤
(1)建立虚无假设和备择假设
双侧检验为:H0:µ=µ0
H1:µ‡µ0
单侧检验为:H0:µ<=µ0 或 H0:µ>=µ0
H1:µ>µ0 或 H1:µ<µ0
(2)寻找合适的统计量及其抽样分布,并计算统计量
T’=-1.929;SE2=3.468;t’ a/2=2.049
练习题5
对9个被试进行两种夹角(15o,30o)的缪 勒—莱依尔错觉实验结果如下,问两种夹角的 情况下错觉量是否有 显著差异?
被试 1
2
3
4
15o 14.7 18.9
17.2 15.4
30o 10.6 15.1
16.2 11.2
Z1.84;SE1.793
两类错误
H0为真
接受H0 拒绝H0
正确 α错误
前提 H0为假 β错误 正确
总体平均数的假设检验例题1
全区统一考试物理平均分μo=50,标准差σo=10.某 校的一个班(n=41)平均成绩 X =52.5.问该班成 绩与全区平均成绩差异是否显著.
(总体正态,总体方差已知)

第五章假设检验

第五章假设检验
31
Hypothesis test
(二)P值假设检验的步骤 值假设检验的步骤
14
Hypothesis test
(一)假设检验中的两类错误 实际情况
决策结果 不拒绝H0 拒绝H0
H0为真 √ type I error
H0为伪 type II error √
•第Ⅰ类错误:指原假设为真,却拒绝原假设而犯的 类错误:指原假设为真,
错误, 错误,即弃真错误 发生概率为α 发生概率为α •第Ⅱ类错误:原假设为假时,未拒绝原假设而犯 第 类错误:原假设为假时, 的错误, 的错误,即取伪错误 发生概率为β 发生概率为β 15
27
Hypothesis test
3、利用P值决策的优点: 利用P 决策的优点: 直接给出了拒绝原假设犯第一类错误的真实概率; 直接给出了拒绝原假设犯第一类错误的真实概率; 避免了不同检验问题用同一个显著性水平; 避免了不同检验问题用同一个显著性水平; 当前计算机软件通常可以直接输出检验统计量的P值, 当前计算机软件通常可以直接输出检验统计量的P 免于查表, 免于查表,可直接判定
例如,针对特效药治愈率假定 例如,针对特效药治愈率假定H0 :θ≥97% 医疗周期假定H0 :t≤2个月 个月 服药后病情稳定情况H0 :d=2人 人
7
Hypothesis test
(2)备择假设(alternative hypothesis) 备择假设(alternative
★研究者收集证据想予以支持的假设 研究者收集证据想予以支持 予以支持的假设 ★表示为H1 ★表示形式:≠, >或<某一假定数值 表示形式:
Hypothesis test
4、决策规则 给定显著性水平α 给定显著性水平α,查统计量的对应分布表得出相 应的临界值。 应的临界值。 临界值通常取正值, 临界值通常取正值,应结合假设形式准确确定分布 中的临界值和拒绝域。 中的临界值和拒绝域。 将检验统计量的值与临界值进行比较 给出决策结果。 给出决策结果。 双侧检验: 统计量的值| 临界值, 双侧检验:|统计量的值|>临界值,则拒绝H0 左侧检验:统计量的值<临界值, 左侧检验:统计量的值<临界值,则拒绝H0 右侧检验:统计量的值>临界值, 右侧检验:统计量的值>临界值,则拒绝H0

统计学导论 科学出版社 第五章 假设检验

统计学导论  科学出版社 第五章 假设检验

右侧检验

H1 : µ > µ0
H1 : µ > µ0
确定适当的检验统计量
什么检验统计量? 什么检验统计量?
用于假设检验问题的统计量 选择统计量的方法与参数估计相同, 选择统计量的方法与参数估计相同,需考虑
是大样本还是小样本 总体方差已知还是未知
检验统计量的基本形式为
z= x − µ0
σ
n
选择显著性水平α,确定临界值

☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺
抽取随机样本
均值 ☺ ☺ X = 20
假设检验的基本思想
抽样分布
这个值不像我 们应该得到的 样本均值 ... ... 因此我们拒 绝假设 µ = 50
... 如果这是总 体的真实均值 20
µ = 50 H0
样本均值
假设检验应用举例
例1:抽样检验食品包装机工作是否正常 : 例2:由样本推断产品次品率是否超标 : 例3:研究黑人儿童是否有民族意识 : 例4:检验电池寿命波动性是否有显著变化 : 5: 例5:判断男女职工看电视时间是否有显著差异 例6:检验新工艺是否比旧工艺更好 : 例7:研究生活习惯是否影响血压 : 例8:检验两次地震间的天数是否服从指数分布 : 例9:比较两公司进货次品率,作出进货决策 :比较两公司进货次品率,
3、特点 、
采用逻辑上的反证法 依据统计上的小概率原理
第一节 假设检验的基本原理
一. 假设检验的一般思想 二. 假设检验的步骤 三. 假设检验的两类错误
假设检验的过程
(提出假设→抽取样本→作出决策) 提出假设→抽取样本→作出决策)
提出假设 作出决策
拒绝假设! 拒绝假设 别无选择. 别无选择
总体

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),

医学统计学-假设检验概述

医学统计学-假设检验概述

二、假设检验应注意的问题
假设检验利用小概率反证法思想,从问题对立面 (H0)出发间接判断要解决的问题(H1)是否成立。在H0 成立的条件下计算检验统计量,获得P值来判断。当P ≤,就是小概率事件。
小概率事件原理:小概率事件在一次抽样中发生 的可能性很小,如果它发生了,则有理由怀疑H0,认 为H1成立,该结论可能犯的错误。
当不拒绝H0时,没有拒绝实际上不成立的H0,这 类错误称为Ⅱ类错误(“存伪”),其概率大小用β 表示。
假设检验中的两类错误
客观实际
拒绝H0
不拒绝H0
H0成立 第Ⅰ类错误(α) 推断正确(1- α)
H0不成立 推断正确(1- β) 第Ⅱ类错误(β)
α与β的关系: 当样本量一定时, α愈小, 则β愈大,反之α愈大,
距法
理论上:
• 总体偏度系数1=0为对称,1>0为正偏态,1<0为负偏态; • 总体峰度系数2=0为正态峰,2>0为尖峭峰,2<0为平阔峰。 • 只有同时满足对称和正态峰两个条件时,才能认为资料服从
假设检验概述
第五章 假设检验概述
第一节 假设检验的分类、论证方法与步骤 一、假设检验的分类 二、假设检验的论证方法 三、假设检验的步骤
第二节 假设检验的两类错误和注意事项 一、Ⅰ型错误和Ⅱ型错误 二、应用假设检验的注意事项
第三节 正态性检验与数据转换 一、正态性检验 二、数据转换
第四节 例题和SPSS电脑实验
P>:不拒绝H0 ,还不能认为差异有统计学意义… P:拒绝H0,接受H1 ,差异有统计学意义…
第二节 假设检验的两类错 误和注意事项
一、Ⅰ型错误和Ⅱ型错误
1. Ⅰ型错误: 当拒绝H0时,可能拒绝了实际上成立的H0,这

第5章_假设检验

第5章_假设检验

面向21世纪 课程教材
第五章
假设检验
第二节
某研究者估计本市居民家庭电脑拥有率为30%。现随机调查了200个家庭,其 中68家拥有电脑。试问研究估计是否可信?( =10%) 提出假设:原假设:Ho:P=0.3; 备择假设:Ha:p≠0.3
样本比例 P=m/n=68/200=0.34 由于样本容量相当大,因此可近似采用Z检验法 p p0 0.34 0.3 z 1.194 p (1 p ) 0.34 0.66 n 200
面向21世纪 课程教材
第五章
假设检验
第二节
2.方差检验过程 (1)提出原假设Ho和备择假设Ha。
2 H0 : 2 0
2 Ha : 2 0
(2)构造检验统计量:
(n 1) s 2

