行测解题如何运用十字交叉法
十字交叉在行测资料分析解题中的妙用

在近几年的行测资料分析部分,往往会涉及到部分和整体的增长率,此时,十字交叉就能成功的解答此类问题。
十字交叉的原理我们在这就不详细的讲解了,红麒麟公考专家提醒你,在行测资料分析使用十字交叉,一般应用于求整体(部分)的增长率或者是求比重的试题中,且要活学活用。
一、十字交叉最浅显应用资料分析的试题往往会涉及到三个指标,两个部分、一个整体,我们依据十字交叉可以得到,整体的增长率必然处于部分增长率之间,此时,比较仁慈的考官,就会在设置选项的时候,让我们能够很容易的排除三个选项,直接得到答案,来看个试题。
******************************************************************************* ******【例1】2008年1~8月,公路客运量比上年同期增长()。
A.6.9% B.7.4% C.7.9% D.11.7% 整体:1~9月公路客运量;部分:1~8月公路客运量增长11.4%;9月公路客运量增长7.4%;整体的在7.4%~11.4%之间,选C。
******************************************************************************* ******二、十字交叉稍变态应用虽说,整体的增长率处于部分的增长率之间,但是有的时候,试题往往给出的选项,只允许我们排除其中的两个,剩下的也无法排除,此时就要稍稍分析一下基期各部分占整体的比重的大小,来分析整体的增长率到底是偏向哪个部分,即可以将剩余的两个选项,排除掉一个,剩下的一个就是正确答案。
在这肯定注意到,为什么要分析基期的比重,而不是末期的比重呢?因为在这里面涉及了增长率,这就暗含着增长量这个等式,我们具体来看一下。
******************************************************************************* ******整体:末期增长率:r,基期值:R;部分:末期增长率a、b,基期值:A、B;等量关系:A×a+B×b=R×r,A×a+B×b=(A+B)×r;变形:A:B=(r-b):(a-r)。
行测:十字交叉法的应用

行测备考:十字交叉法的应用在加权平均数的相关题型中,由于数量关系复杂,列方程做比较困难,十字交叉法能轻松解决这一问题。
十字交叉法经常运用于浓度、比重、人口、平均分等问题的求解,同时也可以运用于某些较为复杂的问题中。
在数学运算及资料分析中经常用到,达到行测考场上的“秒杀”。
下面我们首先学习下十字交叉法的原理。
十字交叉法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出比例关系是基数的比例关系。
第三点:总均值放中央,右侧对角线上,大数减小数。
下面我们通过例题来看一下十字交叉法在浓度问题中的应用。
【例1】有100克溶液,第一次加入20克水,溶液的浓度变成50%;第二次再加入80克浓度为40%的同种溶液,则溶液的浓度变为( )A. 45%B. 47%C. 48%D. 46%【解析】本题相当于是120克50%的溶液与80克40%的溶液混合,我们利用“十字交叉法”,把选项代入到其中,很明显只有D选项46%得出的比例等于120:80=3:2.【例2】红酒桶中有浓度为68%的酒,绿酒桶中有浓度为48%的酒,若每个酒桶中取若干混合后,酒浓度为52%;若每个酒桶中取酒的数量比原来都多12 升,混合后的酒浓度为53.2%。
第一次混合时,红酒桶中取的酒是( )。
A.17.8 升B.19.2 升C.22.4 升D.36.3 升【解析】运用“十字交叉法”,易知第一次混合前的质量比为1:4,所以假设第一次分别取x,4x升,再用十字交叉得到第二次混合前的质量比为13:37,所以(x+12):(4x+12)=13:37,得到x=19.2,选择B。
【例3】烧杯中装了100克浓度为10%的盐水,每次向该烧杯中加入不超过14克浓度为50%的盐水,问最少加多少次之后,烧杯中的盐水浓度能达到25%?(假设烧杯中盐水不会溢出)( )A.6B. 5C. 4D. 3解析:运用“十字交叉法”,易知所以至少要加60克,每次最多14克,至少5次。
行测资料分析技巧:十字交叉法

