行测:十字交叉法的应用

合集下载

十字交叉在行测资料分析解题中的妙用

十字交叉在行测资料分析解题中的妙用

在近几年的行测资料分析部分,往往会涉及到部分和整体的增长率,此时,十字交叉就能成功的解答此类问题。

十字交叉的原理我们在这就不详细的讲解了,红麒麟公考专家提醒你,在行测资料分析使用十字交叉,一般应用于求整体(部分)的增长率或者是求比重的试题中,且要活学活用。

一、十字交叉最浅显应用资料分析的试题往往会涉及到三个指标,两个部分、一个整体,我们依据十字交叉可以得到,整体的增长率必然处于部分增长率之间,此时,比较仁慈的考官,就会在设置选项的时候,让我们能够很容易的排除三个选项,直接得到答案,来看个试题。

******************************************************************************* ******【例1】2008年1~8月,公路客运量比上年同期增长()。

A.6.9% B.7.4% C.7.9% D.11.7% 整体:1~9月公路客运量;部分:1~8月公路客运量增长11.4%;9月公路客运量增长7.4%;整体的在7.4%~11.4%之间,选C。

******************************************************************************* ******二、十字交叉稍变态应用虽说,整体的增长率处于部分的增长率之间,但是有的时候,试题往往给出的选项,只允许我们排除其中的两个,剩下的也无法排除,此时就要稍稍分析一下基期各部分占整体的比重的大小,来分析整体的增长率到底是偏向哪个部分,即可以将剩余的两个选项,排除掉一个,剩下的一个就是正确答案。

在这肯定注意到,为什么要分析基期的比重,而不是末期的比重呢?因为在这里面涉及了增长率,这就暗含着增长量这个等式,我们具体来看一下。

******************************************************************************* ******整体:末期增长率:r,基期值:R;部分:末期增长率a、b,基期值:A、B;等量关系:A×a+B×b=R×r,A×a+B×b=(A+B)×r;变形:A:B=(r-b):(a-r)。

行测资料分析技巧:十字交叉法

行测资料分析技巧:十字交叉法

⾏测资料分析技巧:⼗字交叉法 任何⼀场考试取得成功都离不开每⽇点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测资料分析技巧:⼗字交叉法”,持续关注本站将可以持续获取更多的考试资讯!⾏测资料分析技巧:⼗字交叉法 ⼗字交叉法主要解决的就是⽐值的混合问题,在公务员考试的过程中,资料分析部分解题经常⽤的⼀种解题⽅法。

它应⽤起来快速、准确、⽅便,为我们考试中秒杀题⺫提供了很⼤的助⼒。

那么接下来跟⼤家⼀起来学习⼗字交叉法。

⼀、⼗字交叉法概述 ⼗字交叉法是解决⽐值混合问题的⼀种⾮常简便的⽅法。

这⾥需要⼤家理解“⽐值”“混合”这两个概念。

⽐值:满⾜C/D的形式都可以看成是⽐值;混合:分⼦分⺟具有可加和性。

平均数问题、浓度问题、利润问题、增⻓率问题、⽐重等混合问题,都可以⽤⼗字交叉法来解决。

⼆、⼗字交叉法的模型 在该模型中,需要⼤家掌握以下⼏个知识点: 1、a和b为部分⽐值、r为整体⽐值、A和B为实际量 2、交叉作差时⼀定要⽤⼤数减去⼩数,保证差值是⼀个正数,避免出现错误。

这⾥假定a>b 3、实际量与部分⽐值的关系 实际量对应的是部分⽐值实际意义的分⺟。

如:平均分=总分/⼈数,实际量对应的就是相应的⼈数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增⻓率=增⻓量/基期值,实际量对应的就是相应的基期值。

4、在这⾥边有三组计算关系 (1)第⼀列和第⼆列交叉作差等于第三列 (2)第三列、第四列、第五列的⽐值相等 (3)第1列的差等于第三列的和 三组计算关系是我们应⽤⼗字交叉法解题的关键,⼀定要记住并且灵活应⽤。