2
~

2
(n-1)
2 2分布。 在Ho成立的条件下,统计量 服从自由度为n-1的
(3)确定显著性水平。 (4)规定决策规则。 在双侧检验的情况下,拒绝区域在两侧,如果检验统计量大于右侧临界 值,或小于左侧临界值,则拒绝原假设。若是单侧检验,拒绝区域分布 在一侧,具体左侧还是右侧,可根据备择假设Ha的情况而定。 (5)进行判断决策。
面向21世纪 课程教材
第五章
假设检验
第二节
某厂采用自动包装机分装产品,假定每包重量报从正态分 布,每包标准重量为1000克,某日随机抽查9包,测得样本 平均重量为986克,标准差为24克,试问在0.05的检验水平 上,能否认为这天自动包装机工作正常?
;H 根据题意,提出假设: H0 : 1000 1: 1000

面向21世纪 课程教材
第二节 总体均值、比例和 方差的假设检验

假设检验

假设检验

第五章假设检验本章介绍假设检验的基本概念以及参数检验与非参数检验的主要方法。

通过学习,要求:1.掌握统计检验的基本概念,理解该检验犯两类错误的可能;2.熟练掌握总体均值与总体成数指标的各种检验方法;包括:z 检验、t 检验和p-值检验;4.掌握基本的非参数检验方法,包括:符号检验、秩和检验与游程检验;5.能利用Excel 进行假设检验。

第一节假设检验概述一、假设检验的基本概念假设检验是统计推断的另一种方式,它与区间估计的差别主要在于:区间估计是用给定的大概率推断出总体参数的范围,而假设检验是以小概率为标准,对总体的状况所做出的假设进行判断。

假设检验与区间估计结合起来,构成完整的统计推断内容。

假设检验分为两类:一类是参数假设检验,另一类是非参数假设检验。

本章分别讨论这两类检验方法。

进行假设检验,首先要对总体的分布函数形式或分布的某些参数做出假设,然后再根据样本数据和“小概率原理”,对假设的正确性做出判断。

这种思维方法与数学里的“反证法”很相似,“反证法”先将要证明的结论假设为不正确的,作为进一步推论的条件之一使用,最后推出矛盾的结果,以此否定事先所作的假设。

反证法所认为矛盾的结论,也就是不可能发生的事件,这种事件发生的概率为零,该事件是不能接受的现实。

其实,我们在日常生活中,不仅不肯接受概率为0的事件,而且对小概率事件,也持否定态度。

比如,虽然偶尔也有媒体报导陨石降落的消息,但人们不必担心天空降落的陨石会砸伤自己。

所谓小概率原理,即指概率很小的事件在一次试验中实际上不可能出现。

这种事件称为“实际不可能事件”。

小概率的标准是多大?这并没有绝对的标准,一般我们以一个所谓显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质有关。

所以,统计检验又称显著性检验。

下面通过一个具体例子说明假设检验是怎样进行的。

【例5-1】消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。

第五章 假设检验

第五章  假设检验

• 设“| X -μ0 |≥K”为小概率事件,若给定α (α为很小的正数),K可由下式确定,令 • P{| X -μ0 | ≥ K }=α α为显著性水平 X 0 • T ~ t (n 1) t为检验统计量
s/ n
K X 0 于是, P{ X 0 K } P s/ n s/ n
K P{ X 0 K } P{ } s/ n s/ n P{T t (n 1)}

X 0

1- α
α
t α(n-1) 接受域 拒绝域
即t ≥t (n-1)时,拒绝H0,认为μ>μ0
类似地,检验-H0:μ≥μ0, H1:μ<μ0
P{T t (n 1)}
检验 小概率事件 发 生
提出原假设和备择假设
什么是原假设?(null hypothesis) 1. 待检验的假设,又称“0假设” 2. 研究者想收集证据予以反对的假设,或稳定、保守、 受到保护的经验看法 3. 总是有等号 , 或 4. 表示为 H0
– – –
H0: 某一数值 指定为 = 号,即 或 例如, H0: 250(克)
1、利用P 值进行决策
(1)单侧检验:若p值> ,不拒绝H0;若p值< , 拒绝H0。 (2)双侧检验:若p值> /2, 不拒绝H0;若p值< /2, 拒绝H0。 (在计算机软件中,通常只比较P同 的关系)
2、P 值检验法的优点
(1)结论对任何统计量均适用,不需要改变。 (2)在改变显著性水平时,无须重新计算p值。( 临界值法需要重新 计算临界值。)
抽样分布
拒绝域
置信水平