⾏测资料分析技巧:⼗字交叉法 任何⼀场考试取得成功都离不开每⽇点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测资料分析技巧:⼗字交叉法”,持续关注本站将可以持续获取更多的考试资讯!⾏测资料分析技巧:⼗字交叉法 ⼗字交叉法主要解决的就是⽐值的混合问题,在公务员考试的过程中,资料分析部分解题经常⽤的⼀种解题⽅法。
它应⽤起来快速、准确、⽅便,为我们考试中秒杀题⺫提供了很⼤的助⼒。
那么接下来跟⼤家⼀起来学习⼗字交叉法。
⼀、⼗字交叉法概述 ⼗字交叉法是解决⽐值混合问题的⼀种⾮常简便的⽅法。
这⾥需要⼤家理解“⽐值”“混合”这两个概念。
⽐值:满⾜C/D的形式都可以看成是⽐值;混合:分⼦分⺟具有可加和性。
平均数问题、浓度问题、利润问题、增⻓率问题、⽐重等混合问题,都可以⽤⼗字交叉法来解决。
⼆、⼗字交叉法的模型 在该模型中,需要⼤家掌握以下⼏个知识点: 1、a和b为部分⽐值、r为整体⽐值、A和B为实际量 2、交叉作差时⼀定要⽤⼤数减去⼩数,保证差值是⼀个正数,避免出现错误。
这⾥假定a>b 3、实际量与部分⽐值的关系 实际量对应的是部分⽐值实际意义的分⺟。
如:平均分=总分/⼈数,实际量对应的就是相应的⼈数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增⻓率=增⻓量/基期值,实际量对应的就是相应的基期值。
4、在这⾥边有三组计算关系 (1)第⼀列和第⼆列交叉作差等于第三列 (2)第三列、第四列、第五列的⽐值相等 (3)第1列的差等于第三列的和 三组计算关系是我们应⽤⼗字交叉法解题的关键,⼀定要记住并且灵活应⽤。
三、四种考查题型 1、求a,即已知总体⽐值、第⼆部分⽐值、实际量之⽐,求第⼀部分⽐值。
例某班有⼥⽣30⼈,男⽣20⼈。
期中的数学考试成绩如下,全班总的平均分为76,其中男⽣的平均分为70。
求全班⼥⽣的平均分为多少? 解析:平均分=总分/⼈数,是⽐值的形式。
此题中,男⽣的平均分和⼥⽣的平均分混合成了全班的平均分,是⽐值的混合问题,可以⽤⼗字交叉法来解题。
十字交叉在行测数学运算中的应用

行测数学运算部分是行测最重要的部分,也是各位考生必争的制胜高地。
行测数学运算的基础知识点比较多,技巧性也很多,但是如果我们不全面掌握的话,那么失分肯定会很严重的,所以红麒麟专家提醒你,一定要牢牢的掌握数学运算的基础知识。
今天,我们就重点讲解一下十字交叉在数学运算中的应用。
一、十字交叉法的原理首先通过例题来说明原理。
例题:某班学生的平均成绩是80分,其中男生的平均成绩75分,女生的平均成绩85分,求该班男生和女生的比例。
方法一:特殊值法男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。
方法二:列方程法假设男生有X,女生有Y,有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。
方法三:十字交叉法假设男生有X,女生有Y,男生:X 75 85-80=580 男生:女生=X:Y=1:1。
女生:Y 85 80-75=5十字交叉法用溶液问题来讲解更加浅显易懂,有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的质量为Y,则有:Xx+Yy=(X+Y)r,整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)。
上面的计算过程就抽象为:X: x r-yrY :y x-r十字交叉使用时要注意几点:第一、用来解决两者之间的比例关系问题。
第二、得出的比例关系是基数的比例关系。
第三、总均值放中央,对角线上,大数减小数,结果放对角线上。
二、十字交叉法在数学运算中的应用十字交叉在数学运算中相对比较简单,主要是直接根据材料中的数量关系来计算,下面的这些试题,具有一定的代表性,速速呈现给大家。
******************************************************************************* ******【例1】要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?A.250 B.285 C.300 D.325 【分析】这个很简单吧,就是咱们上面讲解到的内容,直接将试题中的数量嵌套在十字交叉表中。
公务员考试行测技巧:十字交叉法

