电位分析方法
电位分析法

RT Pot z / m Pot z / n K ln a M K m a K ...... ,i i m, ja j ZF
0.059 Pot z / m Pot z / n M K ln a M K m a K ...... ,i i m, j a j Z
★ 试样组分较稳定的试液,如火力发电厂水 蒸气中Na+的测定。
<二> 校准曲线法: 配制试液和一系列标准溶液,加 1. 方法要点: 入总离子强度调节缓冲溶液,使 各溶液的实验条件一致。分别测 定它们的电动势,根据标准系列 溶液的浓度,作E~C曲线,再用 内插法求试液中被测物含量。 2. 适用范围: ★ 适用于大批量试样的分析。
二、膜电位的产生: 〈一〉膜电位: ● 膜电位: 膜两侧接触不同浓度电解质 溶液而产生的电位差。
〈一〉膜电位产生的模型: 1.扩散电位:
●C1>C2:产生浓差扩散 ●H+迁移较Cl-快:造 成溶液界面上的电荷 分布不匀 ●C1负电荷多而C2正电 荷多:在相界面产生 电位差 ●电位差的产生,使离子 的扩散速度减慢,最后 达到平衡,使两相界面 之间有稳定的界面电位
① 当正、负离子的迁移数相等时,扩散电位 等于零;
② 扩散电位可以出现在液体、固体界面上; ③ 扩散电位不具备强制性和选择性; ④ 扩散电位是膜电位的组成部,它存在于膜 相内部。
2.道南电位:
●渗透膜:它至少能阻止 一种离子从一个液相扩 散到另一个液相。 ●C1>C2:产生浓差扩散
●仅允许少量的K+通过,
§3—1 电位分析法原理
一、电位分析法:
●将指示电极和参比电极同时浸入试液,组 成电池,在通过电路的电流为零的条件下, 测量指示电极的平衡电位,从能斯特方程 式求待测离子浓度的方法,称电位分析法。
电化学分析方法之一电位分析法

)
(K2
0.0592
lg
aH 内 aH 内表面
)
K
0.0592
lg
a H
外
K
0.0592
pH
C、PH玻璃电极的电极电位:
E玻 E内参 E膜 E内参 K 0.0592 pH试
E玻 K玻 0.0592 pH试
D、电位法测定溶液pH的基本原理 电位法测定溶液的pH,是以玻璃电
极作批示电极,饱和甘汞电极作参比电 极,浸入试液中构成原电池: E = E甘 – E玻
电位滴定法中拟定终点的办法重 要有下列几个:
第一种办法:以测得的电动势和 对应的体积作图,得到E~V曲线, 由曲线上的拐点拟定滴定终点。
第二种办法:作一次微商曲线, 由曲线的最高点拟定终点。具体 由△E/△V对V作图,得到△E/△V 对V曲线,然后由曲线的最高点拟 定终点。
第三种办法:由二次微商求终点
其中,批示电极是看待测离子的 浓度变化或对产物的浓度变化有 响应的电极,参比电极是含有固 定电位值的电极。
在滴定过程中,随着滴定剂的加 入,待测离子或产物离子的浓度 要不停地变化,特别是在计量点 附近,待测离子或产物离子的浓 度要发生突变,这样就使得批示 电极的电位值也要随着滴定剂的 加入而发生突变。
惯用的有Ag/AgCl、甘汞电极 (Hg/Hg2Cl2电极)。
对于甘汞电极,其电极反映为: Hg2Cl2+2e=2 Hg+2Cl-
3. 第三类电极:它由金属,该金属 的难溶盐、与此难溶盐含有相似阴离 子的另一难溶盐和与此难溶盐含有相 似阳离子的电解质溶液所构成。表达 为M (MX,NX,N+)。如: Zn| ZnC2O4(s),CaC2O4(s),Ca2+ Ca2+ + ZnC2O4 +2e CaC2O4+ Zn
电位分析法