1- 接受域

统计学--假设检验(第五章)-(1)-2

统计学--假设检验(第五章)-(1)-2

左侧检验:
×
抽样分布
Region of Rejection
拒绝H0
置信水平
1 -
Region of Non rejection
临界值
H0
观察到的样本统计量
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
36.6
36.9
36.7
37.2
36.3
37.1
36.7
36.8
37.0
37.0
36.1
37.0
根据样本数据,计算的平均值为36.8oC,标准差为0.36oC 根据参数估计方法,健康成年人平均体温的95%的置信区
间为(36.7,36.9) 研究人员发现这个区间内并没有包括37oC! 因此,提出了“不应该再把37oC作为正常人体温的一个有
解:研究者抽检的意图是倾向于证实这种洗涤剂的平均
净含量并不符合说明书中的陈述。
建立的原假设和备择假设为:
H0 : 500 H1 : < 500
<提出假设>
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
传统上,做出决策所依据的是样本统 计量,现代检验中人们直接使用由统计量
算出的犯第一类错误的概率,即所谓的P
值。
注:假设检验不能证明原假设正确。
① 假设检验只提供不利于原假设的证据。当拒绝原假设时, 表明样本提供的证据证明它是错误的;当没有拒绝原假设时 ,我们也不说“接受原假设”,因为没法证明原假设是正确 的

第五章参数估计和假设检验PPT课件

第五章参数估计和假设检验PPT课件

抽样
X ~ N(, 2)
n,S2
则 (n 1)S 2 / 2 ~ 2 (n 1)
当 n 30, 2分布趋近于正态分布
若X ~ x2 (n 1) 则 Z 2 2 2(n 1)
两个样本方差之比的抽样分布
从两个正态总体中分别独立抽样所得到的两个样本方 差之比的抽样分布。
抽样
X1
~
N
(
1
,
2 1
极大似然估计是根据样本的似然函数对总体参数进行 估计的一种方法 。
其实质就是根据样本观测值发生的可能性达到最大这 一原则来选取未知参数的估计量θ,其理论依据就是 概率最大的事件最可能出现。
区间估计
估计未知参数所在的可能的区间。 P(ˆL<<ˆU ) 1
评价准则
一般形式
置信度 精确度
(ˆ △)<<(ˆ △) 或 ˆ △
2
2
2
n
Z
2
2
Pq

2 pˆ
Z
2
PqN
n
2
N

2 pˆ
Z
2
Pq
2
假设检验
基本思想 检验规则 检验步骤 常见的假设检验 方差分析
基本思想
•小概率原理:如果对总体的某种假设是真实的,那么不利于 或不能支持这一假设的事件A(小概率事件) 在一次试验中几乎不可能发生的;要是在一次 试验中A竟然发生了,就有理由怀疑该假设的 真实性,拒绝这一假设。
参数的区间估计
待估计参数
已知条件
置信区间 ˆ △
总体均值 (μ)
正态总体,σ2已知 正态总体,σ2未知
非正态总体,n≥30
X Z / n
2

第五章假设检验

第五章假设检验

第五章假设检验5.1 现实中的统计案例一:时下不少大学生在一边学习的同时也不断寻找一些机会打些零工以赚点钱弥补学习和生活之需,这已经是学生们之间人所共知的事情。

这没有丝毫的让人好奇之处,让人好奇的是这些打工的学生究竟一个月平均能赚多少钱?假设有人说:这个数据是500元,你觉得信不信它呢?当然,你首先需要收集证据,没有证据是肯定说明不了任何问题的。

又假设有人通过组织调查取得过如下数据(调查到一共30人,单位:元):350 500 900 100 100 200 240 300 100 320450 260 650 380 290 400 800 400 250 400290 870 540 320 140 160 300 400 500 340 这时你该做何结论?就算是你得到以上数据的平均数等于423元,你是否就可以作出“是”或“不是”的回答?因为你要作出的回答是针对整个总体的,根据却又只是来自部分总体——即样本,所以事实上不论你最终作出的是“是”还是“不是”的回答,其实都存在犯错误的可能。