公务员行政职业能力测验考试每道题目平均做题时间约为50秒,时间紧,出题范围广,是考生公认的难度较大的考试。
而行测考试中的数量关系模块由于计算较多,难度较大成为众多考生的梦魇,因此必须转化思维,利用一些解题技巧来简化计算,提高解题速度。
十字交叉法在处理数学运算中的“加权平均问题”时可以明显简化运算,提高运算速度,本文就详细介绍一下十字交叉法的应用。
一、十字交叉法简介当数学运算题最终可以通过下式解出解出,我们就称这类问题为“加权平均问题”。
Aa+Bb=(A+B)r 此式可变化为A/B=(r-b)/(a-r)对于上式这种式子我们可以采用十字交叉的方法来计算,如下所示:A:a r-b\ /r =>A/B=(r-b)/(a-r)/ \B:b a-r二、适用题型十字交叉法最初在浓度问题上应用广泛,但在实际计算过程中,十字交叉法并没有将浓度问题有所简化,而是在以下几种题型中有更广泛的应用,解题速度也有明显提高。
1、数量分别为A与B的人口,分别增长a与b,总体增长率为r。
2、A个男生平均分为a,B个女生平均分为b,总体平均分为r。
3、农作物种植问题,A亩新品种的产量为a,B亩原来品种的产量为b,平均产量为r。
当然还有其他类似的问题,这类问题本质上都是两个不同浓度的东西混合后形成了一个平均浓度,这类问题都可以运用十字交叉法快速解题。
三、真题解析例1、某市现有70万人,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()A、30万B、31.2万C、40万D、41.6万解析:城镇人口:4% 0.6% x\ /4.8%/ \农村人口:5.4% 0.8% 70-x所以0.6%/0.8%= x/(70-x),解得x=30,所以答案为A。
例2、某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()。
A.84分B.85分C.86分D.87分解析:男生:x 1.2x-75 1.8\ /75/ \女生:1.2 x 75-x 1所以有(1.2x-75) /(75-x)=1.8,解得x=70,所以女生平均分为70×1.2=84,答案为A。
十字交叉在公考行测数量关系中应用探讨分析

十字交叉在公考行测数量关系中应用探讨分析在公务员考试试题里面,尤其是行测数量关系试题里面,涉及到的考点比较多,加上这些考点的变形,又将这些知识点的难度提升,但是我们知道在公务员考试中,试题万变不离其宗,这就要求我们能够深入、熟练的掌握这些知识点,这样才能从容的面对这些知识点以及知识点的变形。
在行测数量关系试题里面,有这样一种解题方法,被称为是十字交叉,主要用来解答混合问题,可以是浓度的混合、利润的混合,有可以是平均值的混合,只要能够写成Aa+Bb=(A+B)r,这样的形式,我们都可以采用十字交叉来分析。
我们在应用十字交叉的时候,需要注意以下几点:1、我们可以不用写出十字交叉的模型,但是一定要将模型牢记在脑海中;2、混合之后的浓度或者说平均数,在计算的时候,会做一次减数,一次被减数;3、整体的浓度或者平均数会偏向于比重比较大的那部分的浓度或者平均数;4、两部分比值的数值之和必然能被两部分浓度差或者平均数差所整除。
【真题示例】某单位《普法知识问答》的总平均分为87分,男同志的平均分为85分,女同志的平均分为90分,问此单位的男、女比例是多少?A.2/3B. 3/4C. 3/2D.4/3【答案】C【解析】本题考查的是平均值问题。
根据题意,假设男同志人数为x,女同志为y,依据十字交叉原理,将各个数据代入到十字交叉模型中,则有男同志: x 85 387女同志: y 90 2解得x/y=3/2,所以男女比例为3:2。
故本题的正确答案为C选项。
【解析二】由于总平均分要靠近男同志的平均分,那么男同志的人数要大于女同志,排除A、B选项;由于男女平均分差值是5,那么人数比值的和值必然能被5整除,排除D选项。
从上面的分析来看,第一种解题方法就是利用了十字交叉模型来分析的,我们将各个数据代入到模型中来计算,当我们熟练之后就可以不用画出模型,而是直接采用x/y=(90-87)/(87-85)这样的计算式来计算。
【注意】我们在采用这样计算式计算的时候,等式两侧的分子表示的部分不同,左侧分子表示的是男同志的人数,右侧分子表示的是女同志的平均分和混合之后平均分的差值,这点一定要注意。
快速解题妙招——十字交叉法

