中考数学知识点复习归纳:整式
中考数学知识点总结:整式与分式
中考数学知识点总结:整式与分式?整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做那个单项式的次数。
③一个多项式中,次数最高的项的次数叫做那个多项式的次数。
整式运算:加减运算时,假如遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,确实是依照分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;关于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把那个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把那个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,假如除式B中含有分母,那么那个确实是分式,关于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
整式的加减乘除及因式分解中考总复习(知识点复习 中考真题题型分类练习)
整式的加减、乘除及因式分解整式加减一、知识点回顾1、单项式:由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a ,5……单项式系数和次数:系数:次数:2、多项式:几个单项式的和叫做多项式。
在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。
多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式3x-2最高的项就是一次项3x ,这个多项式的次数是1,它是一次二项式4、整式的概念:单项式与多项式统称整式二、整式的加减1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
合并同类项:把多项式中同类项合并在一起,叫做合并同类项。
合并同类项时,把同类 项的系数相加,字母和字母的指数保持不变。
2、去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 .3、整式加减的运算法则(1)如果有括号,那么先去括号。
(2)如果有同类项,再合并同类项。
整式乘除及因式分解一、幂的运算:1、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。
注n m n m a a a +=∙n m ,意底数可以是多项式或单项式。
2、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。
如: mn n m a a =)(n m ,10253)3(=-幂的乘方法则可以逆用:即 如:m n n m mn a a a )()(==23326)4()4(4==3、积的乘方法则:(是正整数)。
积的乘方,等于各因数乘方的积。
n n n b a ab =)(n 4、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不n m n m a a a -=÷n m a ,,0≠)n m 变,指数相减。
5、零指数; ,即任何不等于零的数的零次方等于1。
10=a 二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
中考数学专题训练第2讲整式(知识点梳理)
整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-整式的加减(原卷版)
专题03整式的加减【专题目录】技巧1:求代数式值的技巧技巧2:整式加减在几何中的应用技巧3:整体思想在整式加减中的应用【题型】一、代数式求值【题型】二、同类项【题型】三、整式的加减【题型】四、化简求值【题型】五、图形类规律探索【考纲要求】1、能并用代数式表示,会求代数式的值;能根据特定问题找到所需要的公式,并会代入具体的值进行计算.2、掌握同类项及合并同类项的概念,并能熟练进行合并;掌握同类项的有关应用.3、掌握去括号与添括号法则,充分注意变号法则的应用;会用整式的加减运算法则,熟练进行整式的化简及求值.【考点总结】一、整式整式的相关概念单项式由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数。
如:单项式321abπ-系数是π21-,次数是4。
多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数。
如:多项式2+4x2y﹣3231yx是五次三项式整式整式是单项式与多项式的统称。
同类项所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项。
【考点总结】二、整式的加减运算【注意】1、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(1)、去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)、去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)、对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)、去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号合并同类项把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变。
中考数学 考点系统复习 第一章 数与式 第三节 整式与因式分解
9.已知(2x-11)(3x-7)-(3x-7)(x-3)可分解因式为(3x+a)(x+b), 其中 a,b 均为整数,则 a+3b=--3311,ab=5656 .
10.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化
(5)若 x2-x-1=0,则 x3-x2-x+2 021=2 2 020211.
3.计算:
(1)m2·m3=m m55;
(2)(m2)3=m m66;
(3)a7÷a4=a a3 3;
(4)(x2y)3=x x6y63y3;
(5)-4mn+3mn=--mmnn; (6)(mn-3n)-3(m2-n)=mnmn--33mm22;
B.12-1=-2 D.a6÷a3=a3(a≠0)
( D)
5.(2017·省卷第 9 题 4 分)下列计算中正确的是
A.2a·3a=6a
B.(-2a)3=-6a3
C.6a÷2a=3a
D.(-a3)2=a6
( D)
6.(2018·曲靖第 32·a=a2
B.a6÷a2=a3
第三节 整式与因式分解
1.(1)“m 的 8 倍与 n 的差”用代数式表示为 8m8m--nn; (2)“b 比 a 的 4 倍多 7”,用含 a 的代数式表示 b 为 4a4a++77,用含 b
b-7 的代数式表示 a 为 4 ; (3)已知原量为 a,增加 20%,总量为 a(1a+(1+ 20%);
20%)
(4)已知原价为 a 元,打八折为 8080%%aa 元;在原价基础上提高 m%后再 打七五折为 75%7a5(%a(1++mm%)%元); (5)购买 x 个单价为 a 元的商品和 y 个单价为 b 元的商品的总价是 (ax(+ax+bbyy))元.