那么,如何以样本的数据去对总体参数下结论才最科学?才最不容易犯错误呢?这就是一个属于单个总体参数假设检验的问题了,是本章需要解决的问题。

案例二:你可能认为每一个美国人都知道像这样一些简单历史问题的答案“在美国国旗上有多少颗星?有多少条条纹?星代表什么?条纹又代表什么?”。

非常有意思的是,并非每一个人都知道问题的答案,而且当你知道问题的答案时,你也许会大吃一惊的。

1998年美国杂志《Today’s America》就确实做过这么一个调查,所得到的数据肯定多多少少会出乎很多人的意料之外。

下面就是按性别和美国地区列出的知道星的数目的成年人的百分比:男士女士大城市小城镇农村n(知道)72 72 57 56 31n(不知道)22 34 25 16 15在纽约的伊利县里200个成人被问及在美国国旗上有多少颗星。

上面的表现是属于每一类的成人的数目。

第五章单个和两个总体平均数的假设检验课件

第五章单个和两个总体平均数的假设检验课件

S
S
x1 x2
x1 x2
自由度为:df=(n1-1)+(n2-1)= n1+n2-2 例:70-71页
二、未知σ12,σ22,且σ12≠σ22
(一) σ2的齐性检验
设有两个正态总体,X1服从N(μ1, σ12), X2 服从N(μ2, σ22)。如果有理由怀疑σ12≠σ22,就
首先进行检验。
1.零假设:H0: σ12=σ22 备择假设:H1: σ12≠σ22
n2

11
(n1 1) (n2 1)
n1 n2
sx1 x2
均数差异标准误
当n1=n2=n时,上面公式演变为:
S x1x2
(x1 x1)2 (x1 x1)2 n(n 1)
x12
( x1 )2
n1
x2 2
( x2 )2
n2
n(n 1)
t值为
t x1 x2 (1 2 ) x1 x2
例:母猪怀孕期应该是114天,今调查了某种猪场8头母猪, 各头母猪的怀孕期为:113,115,115,114,116,117, 115,113天。试检验8头母猪的怀孕期与114天是否有显 著差异。
1. 假设
H0:μ= μ0=114 HA:μ ≠ μ0=114
2. 计算检验统计量
X 114.75
0 114
双侧检验 单侧检验 单侧检验
5.1.1 Z检验-总体的方差σ2 已知
2、计算统计量Z
Z
X
X 0
X
n
X:样本平均数;
n:样本含量;:总体标准差
Z ~ N(0,1)
5.1.1 Z检验-总体的方差σ2 已知
3、确定否定域并做统计推断 对于给定的显著性水平,针对3种不同的假设,

第5章假设检验课后习题解答

第5章假设检验课后习题解答

第5章假设检验课后习题解答第五章假设检验⼀、选择题1.单项选择题(1)将由显著性⽔平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性⽔平的1/2,这是( B )。

A.单侧检验B.双侧检验C.右单侧检验D.左单侧检验(2)检验功效定义为( B )。

A.原假设为真时将其接受的概率B.原假设不真时将其舍弃的概率C.原假设为真时将其舍弃的概率D.原假设不真时将其接受的概率(3)符号检验中,(+)号的个数与(-)号的个数相差较远时,意味着( C )。

A.存在试验误差(随机误差)B.存在条件误差C.不存在什么误差D.既有抽样误差,也有条件误差(4)得出两总体的样本数据如下:甲:8,6,10,7,8;⼄:5,11,6,9,7,10秩和检验中,秩和最⼤可能值是( C )。

A.15B.48C.45D.662.多项选择题(1)显著性⽔平与检验拒绝域的关系是( ABD )。

A.显著性⽔平提⾼(α变⼩),意味着拒绝域缩⼩B.显著性⽔平降低,意味着拒绝域扩⼤C.显著性⽔平提⾼,意味着拒绝域扩⼤D.显著性⽔平降低,意味着拒绝域扩⼤化E.显著性⽔平提⾼或降低,不影响拒绝域的变化(2)β错误( ACDE )。