r快速解题妙招——十字交叉法中公教育研究与辅导专家 郭巧梅大家好,给大家介绍一下,这是我的十字交叉法。
在所有类型的行测考试中,计算问题一直是困扰考生的一大瓶颈。
如果对于各种类型的题目不加以区分一味的用方程法来求解,必然会付出计算时间的代价。
为了帮助大家更好的分析题型,有针对性的进行求解,提高做题的效率和正确率,下面就题型特征的判断和解题过程以及需要注意的问题为大家一一介绍。
众里寻他千百度,如何在众多题目中快速判断哪些题目能用十字交叉法呢?那么大家就需要对题型特征有所了解了,十字交叉法解决的是混合比值问题,在这里大家需要注意三个问题。
1、“混合”指整体是由一个部分和另一个部分混合后得到的;2、“比值”指讨论的是平均分、浓度、比重等比值问题,可记为B A 的形式;3、“比值混合”指比值必须具有可加性,如平均分=人数总分,而对于混合的两个部分而言,男生总分+女生总分=全班总分,男生人数+女生人数=总人数,分子和分母都是具有可加性的。
掌握了如何分辨题目能否使用十字交叉法来求解,那么下面就来具体看看求解的方法吧。
十字交叉法的解题模型共分两行五列,设a>b ,则有部分比值 混合比值 交叉作差 最简比 实际量部分1 a r-b m A部分2 b a-r n B其中,存在如下的关系:①第一列和第2 列交叉作差等于第3 列②第3、4、5列的比值相等③第1列的差等于第3列的和不论已知左侧、中间和右侧中任意两个位置的量,都可以求出另一位置的对应数值,而且计算的速度要远快于方程法,不可不谓之高效。
大家可以通过一道例题来感受一下。
例1.有若干克4%的盐水,蒸发了一些水分后变成了10%的盐水,再加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少克?A.200B.300C.400D.500【答案】D 。
解析:利用十字交叉法进行求解,可得6.4%1-31%部分比值 混合比值 交叉作差 最简比 实际量10%盐水 10% 2.4% 2 2004%盐水4% 3.6% 3 300则最初的盐水质量为200×10%÷4%=500克【考点点拨】利用十字交叉法可以很大程度的减少计算量,快速得到正确答案。
国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法
国家公务员考试行测备考:十字交叉法
十字交叉法主要解决公务员考试行测数量关系中的混合平均量问题,运用过程中往往涉及到五列数字:第一列:部分的平均量;第二列:总体的平均量;第三列:部分平均量与总体平均量交叉做差的差值;第四列:差值的最简比;第五列:求得部分平均量的分母所对应的实际量。
若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量,是解决数量关系问题中非常实用的一种方法,下面中公教育专家为大家进行详细讲解。
一、两者十字交叉
常见题型一:平均分问题
[模板] 已知一个班级,男生人数为x 人,平均分为A,女生人数为 y 人,平均分为 B,求这个班级的总体平均分。
(A>B)
[例题] 某学校对其120 名学生进行随机抽查体能测验,平均分是73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?
A.70
B.80
C.60
D.85
常见题型二:溶液问题
【模板】已知A瓶溶液的浓度为 A%,B瓶的溶液浓度为 B%,分别取 x 和 y 份进行混合,求得到的溶液浓度为多少。
(A>B) 【例题】已知在浓度为90%的甲瓶中取40g 溶液,在浓度为60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少?
A.75%
B.80%
C.85%
D.90%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。
行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。
了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
在行测数量关系的解题方法中,十字交叉法是非常重要的方法,主要解决平均数、浓度、利润率、增长率等比值的混合问题,一般采用十字交叉法来实现保持多的量和少的量之间的平衡。
在求解的过程中,大部分同学会去设x来列方程进行求解,但计算过程较为繁琐,中公教育专家本文主要讲解如何不设x来进行巧解。
二、三组计算关系
1、第一列和第二列交叉作差等于第三列;
2、第三列、第四列、第五列比值相等;
3、第一列的差等于第三列的和。
三、题型
1、已知第一列部分比值,实际量,求整体比值。
解题方法:利用三组计算关系,以及比例法。
例1:高三一班有男生10名,平均分为85分;女生有20人,平均分为94分。
问该班总的平均分为多少?
A.91
B.92
C.93
D.94
【答案】A。