电位分析法1 前言从热力学角度讲,电化学是研究化学能于电能之间相互转变及其所遵循基本规律或规则的一门学科;从动力学角度而言,电化学是研究电解质离子在溶液中运动及电解质溶液与电极表面发生反应所遵循的基本规律。
而电分析化学则是利用物质(电解质)的物理性质及电化学性质来测定物质组成和含量的一种分析方法。
电位分析是利用电极电位和溶液中某种离子的活度(或浓度)之间的关系来测定被测物质的活度(或浓度)的一种电化学分析法,它是以测量电池电动势为基础。
其化学电池的组成是以待测试液为电解质溶液,并于其中插入两支电极,一支是电极电位与被测试液的活度(或浓度)有定量关系的指示电极;另一支是电位稳定不变的参比电极。
通过测量电池的电动势来确定被测物含量。
电位分析法根据其原理的不同可分为直接电位法和电位滴定法两大类。
直接电位法是通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程,由所测得的电极电位值计算出被测物质的含量。
电位滴定法是通过测量滴定过程中指示电极的电位变化来确定滴定终点,再按滴定所消耗的标准溶液的体积和浓度来计算待测物质含量。
该法实际上是一种容量分析法。
20世纪60年代末由于膜电极技术的出现,相继成功研制了多种具有良好选择性的指示电极,即离子选择性电极(ISEs)。
离子选择性电极的出现和应用,促进了电位分析法的发展,并使其应用有了新的突破。
电位分析法具有如下特点:选择性高,在多数情况下,存在离子干扰很小,对组成复杂性的试样往往不需要经过分离处理可直接测定,且灵敏度高。
直接电位法的相对检出限量一般为10-5~10-8mol/dm3,特别适用于微量成分的测定;而电位滴定法则适用于常量分析,仪器设备简单、操作方便,易于实现分析的自动化,试液用量小,并可做无损分析和原位测量。
因此,电位分析法的应用范围很广,尤其是离子选择性电极,现已广泛应用于环保、医药、食品、卫生、地质探矿、冶金、海洋探测等各个领域,并已成为重要的测试手段。
电位分析法

2.特点 (1)仪器设备简单,操作方便,适合现场 仪器设备简单,操作方便, 操作; 操作; 选择性好,测定简便快速; (2)选择性好,测定简便快速; 试样用量少; (3)试样用量少; 自动化程度高; (4)自动化程度高; 精密度较差。 (5)精密度较差。
ϕ玻璃
ϕ甘汞
2.303RT E = K′ + pH F 25 °C: E = K′ + 0.059pH
比较法确定待测溶液pH 比较法确定待测溶液pH
pH已知的标准缓冲溶液 和 pH待测的试液 。 测定 已知的标准缓冲溶液s和 待测的试液 待测的试液x。 已知的标准缓冲溶液 各自的电动势为 的电动势为: 各自的电动势为:
测定待测溶液的电位值, 测定待测溶液的电位值, 通过标准曲线求出其浓度。 通过标准曲线求出其浓度。
Ex
lgcx lg c i
总离子强度调节缓冲溶液( TISAB )的作用 保持较大且相对稳定的离子强度,使活度系数恒定; ①保持较大且相对稳定的离子强度,使活度系数恒定; 范围内, ②维持溶液在适宜pH范围内,满足离子电极的要求; 维持溶液在适宜 范围内 满足离子电极的要求; ③掩蔽干扰离子。 掩蔽干扰离子。 测 F- 过 程 所 使 用 的 TISAB 典 型 组 成 : 1mol/L 的 NaCl,使溶液保持较大稳定的离子强度 ; 0.25mol/L的 , 使溶液保持较大稳定的离子强度; 的 HAc 和 0.75mol/L 的 NaAc, 使 溶 液 pH 在 5 左 右 ; 0.001mol/L的柠檬酸钠 掩蔽 3+、Al3+等干扰离子。 的柠檬酸钠, 掩蔽Fe 等干扰离子。 的柠檬酸钠
电位分析法

ZF
ln
a M(内)
四、离子选择性电极测定氟离子原理: 离子选择性电极电位不能直接测出,通常以离子选择性电极 作指示电极,甘汞电极作参比电极,插入被测溶液中构成原电池, 通过测量原电池的电动势来求得被测离子的活度或浓度。当离子 选择性电极为正极,甘汞电极为负极. 电池组为: Hg Hg2Cl2,KCl(饱和)F-试液 LaF3膜0.01mol.L-1NaF,AgCl Ag 0.1moi.L-1NaCl 或简单表示如下: SCE F-试液 氟离子选择电极 ∵ ∴
布在惰性支持体如聚氯 乙烯制成的电极 硬质电极——玻璃电极(pH电极)
正电荷载体:NO3-电极 流动载体电极 负电荷载体:钙电极 中性载体:钾电极
用憎水的微孔透气膜与试液隔开的一个由 离子选择性电极—内冲液—外பைடு நூலகம்比电极组 成的复合电极,如氨气敏电极
气敏电极——(基于界面化学反应的敏化电极): 敏化电极
内参比电极
电极腔体 内参比溶液
敏感膜
13
典型的单晶膜是LaF3晶体膜(对F-响应)和Ag2S晶体膜(对S2-响 应)。以下介绍LaF3晶体膜 1构 成: 它由内电极(Ag-AgCl电极+NaCl,NaF液)+LaF3膜(如图) 2.响应机理: 由于晶格缺陷(空穴)引起离子的传导 作用,接近空穴的可移动离子移至空穴中。 膜电位的产生,仅是由于溶液中的待测离 子能进入膜相的缺陷空穴,而膜相中的晶 格缺陷上的离子也能进入溶液相,因而在 两相界面上建立双电层结构所致。 可表示如下: 相间电位 FFRT F k ln a F 晶格缺陷 溶液 F LaF3 空穴 LaF2 F k 0.059 lg a F 14
第九章 电位分析法
第七章 电位分析法