A.是在原假设不真实的条件下发⽣的B.是在原假设真实的条件下发⽣的C.决定于原假设与实际值之间的差距D.原假设与实际值之间的差距越⼤,犯β错误的可能性就越⼩E.原假设与实际值之间的差距越⼩,犯β错误的可能性就越⼤⼆、计算题1.某牌号彩电规定⽆故障时间为10000⼩时,⼚家采取改进措施,现在从新批量彩电中抽取100台,测得平均⽆故障时间为10150⼩时,标准差为500⼩时,能否据此判断该彩电⽆故障时间有显著增加(α=0.01)?解:假设检验为H 0:µ0=10000,H 1:µ0<10000(使⽤寿命应该使⽤单侧检验)。

n =100可近似采⽤正态分布的检验统计量z α=0.01⽔平下的反查正态概率表得到临界值2.34到2.36之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性⽔平应先乘以2,再查到对应的临界值)。

医学统计5第五章 假设检验

医学统计5第五章 假设检验

二、双侧检验和单侧检验
在进行t 检验时,如果其目的在于检验两个总体均数 是否相等,即为双侧检验。例如检验某种新降压药与常 用降压药效力是否相同?就是说,新药效力可能比旧药 好,也可能比旧药差,或者力相同,都有可能。
如果我们已知新药效力不可能低于旧药效力,例如 磺胺药+磺胺增效剂从理论上推知其效果不可能低于单用 磺胺药,这时,无效假设为H0, 备择假设为H1: 1>2 , 统计上称为单侧检验。
第五章 假设检验
一、假设检验的基本思想
例:已知一般中学男生的心率平均数为74次/分钟, 标准差为6次/分钟,为研究经常参加体育锻炼的中学 生心脏功能是否增强,在某地区随机抽取常年参加体 育锻炼的男生100名,求得心率平均数为65次/分钟。
如果一个事件发生的概率很小,那么在只进行一次试 验时这个事件是“不会发生的”,一旦发生了,称其 为小概率事件。统计类错误
设H0:=0,H1:>0, =0.05, 将拒绝了正确的无效假设 H0 称为I 类错误(type I error):也称为假阳性错误,当实际上真的为0,即H0: =0原本是正确的,但由于偶然因素的影响,随机抽样时, 得 到 一个较 大 的检验 统 计量 t 值 ,故 t t, 时 , 则 P0.05 时,按所取检验水准 只能拒绝H0,接受H1,结 论为>0, 由于拒绝了实际上是正确的H0,此推断结论当 然是错误的,即犯了I 型错误。I 型错误的概率是=0.05。
本例是均数的比较,是将常年参加体育锻炼心率平均 数为65次/分钟(它代表的总体有一总体均数)与一般中学 男生的心率平均数为74次/分钟。
研究者可能有两种目的: – ① 推断两个总体均数有无差别。不管是常年参加体育锻
炼心率高于一般,还是常年参加体育锻炼心率低于一般, 两种可能性都存在,研究者同等关心,应当用双侧检验。 – ② 根据专业知识,已知常年参加体育锻炼心率不会低于 一般,或是研究者只关心常年参加体育锻炼心率是否高 于一般,不关心常年参加体育锻炼心率是否低于一般, 应当用单侧检验。

第五章-假设检验

第五章-假设检验
建立的原假设与备择假设应为
H0: 1500 H1: 1500
1-29
第二十九页,编辑于星期五:十八点 三十四分。
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这 一结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
H0: 355 H1: 355
1-28
第二十八页,编辑于星期五:十八点 三十四分。
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长)
假设其中真有99个白球,摸 出红球的概率只有 1/100 ,
这是小概率事件。
➢小概率事件在一次试验中竟然发生了,不能不 使人怀疑所作假设的正确性,因此可以认为这 个盒子应该不是装有99个白球的那个盒子。
这个例子中所使用的推理方法,称为“带概率性
质的反证法”,或“概率反证法”。
2022/8/9
1-11
抽样分布
拒绝域 /2
1 -
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
1-26
第二十六页,编辑于星期五:十八点 三十四分。
双侧检验 (显著性水平与拒绝域)
抽样分布
拒绝域 /2
1 -
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
1-27
第二十七页,编辑于星期五:十八点 三十四分。
单侧检验
第五章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 非参数检验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
被试 a b c d e f g h 前测 26 23 28 26 27 28 27 28 后测 27 25 29 27 29 28 26 29
课堂练习3
从高二年级随机抽取两个小组(人数不等),在化学教学 中,实验组采用启发探究法,而对照组则采用传统讲授法, 后期统一测验结果如下表。
问:启发探究法的效果是否显著优于传统讲授法?