三、四种考查题型 1、求a,即已知总体⽐值、第⼆部分⽐值、实际量之⽐,求第⼀部分⽐值。

例某班有⼥⽣30⼈,男⽣20⼈。

期中的数学考试成绩如下,全班总的平均分为76,其中男⽣的平均分为70。

求全班⼥⽣的平均分为多少? 解析:平均分=总分/⼈数,是⽐值的形式。

此题中,男⽣的平均分和⼥⽣的平均分混合成了全班的平均分,是⽐值的混合问题,可以⽤⼗字交叉法来解题。

十字交叉在行测数学运算中的应用

十字交叉在行测数学运算中的应用

行测数学运算部分是行测最重要的部分,也是各位考生必争的制胜高地。

行测数学运算的基础知识点比较多,技巧性也很多,但是如果我们不全面掌握的话,那么失分肯定会很严重的,所以红麒麟专家提醒你,一定要牢牢的掌握数学运算的基础知识。

今天,我们就重点讲解一下十字交叉在数学运算中的应用。

一、十字交叉法的原理首先通过例题来说明原理。

例题:某班学生的平均成绩是80分,其中男生的平均成绩75分,女生的平均成绩85分,求该班男生和女生的比例。

方法一:特殊值法男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。

方法二:列方程法假设男生有X,女生有Y,有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。

方法三:十字交叉法假设男生有X,女生有Y,男生:X 75 85-80=580 男生:女生=X:Y=1:1。

女生:Y 85 80-75=5十字交叉法用溶液问题来讲解更加浅显易懂,有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的质量为Y,则有:Xx+Yy=(X+Y)r,整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)。

上面的计算过程就抽象为:X: x r-yrY :y x-r十字交叉使用时要注意几点:第一、用来解决两者之间的比例关系问题。

第二、得出的比例关系是基数的比例关系。

第三、总均值放中央,对角线上,大数减小数,结果放对角线上。

二、十字交叉法在数学运算中的应用十字交叉在数学运算中相对比较简单,主要是直接根据材料中的数量关系来计算,下面的这些试题,具有一定的代表性,速速呈现给大家。

******************************************************************************* ******【例1】要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?A.250 B.285 C.300 D.325 【分析】这个很简单吧,就是咱们上面讲解到的内容,直接将试题中的数量嵌套在十字交叉表中。

公务员考试行测技巧:十字交叉法

公务员考试行测技巧:十字交叉法

公务员行政职业能力测验考试每道题目平均做题时间约为50秒,时间紧,出题范围广,是考生公认的难度较大的考试。

而行测考试中的数量关系模块由于计算较多,难度较大成为众多考生的梦魇,因此必须转化思维,利用一些解题技巧来简化计算,提高解题速度。

十字交叉法在处理数学运算中的“加权平均问题”时可以明显简化运算,提高运算速度,本文就详细介绍一下十字交叉法的应用。

一、十字交叉法简介当数学运算题最终可以通过下式解出解出,我们就称这类问题为“加权平均问题”。

Aa+Bb=(A+B)r 此式可变化为A/B=(r-b)/(a-r)对于上式这种式子我们可以采用十字交叉的方法来计算,如下所示:A:a r-b\ /r =>A/B=(r-b)/(a-r)/ \B:b a-r二、适用题型十字交叉法最初在浓度问题上应用广泛,但在实际计算过程中,十字交叉法并没有将浓度问题有所简化,而是在以下几种题型中有更广泛的应用,解题速度也有明显提高。

1、数量分别为A与B的人口,分别增长a与b,总体增长率为r。

2、A个男生平均分为a,B个女生平均分为b,总体平均分为r。

3、农作物种植问题,A亩新品种的产量为a,B亩原来品种的产量为b,平均产量为r。

当然还有其他类似的问题,这类问题本质上都是两个不同浓度的东西混合后形成了一个平均浓度,这类问题都可以运用十字交叉法快速解题。

三、真题解析例1、某市现有70万人,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()A、30万B、31.2万C、40万D、41.6万解析:城镇人口:4% 0.6% x\ /4.8%/ \农村人口:5.4% 0.8% 70-x所以0.6%/0.8%= x/(70-x),解得x=30,所以答案为A。

例2、某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()。

A.84分B.85分C.86分D.87分解析:男生:x 1.2x-75 1.8\ /75/ \女生:1.2 x 75-x 1所以有(1.2x-75) /(75-x)=1.8,解得x=70,所以女生平均分为70×1.2=84,答案为A。

行测解题如何运用十字交叉法

行测解题如何运用十字交叉法

公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。

行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。

了解公务员成绩计算方法,可以让你做到心中有数,认真备考。

在行测数量关系的解题方法中,十字交叉法是非常重要的方法,主要解决平均数、浓度、利润率、增长率等比值的混合问题,一般采用十字交叉法来实现保持多的量和少的量之间的平衡。