中考数学专题复习2整式的运算(解析版)
整式的运算复习考点攻略考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【答案】5 【解析】单项式3212a b 的次数是325+=.故答案为5. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15.则A 错误;B.单项式x 的系数为1.次数为1.则B 错误;C.222xyz -的次数是1+1+2=4.则C 错误;D.xy +x –1是二次三项式.正确.故选D.【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【答案】2【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩221242m n +=⨯+==故答案为:2.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( )A .()12n a --B .()2na -C .12n a -D .2n a【答案】A 【解析】解:a .2a -.4a .8a -.16a .32a -.….可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a -- 故选A .【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒. 拼搭第2个图案需10=2×(2+3)根小木棒. 拼搭第3个图案需18=3×(3+3)根小木棒. 拼搭第4个图案需28=4×(4+3)根小木棒. …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时.n 2+3n =62+3×6=54. 故选A.考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。
中考数学总复习整式及因式分解
向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个
第二,确定字母或因式(取各项的相同字母);第三,确定字母或因式
的指数(取各相同字母的最低次幂).
(2)运用公式法.
①运用平方差公式:a2-b2=(a+b)(a-b).
②运用完全平方公式:a2±2ab+b2=(a±b)2.
基础自主导学
考点梳理
自主测试
1.单项式-3πxy2z3的系数和次数分别是(
)
A.-π,5 B.-1,6
第2课时 整式及因式分解
基础自主导学
考点梳理
自主测试
考点一 整式的有关概念
1.整式
单项式与多项式统称为整式.
2.单项式
单项式是指由数字或字母的积组成的式子,单独一个数或一个字
母也是单项式;单项式中的数字因数叫做单项式的系数;单项式中
所有字母指数的和叫做单项式的次数.
3.多项式
几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项
人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐,
可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一
好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防,
中考知识点整式
中考知识点整式整式是中考数学中的一个重要知识点,理解和掌握整式的相关概念、运算和应用对于中考取得好成绩至关重要。
首先,我们来了解一下整式的定义。
整式是单项式和多项式的统称。
单项式是指由数字和字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。
比如,5、x、3xy 等都是单项式。
多项式则是几个单项式的和或差,比如 2x + 3y、x² 2x + 1 等。
在整式中,单项式的系数是指单项式中的数字因数,比如 5x 中的系数是 5。
单项式的次数是指单项式中所有字母的指数和,比如 3x²y中 x 的指数是 2,y 的指数是 1,所以次数是 3。
对于多项式,每一个单项式叫做多项式的项,不含字母的项叫做常数项。
比如在多项式 2x²+ 3x 1 中,2x²、3x、-1 分别是它的项,-1 是常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
整式的加减运算,其实就是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
比如 2x 和 5x 是同类项,3xy²和-7xy²是同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
整式的乘法运算包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。
单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如,3x²y × 2xy³= 6x³y⁴。
单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。
比如,2x(3x + 4) = 6x²+ 8x。
多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
比如,(x + 2)(x 3) = x² 3x + 2x 6 =x² x 6 。
整式的除法运算主要是单项式除以单项式。
初三中考数学复习-整式及因式分解
A.2
B.3
C.4
D.6
9.把多项式 ax3-2ax2+ax 分解因式,结果正确的是
A.ax(x2-2x)
B.ax2(x-2)
C.ax(x+1)(x-1)
D.ax(x-1)2
10.若 a2 kab 9b2 是完全平方式,则常数 k 的值为
A.±6 C.±2
B.12 D.6
11.若有理数 a,b 满足 a2 b2 5 , (a b)2 9 ,则 4ab 的值为
多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变
化,最后把所得式子化简,即合并同类项.