某数学教育家随机抽取49名高一学生进行 ****教学法的教学改革实验研究。已知这些 学生原来所在的总体数学的平均水平为80分, 标准差为10分。经过一学期的教学改革实验 之后,这49名学生在统考中的数学平均成绩 为83分。问:教学改革是否改变了学生的数 学水平。
第五章 假设检验
Exercise
一、假设检验的一般步骤 二、单侧检验与双侧检验 三、两类错误 四、关于样本平均数差异的显著性检验
Xi : 12.3 12.5 12.8 13.0 13.5
fi : 1
2
4
2
1
Yi : 12.2 12.3 13.0
fi : 6
8
2
现已知变量X与Y的总体都呈正态分布。请问:
在0.05的显著性水平下,可否认为这两个样本所来自的两个总体平均数 有显著差异?
课堂练习2
对随机抽取的8名学生代表,在观看体育教学录像片之前后, 两次测试他们掌握有关动作技能的情况,测试结果(得分) 如下表。能否认为该部体育录像片的教学效果(学生前后 两次得分的差异)显著?
Sp2=283;SE=3.16;T=2.22
练习题4
为了比较独生子女与非独生子女在社会性方面 的差异,随机抽取独生子女25人,非独生子女 31人,进行社会认知测验,结果独生子女平均 数为25.3,标准差为6;非独生子女 平均数为 29.9,标准差为10.2。试问独生子女与非独 生子女的社会认知能力是否存在显著差异?
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
假设检验的一般步骤
(1)建立虚无假设和备择假设
双侧检验为:H0:µ=µ0
H1:µ‡µ0
单侧检验为:H0:µ<=µ0 或 H0:µ>=µ0
H1:µ>µ0 或 H1:µ<µ0
(2)寻找合适的统计量及其抽样分布,并计算统计量
Z1.84;SE1.793
两类错误
H0为真
接受H0 拒绝H0
正确 α错误
前提 H0为假 β错误 正确
总体平均数的假设检验例题1
全区统一考试物理平均分μo=50,标准差σo=10.某 校的一个班(n=41)平均成绩 X =52.5.问该班成 绩与全区平均成绩差异是否显著.
(总体正态,总体方差已知)
性统计,并制作统计表或图。特别注意“ t 检验”被
使用的频率。
2、设计一项心理学或教育学研究,要求能够使用“t
检验”分析研究结果。写作提纲包括:一、研究的理 论基础或引起你研究兴趣的原因;二、研究目标;三、 研究方法和步骤;四、数据的整理和分析(计划)。
课堂练习1
1、由容量分别为n1=10 和 n2=16 的独立随机样本得到下述观测结 果(Xi、Yi为观测值,fi为频数):
实验组(X1) 64 58 65 56 58 45 55 63 66 69 对照组(X2) 60 59 57 41 38 52 46 51 49
课堂练习4
医学上测定,正常人的血色素应该是每100毫升13克, 某学校进行抽查,37名学生血色素平均值为12.1克/ 毫升,标准差是1.5克/毫升,试问该校学生的血色素 是否显著低于正常值 ?
练习题1
从某地区的六岁儿童中随机抽取男生30 人,测量身高,平均为114厘米;抽取女生 27人,平均身高为112.5厘米,根据以往积 累资料,该地区六岁男童身高的标准差为 5厘米,女童身高标准差为6.5厘米,能否 根据这一次抽样测量的结果下结论:该地 区六岁男女儿童身高有显著差异?
Z0.96
练习题2
Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
T’=-1.929;SE2=3.468;t’ a/2=2.049
练习题5
对9个被试进行两种夹角(15o,30o)的缪 勒—莱依尔错觉实验结果如下,问两种夹角的 情况下错觉量是否有 显著差异?