在求解的过程中,大部分同学会去设x来列方程进行求解,但计算过程较为繁琐,中公教育专家本文主要讲解如何不设x来进行巧解。

二、三组计算关系
1、第一列和第二列交叉作差等于第三列;
2、第三列、第四列、第五列比值相等;
3、第一列的差等于第三列的和。

三、题型
1、已知第一列部分比值,实际量,求整体比值。

解题方法:利用三组计算关系,以及比例法。

例1:高三一班有男生10名,平均分为85分;女生有20人,平均分为94分。

问该班总的平均分为多少?
A.91
B.92
C.93
D.94
【答案】A。

国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法
国家公务员考试行测备考:十字交叉法
十字交叉法主要解决公务员考试行测数量关系中的混合平均量问题,运用过程中往往涉及到五列数字:第一列:部分的平均量;第二列:总体的平均量;第三列:部分平均量与总体平均量交叉做差的差值;第四列:差值的最简比;第五列:求得部分平均量的分母所对应的实际量。

若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量,是解决数量关系问题中非常实用的一种方法,下面中公教育专家为大家进行详细讲解。

一、两者十字交叉
常见题型一:平均分问题
[模板] 已知一个班级,男生人数为x 人,平均分为A,女生人数为 y 人,平均分为 B,求这个班级的总体平均分。

(A>B)
[例题] 某学校对其120 名学生进行随机抽查体能测验,平均分是73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?
A.70
B.80
C.60
D.85
常见题型二:溶液问题
【模板】已知A瓶溶液的浓度为 A%,B瓶的溶液浓度为 B%,分别取 x 和 y 份进行混合,求得到的溶液浓度为多少。

(A>B) 【例题】已知在浓度为90%的甲瓶中取40g 溶液,在浓度为60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少?
A.75%
B.80%
C.85%
D.90%。

公务员考试十字交叉法

公务员考试十字交叉法

十字交叉法是数学运算及资料分析中经常用到的一种解题方法,熟练运用可以大大提高各位考生在考场上的解题速度。

在平时的复习过程中应作为一个专题加以强化练习,以期达到行测考场上的“秒杀”。

十字交叉法最先是从溶液混合问题衍生而来的。

若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r,则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=r-b/a-r,在解题过程中一般将此式转换成如下形式:注意在交叉相减时始终是大的值减去小的值,以避免发生错误。

十字交叉法不仅仅可用于溶液混合问题,也可以应用于两部分混合增长率问题、平均分数、平均年龄等问题。

只要能符合Aa+Bb=(A+B)r这个式子的问题均可应用十字交叉法,交叉相减后的比值为对应原式中的A和B的比值。

例1 甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水。

问乙容器中盐水的浓度是多少?A.9.6%B.9.8%C.9.9%D.10%【解析】A。

【例2】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()。

A.30万B.31.2万C.40万D.41.6万【解析】A。

【例3】(2011国考-76)某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?A.34B.36C.35D.37【解析】C除了在数学运算中可以用到十字交叉法,在一些资料分析的题目中也可以运用十字交叉法,例如:【例4】(2011年917联考)2010年1~6月,全国电信业务收入总量累计完成14860.7亿元,比上年同期增长21.4%;电信主营业务收入累计完成4345.5亿元,比上年同期增长5.9%。

公务员行测资料分析技巧:十字交叉法

公务员行测资料分析技巧:十字交叉法

公务员行测资料分析技巧:十字交叉法行测资料分析技巧有哪些?正在备考行测考试的朋友可以来看看,下面由小编为你准备了“公务员行测资料分析技巧:十字交叉法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!公务员行测资料分析技巧:十字交叉法在行测资料分析中应用时,主要有三层结论,前两层结论主要用于定性判断,而第三层结论用于定量计算。

在前两篇文章中,我带着考生们分别探讨了十字交叉法在资料分析中的应用环境以及两层应用技巧,今天带大家一起来学习学习资料分析的最后一层应用,定量计算:结论一:整体平均数处在部分平均数之间,即部分平均数有些比整体平均数大,有些比整体平均数小。