典例 6 已知 a﹣b=5,c+d=﹣3,则(b+c)﹣(a﹣d)的值为
A.2
B.﹣2
C.8
D.﹣8
11.一个长方形的周长为 6a 8b ,相邻的两边中一边长为 2a 3b ,则另一边长为
的指数是否相同.
多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数
是否相同.
单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是 0.
典例 2 下列说法中正确的是
A. xy2 的系数是-5 5
B.单项式 x 的系数为 1,次数为 0
D. 35x3 y2 5x2 y 7xy
12.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中 a=2.
考向六 因式分解
因式分解的概念与方法步骤 ①看清形式:因式分解与整式乘法是互逆运算.符合因式分解的等式左边是多项式,右边是整式乘积的形 式. ②方法:(1)提取公因式法;(2)运用公式法. ③因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解 必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的 2 倍,如 果没有两数乘积的 2 倍还不能分解. 一“提”(取公因式),二“用”(公式).要熟记公式的特点,两项式时考虑平方差公式,三项式时考虑完全平 方公式.
中考数学专题复习三——整式方程
中考数学专题复习(三) 整式方程【知识梳理】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=c a . 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.5.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.6. 二元一次方程组:含有 的两个一次方程所组成的方程组叫方程组.7.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.8.二元一次方程组的解:二元一次方程组中两个方程的 ,叫做二元一次方程组的解.9. 解二元一次方程的方法步骤:二元一次方程组 方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.10.易错知识辨析:消元 转化(1)二元一次方程有无数个解,它的解是一组未知数的值;(2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;(3)利用加减法消元时,一定注意要各项系数的符号.11.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.12. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)2b x b ac a-±=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.13.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.14. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根. 15. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .16.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式042≥-ac b ;② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.【中考真题解析】一、选择题1.下列方程中,是一元一次方程的是( )A 、()232x x x x +-=+B 、()40x x +-=C 、1x y +=D 、10x y+= 2.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=,怎么呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是( )A 、1B 、2C 、3D 、43.已知:()2135m --有最大值,则方程5432m x -=+的解是( ) 7979 B C D 9797A --、、、、 4.某商品连续两次9折降价销售,降价后每件商品的售价为a 元,该产品原价为( )。
中考数学总复习——2.代数式和整式
7.【2019·厦门集美区二模·4 分】下列计算正确的是( C )
A.a8+a2=a10
B.a8·a2=a16
C.(a8)2=a16
D.a8÷a2=a4
8.【2019·福建·4 分】分解因式:x2-9=_(_x_-__3_)(_x_+__3_)__.
9.【2020·福州质检·4 分】若 m(m-2)=3,则(m-1)2 的值是 ____4______.
考点1 求代数式的值
例1【2020·漳州质检·4分】若a是方程x2+x-1=0的根, 则代数式2 020-a2-a的值是__2__0_1_9____.
考点2 整式的化简求值
例 2【2019·宁德质检·8 分】先化简,再求值:(x-3)2+x(2-x) -9,其中 x=- 3. 解:原式=x2-6x+9+2x-x2-9=-4x. ∵x=- 3, ∴原式=-4×(- 3)=4 3.
考点3整式的概念
例3【2020·厦门质检·4分】将单项式3m与m合并同类项, 结果是( B ) A.4 B.4m C.3m2 D.4m2
例 4【2020·厦门质检·4 分】若多项式 x2+2x+n 是完全平方式,
则常数 n 是( D )
A.-1
B.14
1 C.2
D.1
【点拨】本题考查完全平方式的概念,完全平方式必须满 足“a2+2ab+b2”或“a2-2ab+b2”的结构特征,解答 时容易出错.