被试 1
2
3
4
15o 14.7 18.9
17.2 15.4
30o 10.6 15.1
16.2 11.2
(3)否定域不同。“双”的否定域为| Z |> Z a/2 ,而“单”查 表得Z a 。
单侧检验的例子
有人调查早期教育对儿童智力发展的影响,从 受过良好早期教育的儿童中随机抽取70人进行 韦氏儿童智力测验(µ0=100, Ô 0=15), 结果平均数为103.3,能否认为受过良好早期 教育的儿童智力高于一般水平?
某幼儿园在儿童入园时对49名儿童进行 了比奈智力测验(Ó=16),结果平均智商 为106,一年后再对同组被试施测,结果平 均智商为110,已知两次测验结果的相关 系数为0.74,问能否说随着年龄增长与一 年的教育,儿童的智商有了显著的提高?
SE=1.71;Z=2.34
练习题3
在一项关于反馈对知觉判断的影响的研究中, 将被试随机分成两组,其中一组60人作为实验 组(每一次判断后将结果告诉被试),实验的 平均结果=80,标准差=18;另一组52人做 为控制组(实验过程中每一次判断后不让被试 知道结果),实验的平均结果=73,标准差 =15。试问实验组与控制组的平均结果有否显 著差异?
课堂练习5
12名被试作为实验组,经过训练后测量深度知觉,结 果误差的平均值为4厘米,标准差为2厘米;另外12名 被试作为控制组不加任何训练,测量结果,误差的平 均值为6.5厘米,标准差为2.5厘米,问训练是否明显 减小了深度知觉的误差?
课堂练习6
下表给出了某班12名同学期中和期末两次数学考试的成绩。 请问:期中和期末的成绩有没有显著差异?
被试 1 2 3 4 5 6 7 8 9 1 0 11 12 期中 65 63 67 64 68 62 70 66 68 67 69 71 期末 68 66 68 65 69 66 68 65 71 67 68 70
总体平均数的假设检验例题2
某心理学家认为一般司机的视反应时平均175毫 秒,有人随机抽取36名汽车司机作为研究样本进 行了测定,结果平均值为180毫秒,标准差25毫秒. 能否根据测试结果否定该心理学家的结论.(假定 人的视反应时符合正态分布)
X
总体平均数的假设检验例题3
某省进行数学竞赛,结果分数的分布不是正态, 总平均分43.5.其中某县参加竞赛的学生 168人,平均分45.1,标准差18.7,该县平均分 与全省平均分有否显著差异?
关于平均数差异的显著性检验
一、两个总体都是正态分布,两个总体方差都已知。 (一)两个样本相互独立:(独立样本的Z检验) (二)两个相关样本:(相关样本的Z检验)
二、两个总体都是正态分布,两总体方差都未知。 (一)两个样本相互独立: 1.两个总体方差一致(独立样本的t检验) 2.两个总体方差不等,(柯克兰--柯克斯检验) (二)两个相关样本: 1.相关系数未知(相关样本的t检验) 2.相关系数已知(相关样本的t检验)
单、双侧检验的区别:
(1)问题的提法不同。“双”的提法是:µ和已知常数µ0是否有 显著性差异?“单”的提法是:µ是否显著地高于已知常数µ0
或µ是否显著地低于已知常数µ0?
(2)建立假设的形式不同。双侧检验为:H0:µ=µ0
单侧检验为:H0:µ<=µ0 或 H0:µ&g1:µ<µ0
的值。
(3)选定显著性水平 ,查相应的分布表来确定临界 值,从而确定H0的拒绝区域或接受区域。
(4)对H0作出判断和解释。即把临界值与统计量相 比较,若统计量落在H0拒绝区间中,则拒绝H0 ;反 之,则接受H0 。
单侧检验与双侧检验
只强调差异而不强调方向性的检验称为双侧检验。强调差异的方 向性的检验称为单侧检验。
相关文档
最新文档