结论二:整体平均数靠近“分母”较大的那个分平均。

结论三:求部分量分母之比今天我们要讨论的结论三,关于它的内容表述方式和前两种有所不同,我们上面的黑字是在说明它的作用,是用来求部分量的分母之比。

而具体怎么求,因为不太好用一句话的文字表述。

所有并没有表述在上面的黑体字中。

具体内容展开详解:1.解决问题:求部分量分母之比我们知道,十字交叉法是用来解决研究整体平均数和部分平均数之间的关系的题目的。

比如进出口总额的增长率和进口与出口的增长率,就分别是整体平均数和部分平均数。

由于任何一个平均数都是除法计算得来,比如出口的增长率=出口的增长率/出口的基期量、进口的增长率=进口的增长率/进口的基期量,则每一个平均数在求解时都有其分母。

当一个整体只分成两个部分,如果题目让我们求这两个部分的平均数,分母的量的比,即为求部分量分母之比,也就是我们结论三的应用环境。

如下题:例题:2018年某市中学生有13.2万人,增长率1.2%,其中女生人数增长了0.8%,男生人数增长了1.5%。

问:2017年该市中学生男生人数与女生人数的比例是?A.4:3B.3:4C.5:5D.5:6解析:题目中的“平均数”概念是增长率,全体中学生人数和女生人数男生人数构成了整体和部分间的关系。

十字交叉法

十字交叉法

十字交叉法(本文已委托维权骑士进行维权。

)一、十字交叉法的原理【例题1】现在有浓度为a的盐水A克,和浓度为b的盐水溶液B克,混合后可以得到浓度为r的溶液A+B克。

各个量之间的关系如下:所以在题目中我们可以使用十字交叉法来解决溶液问题,而不需要根据下面的等式列方程,然后解方程,这样花费的时间较多。

让我们在真题中看看十字交叉法是如何具体操作的!【例题2】要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克。

问5%的食盐水需要多少克:(2022年贵州省公务员录用考试《行测》题第9题)方法一:列方程。

设5%的食盐水需要克,方程如下,然后解方程。

方法二:十字交叉法。

通过打草稿实践证明,十字交叉法是要快一些的。

大家可以试试。

二、十字交叉法的其他应用场景①平均数,平均数十字交叉后得到总数之比②增长率,增长率十字交叉后得到基期量之比③利润率,利润率十字交叉后得到总成本之比因为篇幅有限,所以根据出现频率多少的情况,只针对增长率问题应用“十字交叉法”进行详解。

例:今年产的水果共两种,分别是苹果和梨。

今年苹果的产量为A,同比增长率为a,梨的产量为B,同比增长率为b。

两种水果的总产量为(A+B),两种水果产量的总增长率为r。

各个量之间的关系如下:所以增长率问题和盐水问题的公式形式是一样的,也能使用“十字交叉法”。

用一道真题试试!【例题3】材料:2022年1,12月,全国内燃机累计销量5645、38万台,同比增长4、11%。

从燃料类型来看,柴油机增幅明显高于汽油机,柴油机累计销量556万台,同比增长13、04%;汽油机累计销量5089万台。

问题:2022年,汽油内燃机累计销量同比增速为?A。

低于-4%B。

在-4%,0%之间C。

在0%,4%之间D。

超过4%解:用现期量近似代替基期量,有如下过程:也就是9%:(4、1%-)=9:1,容易得出=3、1%,答案选C。

行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用中公教育研究与辅导专家柴杏子在资料分析考试当中,部分题目运用十字交叉法求解更加简便,接下来中公教育给大家介绍一下十字交叉法在资料分析中的运用。

例1.2013年上半年,全国汽车生产1075.17万辆,同比增长12.83%,同比增幅提高8.75个百分点;1、2季度汽车销量分别为542.42万辆和535.73万辆,1季度同比增长13.11%,2季度同比增长11.55%。

问题:与去年同期相比,2013年上半年全国汽车销量增长百分之几?A.19.1%B.14.5%C.12.3%D.10.4%【答案】C。

【考点点拨】题干中已知第一季度增长率为13.11%,第二季度增长率为11.55%,根据十字交叉法可知整体比值应介于部分比值之间,所以上半年的增长率大于11.55%,小于13.11%,选C。