考点4 整式的运算
例5【2020·三明质检·4分】下列运算正确的是( C )
A.(a2)3=a5
B.3a2+a=3a3
C.a5÷ a2=a3(a≠0) D.a(a+1)=a2+1
考点5 因式分解
例6【2020·宁德质检·4分】下列多项式能用完全平方公式
备战2024年中考数学复习考点帮(全国通用):考点02 整式与因式分解(解析版)
故选:C.
4.(2022 秋•高邮市期中)已知代数式 3a﹣b2 的值为 3,则 8﹣6a+2b2 的值为
.
【分析】将代数式适当变形后,利用整体代入的方法解答即可.
【解答】解:∵代数式 3a﹣b2 的值为 3,
∴3a﹣b2=3,
∴原式=8﹣2(3a﹣b2)
=8﹣2×3
=8﹣6
=2.
故答案为:2.
5.(2022 秋•鄂州期中)若多项式 a(a﹣1)x2+(a﹣1)x+2 是关于 x 的一次多项式,则 a 的值为( )
考向一、整式的加减; 考向二、幂的运算 考向三、整式的乘除 考向四、因式分解
考向一:整式的加减
1.整式的概念及注意事项:
名称
识别
次数
单项式 ①数与字母或字母与字母相乘组成的 所有字母的
整
代数式;②单独的一个数或一个字母 指数的和
系数与项 系数:单项式中的数字因数
式
多项式
几个单项式的和
次数最高项 项:多项式中的每个单项式
考点 02 整式与因式分解
中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的 复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。因式分解作为整式乘 法的逆运算,在数学中考中占比不大,但是依然属于必考题,常以简单选择、填空题的形式出现,而且一 般只考察因式分解的前两步, 拓展延伸部分基本不考,所以学生在复习这部分内容时,除了要扎实掌握好 基础,更需要甄别好主次,合理安排复习方向。
把同类项的系数相加,所得的结果作为结果的系数,
的加减
字母及字母的指数不变
添(去)括号法则 括号外是“+”,添(去)括号不变号;括号外是“-”,
2024河南中考数学一轮知识点复习专题 代数式与整式 课件
考点1 代数式及其求值
用运算符号连接数和字母组成的式子叫做代数式,单独一个数或
代数式
一个字母也是代数式.
列代数 把问题中的数量关系用代数式表示出来,就是列代数式.如:某件
式
.
上衣的原价是 元,降价 20% 后的售价为①______元.
只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.如 2 ⋅
32 = 2 × 3 ⋅ 2 ⋅ = 63 .
(2)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加,
+ +
即 + + = ⑮_______________.
(3)多项式乘多项式:用一个多项式的每一项乘另一个多项式的每一项,
考点6 因式分解
积
1.定义:把一个多项式化为几个整式的⑲____的形式,这种变形叫做把这个
多项式因式分解.
2.因式分解的基本方法
++
(1)提公因式法: + + = ⑳_____________.
最大公约数
系数:取各项整数系数的㉑____________
公因式的确定 字母:取各项相同的字母
5 ÷ 2 =
3
= ⑫_____(
, 为正整数)
2
3
= 6
= ⑬_______(
为正整数)
23 2 =
46
考点5 整式的运算
合并同类项
1.整式的加减运算:先去括号,再 ⑭____________.
2.整式的乘法运算
(1)单项式乘单项式:把系数、同底数幂分别相乘,作为积的因式,对于
中考数学复习专项知识总结—整式(中考必备)
中考数学复习专项知识总结—整式(中考必备)1、定义(1)单项式:用数或字母的乘积表示的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、整式的运算(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
去括号法则:同号得正,异号得负。
即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)整式的乘除运算①同底数幂的乘法:a m·a n=a m+n。
同底数幂相乘,底数不变,指数相加。
①幂的乘方:(a m)n=a mn。
幂的乘方,底数不变,指数相乘。
①积的乘方:(ab)n=a n b n。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
①单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
①单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
①多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。
中考数学专题复习之整式加减法
中考数学专题复习之整式加减法1. 单项式⑴ 由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
如:等都是单项式.⑵ 单项式的系数、次数,单项式中的数字因数叫做单项式的系数。
如5a 、s3的系数分别是5,13,单项式ab 的系数是“1”,单项式的系数是.单项式中,所有字母的指数的和叫做单项式的次数,如单项式叫5次单项式,-12xyz 叫做三次单项式. 温馨提示:单项式意义的理解:(1)判断一个代数式是不是单项式,主要是根据代数式中数字和字母间是否都是乘法运算关系.例如,x y 2就不是一个单项式,因为2y 与x 之间是除法运算.但是,21ab 2是单项式,因为21是一个数.a 2是一个单项式,因为a 2可以看作是a ·a .特别地,单独的一个数或单独的一个字母也都是单项式,例如,-3,0,35,x ,2x等都是单项式. (2) 在本章里,单项式的系数,是在有理数范围内的数.要注意负数作系数时,系数包括前边的符号.例如,单项式-31x 2y 的系数是-31,而不是31.特别地,当单项式是单独一个字母时,其系数是1,如单项式a 的系数是1,-a 的系数是-1.(3) 单项式的次数,是指这个单项式中将所有字母指数相加得到的和.例如,单项式3x 2、2xy 、31x 2y 、21x 的次数分别是2、2、3、1.特别地,单独的一个数字,如3,-9等,可以当做0次单项式来看待.总之,在单项式中,系数只与数字因数有关;次数只与字母有关.如x 3yz 4的系数是1,次数为3+1+4=8. 2. 多项式及多项式的次数。
几个单项式的和叫做多项式,在多项式中,每个单项式叫多项式的项,不含字母的项叫常数项。
多项式里,次数最高项的次数,就是这个多项式的次数. 如多项式是一个四次三项式。
多项式是一个七次二项式.温馨提示:多项式意义的理解:(1)多项式是由几个单项式相加得到的,如多项式x 2+2x -1是由单项式x 2,2x 和-1相加而得到的.(2)多项式的项,包括符号.例如,多项式5-3x 2中,二次项是-3x 2.(3)在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.例如,多项式x 3-x 2y 2+x 中,单项式x 3的次数是3,单项式-x 2y 2的次数是4,单项式x 的次数是1,所以多项式x 3-x 2y 2+x 的次数是4.562x ab m b 、、、、--a 2-1623x y a a b 32231--57a ab -3. 多项式的升幂排列和降幂排列:把一个多项式按某一字母的指数从大到小的顺序排列起来,叫做这个多项式按这个字母降幂排列.把一个多项式按某一字母的指数从小到大的顺序排列起来,叫做这个多项式按这个字母升幂排列.由于多项式的项包括它前面的性质符号,因此在排列时,需带符号一起移动,在含有两个或两个以上字母的多项式,按某一字母排列时,要特别注意按哪一个字母排列。
中考数学备考知识点:整式
中考数学备考知识点:整式初三学习的知识是初中三年学习的汇总,为了方便大伙儿更好地复习,考试吧中考网小编整理了初三数学关于整式的知识点,期望对大伙儿的学习有所关心。
一、代数式1. 概念:用差不多的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。
单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,运算得出的结果。
二、整式单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积如此的代数式叫做单项式。
单独的一个数或字母(能够是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做那个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,确实是那个多项式的次数。
3. 多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按那个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按那个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算1. 同类项——所含字母相同,同时相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。
同类项与系数无关,与字母排列的顺序也无关。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。
”因此看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019中考数学知识点复习归纳:整式
在初中这个过渡的时期,总是有同学面对新问题准备的不好,掉下队来,同时,也有些同学方法得当,后来居上。
为什么会这样呢?在这里,查字典数学网编辑了2019中考数学知识点复习,以备借鉴。
一、代数式
1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。
单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式
单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数
项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算
1. 同类项所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。
同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
这篇2019中考数学知识点复习的内容,希望会对各位同学带来很大的帮助。