例2.2015年我国货物进出口总额245741亿元,同比下降7%。

其中货物出口额同比下降1.8%。

一般贸易出口75456亿元,占出口总额的比重为53.4%。

货物进口额104485亿元,同比下降13.2%,一般贸易进口57323亿元,占进口总额的比重为54.9%。

问题:2015年我国一般贸易进出口总额占我国货物进出口总额的比重为多少?A.52.1%B.54.0%C.55.2%D.56.3%【答案】B。

【考点点拨】一般贸易出口占出口总额的比重为53.4%,一般贸易进口占进口总额的比重为54.9%,整体比值介于部分比值之间,选B。

例 3.2011年8月新疆全区规模以上工业实现增加值235.25亿元,比上年同期增长10.6%,其中轻工业实现增长15.4%,重工业实现增长10.2%。

问题:2010年8月规模以上重工业增加值是轻工业增加值的多少倍?A.8.3B.12C.23D.1.3【答案】B。

【考点点拨】轻工业增长率15.4%,重工业增长率10.2%,整体增长率10.6%,交叉作差可得:轻工业 15.4% 0.4% 1 规模以上工业10.6%重工业10.2% 4.8% 12交叉作差后的比值等于两个部分比值分母的比,而增长率=增长量÷基期值,分母为其对应的基期值,所以重工业与轻工业的基期值比值为12:1。

行测冲刺巧用十字交叉法

行测冲刺巧用十字交叉法

行测冲刺巧用十字交叉法在备战行测考试中,复习时间有限,如何更高效地掌握各个知识点成为考生们共同面临的问题。

而在此过程中,十字交叉法成为了一种行之有效的复习方法。

本文将介绍行测冲刺阶段,如何巧用十字交叉法来进行针对性的复习,从而提高备考效果。

一、什么是十字交叉法十字交叉法是一种系统性的复习方法,通过分析不同知识点之间的关联和交叉,帮助考生全面理解各个知识点,并且快速记忆,有助于形成知识网络。

其核心思想是将各个知识点画成一个个节点,然后通过交叉线连接,形成一个复习图谱,方便考生进行查漏补缺和联想记忆。

二、如何巧用十字交叉法进行行测冲刺1. 确定核心知识点在行测冲刺阶段,时间有限,需要将注意力集中在核心考点上。

根据往年真题和教材内容,确定你觉得重要的知识点,将其列为核心知识点。

例如,言语理解与表达、判断推理、数量关系、资料分析等是行测考试中常出现的题型和知识点。

2. 绘制十字交叉法图谱将核心知识点绘制成十字交叉法图谱。

首先,在纸上绘制一个大十字图,将行测考试的核心知识点写在四个方向上。

然后,在每个节点中,进一步细分相关的知识点,并通过交叉线连接。

例如,在言语理解与表达节点下,可以写入同义词、反义词、词义辨析、修辞手法等相关知识点。

3. 建立知识网络通过绘制十字交叉法图谱,不仅可以直观看到各个知识点之间的联系,还可以帮助建立知识网络。

在每个节点中,不仅可以写入具体的知识点,还可以附带相关例题、解题方法和技巧。

例如,在数量关系节点下,可以写入数列、概率、几何等具体的知识点,并在每个知识点旁边写入例题和解题思路。

4. 查漏补缺和联想记忆。

事业单位考试行测十字交叉法在资料分析中的应用

事业单位考试行测十字交叉法在资料分析中的应用

事业单位考试行测十字交叉法在资料分析中的应用十字交叉法是解决平均量混合问题的一种常用方法。

在行测考试数学运算中常常出现平均量混合问题。

平均量混合问题,即是有两个部分平均量混合成一个总体平均量,总体平均量是介于两个部分平均量之间。

下面中公教育专家就用几道例题来为大家解析十字交叉法在资料分析中的应用。

例1.某人用60000元进行投资,一部分买股票,年终的收益率是6%,一部分买债券,收益率是8%。

今年一共收入4000元,他用多少钱买债券。

A.10000B.15000C.18000D.20000【答案】D。

解析:收益率相当于平均量。

6000元投资收益4000元,则总的收益率是4000÷6000=2/3;总体收益率是由股票和债券两部分混合达到的,故用十字交叉法:交叉作差后的最简比为2:1,即原60000元中用于买股票和买债券的钱数之比为2:1,则用于买债券的钱数为20000元,故选D。

十字交叉法的本质是盈亏思想,即比总体平均量少的和多的平衡的思想,且若不平横的话,总体平均值会靠近于在总体中所占比例较大的一方。

而次思想及方法在资料分析中也常用到。

例 2.材料:2010年6月份,某省居民消费价格总水平同比下降1.7%。

其中,城市下降1.8%,农村下降1.4%;食品价格下降1.1%,非食品价格下降1.9%;消费品价格下降1.8%,服务项目价格下降1.3%。

从月环比看,居民消费价格总水平比5月份下降0.5%;食品价格下降1.3%,其中鲜菜价格下降9.5%,鲜蛋价格下降0.5%。

问题:在该省居民消费价格总水平中,2009年6月城市居民消费价格水平的比重约为多少。

A.25%B.33%C.50%D.75%【答案】D。

解析:增长率也相当于平均量。

由材料第一段可知“2010年6月份,某省居民消费价格总水平同比下降1.7%。

其中,城市下降1.8%,农村下降1.4%,用十字交叉法:由此可知城镇居民消费价格总水平:农村居民消费价格总水平=3:1,故城镇居民消费价格总水平的比重为75%,故选D。

公务员行测数量关系——方法技巧之十字交叉法

公务员行测数量关系——方法技巧之十字交叉法

数,只有 C 选项满足。答案选择 C。
-2-
B ar
B ar
注:1.总均值放中央,对角线上大数减小数,结果放在对角线上;2.A 是与 a 相乘的,B 是与
b 相乘的。
做题时需仔细确定好 A 和 B,切记与其它量混淆。
A 与 B 常见的表示量有:
平均数混合——所得到的比例为数量(人数)之比; 比例混合——所得到的比例为具体量之比; 浓度(溶液)混合——所得到的比例为溶液质量之比; 折扣混合——所得到的比例为原价之比; 增长率混合——所得到的比为基期量之比。 【例 1】(2016 广州)某单位为全体员工进行体检,平均体重是 57.5 公斤。其中,男员工的
3000×(1+9%)=3270(人)。答案选择 C。
解法二:奇偶特性法。由题意可得今年研究生:去年研究生=109:100,可得今年研究生人数
是 109 的倍数,排除 A 选项。因为今年本科生比去年减少 4%,所以,今年本科生:去年本科生=24:
25,可得今年本科生人数为 24 的倍数,是偶数,总数也为偶数,因此今年研究生人数也应该为偶
今年新增的计划招生人数 = 去年本科生招生人数×(-4%)+ 去年研究生招生人数×9% = 去年的
招生总人数×2%,结合十字交叉法,得到:
-1-
去年招生本科生人数:-4%
7%
\/
2%
容易得知,去年本科生:去年研究生=7:6。
/\
去年招生研究生人数:9%
6%
所 以 去 年 的 研 究 生 计 划 招 生 数 为 6500 6 3000 ( 人 ), 那 么 今 年 研 究 生 招 生 计 划 为 67
/\
美术系人数:40%
5%

行测数量关系技巧:你不知道的十字交叉法

行测数量关系技巧:你不知道的十字交叉法

行测数量关系技巧:你不知道的十字交叉法
过去在学习数量关系的时候我们学习过十字交叉法,事实上,十字交叉法的妙用远不止这样,今天中公网校专家就跟大家一起来认识一下你不知道的十字交叉。

我们针对十字交叉法具体可以解决的问题做一个简要的概述。

一.十字交叉法解决的题目特征
题目当中既描述各个部分的比值情况又描述了整体的比值情况,我们就可以使用十字交叉法解决该类问题。

二.十字交叉模型
2.利润问题
例.一批商品按期望获得50%的利润来定价,结果只销售掉70%的商品,为尽早销售掉剩下的商品,商店决定按定价打折销售,这样所获得的最终利润为41%%,问打了多少折?
4.增长率问题
例.2009年北京市完成全社会固定资产投资4858.4亿元,分城乡看,城镇投资完成4378.2亿元,增长23.2%;农村投资完成480.2亿元,增长63.5%,则2009年北京市全社会固定资产投资增长了百分之几( )
A.12.0%
B.26.2%
C.41.3%
D.85.7%
中公解析:根据题目描述我们可以得到全社会固定资产投资是由城镇和农村共同构成的,且题目中分别给出了部分的情况,则整体一定是介于城镇和农村之间的数据,所以答案排除A,D。

又由于城镇投资为4378.2亿元,远远多于农村的480.2亿元,则更加靠近23.2%,即正确选B。

以上对于十字交叉法应用的举例,不是结束而是开始,对于十字交叉法如果各位小伙伴有机会进行系统的学习,你会发现它可以解决的是一类问题,在资料分析当中小伙伴会见到一些非常见的概念产销率,上座率等等,都可以应用十字交叉法。

行测数量关系复习:十字交叉法的灵活使用

行测数量关系复习:十字交叉法的灵活使用

行测数量关系复习:十字交叉法的灵活使用数量关系是行测考试中常考的题目,为大家提供行测数量关系复习:十字交叉法的灵活使用,一起来看看吧!希望大家都能好好掌握!
行测数量关系复习:十字交叉法的灵活使用
数量关系作为公务员考试中行政职业能力测验五大必考专项之一,一直是大部分学员的痛处,会做的同学说时间紧,做不完,不会做的同学说做不对,但是谈到一些解题方法的时候,大部分同学还是表示能够听懂以及运用的,例如十字交叉法,但是同学,你是否还只运用十字交叉法解决平均数和利润率的问题那,那你就out了,今天就跟一起来见证十字交叉法的灵活使用。

(1)某运输队有大货车和小货车24辆,其中小货车自身的重量和载货量相等,大货车的载货量是小货车的1.5倍,自身重量是小货车的2倍。

所有车辆满载时共重234吨,空载则重124吨,那么该运输队的大货车有多少辆?
A.4
B.5
C.6 D7
这样的题,大家第一个想法就是运用方程法来进行解题,但是方程法,设未知数,求解的时候是二元一次方程,整理也比较繁琐,那我们就回归到题干来看一看,以“小货车自身的重量和载货量相等”为例,这句话为什么这么给出,可不可以理解为,一个小车的
这时再来看,十字交叉法在实际做题中,不仅仅是运用在数
量关系中的平均数和利润率当中哦。

更神奇的是,在资料分析中我们也可以运用十字交叉法。

(2) 2020年4月份,全国一般公共预算收入15523亿元。

其中,中央一般公共预算收入6443亿元,同比增长2.4%;地方一般公共预算本级收9080亿元,同比24.7%。

问题,2020年4月份,全国一般公共预算收入同比增速约为:A1.2% B10.6% C 14.4% D26.2%
来源:中公教育。

公务员行测资料分析技巧知识汇总七

公务员行测资料分析技巧知识汇总七

公务员行测资料分析技巧知识汇总七笔者为大家收集整理了公务员行测的有关资料分析技巧的相关知识,由于知识点较多,每篇文章只对几个知识点进行讲解。

如果需要了解更多内容,请关注笔者系列文章。

愿大家顺利通过考试!行测资料分析技巧:“十字交叉”用于资料分析十字交叉是行测资料分析中一个很重要的知识点,应用于求解比值混合的问题,在资料分析中常用于求解增长率混合和比重混合的题目中,接下来通过几道例题来加深对十字交叉方法的理解:一、基本模型p/>结论:1.整体比值r位于部分比值a与b之间2.后三列的比值相等3.我们可以通过观察a的基期值和b的基期值的大小来判断整体比值更靠近于a还是b,谁的基期值大整体比值就靠近谁的增长率,但在实际运用中我们也可以近似地通过现期值的大小来判断,影响不大4.在增长率混合中a、b的分母分别为其部分增长率的基期值,而在比重混合问题中a、b分母应分别为其部分比重的整体值。

二、例题解析例1.某公司2018年前三个季度总营收52.8亿元,同比增长56.0%。

归属于上市公司股东的净利润2.2亿元,同比增长29.9%。

第三季度总营收20.73亿元,同比增长61.4%。

归属于上市公司股东的净利润0.9亿元,同比增长44.3%。

问题:该公司2018年上半年总营收同比增速为:A.52.7%B.59.7%C.63.5%D.64.1%答案:A解析:题目求上半年增速,而材料中给出前三个季度的增速和第三季度的增速,我们可以将前三个季度看做由上半年和第三季度混合而成,所以根据第一个结论,前三季度的增长率应在上半年和第三季度增长率之间,又知第三季度增长率大于前三季度增长率,则上半年增长率小于前三季度增长率56.0%,观察选项只有A符合。

例2.2017年,我国航空公司共完成旅客运输量5.51亿人次,增速较上年提升1.1个百分点。

其中,国内、国际航线分别完成4.96亿人、0.55亿人,同比分别增长13.7%、7.4%。

行测数学运算:十字交叉法

行测数学运算:十字交叉法

行测数学运算:十字交叉法例1.重量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r。

例2.数量分别为A与B的人口,分别增长a与b,总体增长率为r。

例3.A个男生平均分为a,B个女生平均分为b,总体平均分为r。

……类似上面三个例题的问题,都可以列出下式:Aa+Bb=(A+B)r AB=r-ba-r以上问题我们称之为“加权平均问题”,我们一般不用列方程的方式而采用“十字交叉法”的方式来求解,即将上述式子转换成如下形式:rA:ar-bB:ba-r AB=r-ba-r【例1】(陕西2008-14)某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()A. 0.5B. 1C. 1.5D. 2[答案]C[解析]十字交叉法:91女生933男生88232=1.5(倍)【例2】(河北选调2009-57)车间共有40人,某次技术操作考核平均成绩为80分,其中男工平均成绩为86分,女工平均成绩为78分,该车间有女工多少人?()A. 16B. 24C. 25D. 30[答案]D[解析]十字交叉法:80男工862女工78626=13=1030,由于总数为40人,所以男、女工分别为10、30人。

【例3】(国家2005一类-40)某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加 5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口多少万?()A. 30万B. 31.2万C. 40万D. 41.6万[答案]A[解析]十字交叉法:4.8%城市4%0.6%农村5.4%0.8%0.6%0.8%=34=3040,由于总人数为70万,所以城市、农村分别30、40万。

【例4】(国家2006一类-41)某市居民生活用电每月标准用电量的基本价格为每度0.50元,若每月用电量超过标准用电量,超出部分按其基本价格的80%收费,某户九月份用电84度,共交电费39.6元,则该市每月标准用电量为多少度?()A. 60度B. 65度C. 70度D. 75度[答案]A[解析]十字交叉法:39.684=3370标准 0.5570超额0.5×80%270570270=52=6024,由于总用电为84度,所以标准、超额分别为60、24度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测备考:十字交叉法的应用
在加权平均数的相关题型中,由于数量关系复杂,列方程做比较困难,十字交叉法能轻松解决这一问题。

十字交叉法经常运用于浓度、比重、人口、平均分等问题的求解,同时也可以运用于某些较为复杂的问题中。

在数学运算及资料分析中经常用到,达到行测考场上的“秒杀”。

下面我们首先学习下十字交叉法的原理。

十字交叉法使用时要注意几点:
第一点:用来解决两者之间的比例关系问题。

第二点:得出比例关系是基数的比例关系。

第三点:总均值放中央,右侧对角线上,大数减小数。

下面我们通过例题来看一下十字交叉法在浓度问题中的应用。

【例1】有100克溶液,第一次加入20克水,溶液的浓度变成50%;第二次再加入80克浓度为40%的同种溶液,则溶液的浓度变为( )
A. 45%
B. 47%
C. 48%
D. 46%
【解析】本题相当于是120克50%的溶液与80克40%的溶液混合,我们利用“十字交叉法”,把选项代入到其中,很明显只有D选项46%得出的比例等于120:80=3:2.
【例2】红酒桶中有浓度为68%的酒,绿酒桶中有浓度为48%的酒,若每个酒桶中取若干混合后,酒浓度为52%;若每个酒桶中取酒的数量比原来都多12 升,混合后的酒浓度为53.2%。

第一次混合时,红酒桶中取的酒是( )。

A.17.8 升
B.19.2 升
C.22.4 升
D.36.3 升
【解析】运用“十字交叉法”,易知第一次混合前的质量比为1:4,
所以假设第一次分别取x,4x升,再用十字交叉得到第二次混合前的质量比为13:37,所以(x+12):(4x+12)=13:37,得到x=19.2,选择B。

【例3】烧杯中装了100克浓度为10%的盐水,每次向该烧杯中加入不超过14克浓度为50%的盐水,问最少加多少次之后,烧杯中的盐水浓度能达到25%?(假设烧杯中盐水不会溢出)( )
A.6
B. 5
C. 4
D. 3
解析:运用“十字交叉法”,易知
所以至少要加60克,每次最多14克,至少5次。

以上就是我们的十字交叉法在溶液问题中的运用,做题中遇到类似这样的题目,解答起来就比直接列方程要省时省力一些。

相关文档
最新文档