离子敏感场效应晶体管(ISFET)
16-4 离子选择性电极性能参数
一、检测限与响应斜率 离子选择性电极能够检测到被测离子的最低浓 度。如图16-10中的CD与FG两延长线交叉点A 所对应的离子活度。 依能斯特方程直线的理论斜率为:
2.303 RT 理论斜率 zF
实际测定时斜率与理论值不一定相同。
(二)氟电极
氟电极的敏感膜由LaF3单晶片制成,为提高导电性, 在其中参杂少量Eu2+,Ca2+ ,二价离子的引入,使晶 格点阵中La3+被Eu2+,Ca2+取代,形成较多空的F-点 阵,增强了晶体的导电性,导电由F-完成。 氟离子选择性电极是目前最成功的单晶膜电极。
RT EF k ln a F F
能斯特方 程比较
EM
RT k ln a Ag F
二、电位选择性系数
电极选择性是指:电极对被测离子 和干扰离子响应的差异。 这种差异可用电极选择性系数Ki,j表 示。
RT z/m EM k ln( ai K iPot a ) ,j j zF
Ki,j表征了干扰离子对被测离子干扰的程度
玻璃电极的电位与溶液PH关系
玻璃电极的电位与溶液的PH有如下关系 RT E玻 k玻 ln aH F 2.303 RT E玻 k玻 pH 试 F
E玻 k玻 0.0592pH试
(三)阳离子玻璃电极
二、晶体电极
(一)电极结构 晶体电极的基本结构图16-5,其敏感膜 材料系难溶盐加压或拉制成的。能满足 室温下导电的难溶盐晶体只有少数几种, 氟化镧、硫化银、卤化银等。这类晶体 晶格能比较小,离子半径最小电荷最少 的离子F ,Ag+等参与导电。
电位分析

而产生电极电位的,即电极上发生氧化还原反应—电极上
有电子的得失与转移; 离子选择性电极是以敏感膜为基体,选择性地让一些 离子渗透,同时包含着离子的交换过程。因此,离子选择 性电极电位是由离子的交换和扩散作用产生的。 敏感膜是一种能分开两种电解质溶液,并对溶液中某种 物质有选择性响应的薄膜,它能形成膜电位,ISE被认为是 一种电化学传感器,是电位分析中应用最广泛的指示电极。
Chapter 10 Potentiometry
第十章
电位分析法
§10-1 概 述
一、定义
电位分析法指在零电流条件下,利用电极电位和 溶液中某种离子的活度或浓度之间的关系来测定待测 物含量的方法,包括直接电位法和电位滴定法。
直接电位法 电位滴定法
1. 直接电位法 (direct potentiometry) :
将电极插入被测液中,根据测得的电池电动势与
被测溶液中待测物质某种型体的平衡浓度的关系直接
求出待测物质含量的方法。 2. 电位滴定法 (potentiometric titration) : 借助滴定过程中电池电动势的突变来确定滴定 终点,根据滴定剂的体积和浓度来求得待测物质的 含量,所得是某种参与滴定反应物质的总浓度。
3. 任意的i离子选择性电极电位
任意阳离子i 的离子选择性电极的电位均等于膜内扩散
电位和膜与电解质溶液形成的内外界面的界面电位的代数 和。
膜内外表面性质完全相同,所以,内外界面扩散电位 大小相等,方向相反,相互抵消。
而膜内外界面的界面电位为:
外 内
a1 RT K1 ln ’ nF a1 a2 RT K2 ln ’ nF a2
对整个玻璃电极而言,其电极电位应是内参比电极
电位和玻璃膜电位之和:
第九章 电位分析法

a' H +
外
aH +
内
a' H +
内
p 28
式中:
aH+外, aH+内为待测溶液和内参比溶液中氢离子活度。 aH+外’, aH+内’为外水化胶层和内水化胶层中的氢离子活 度。k外、k内为玻璃外,内膜性质决定常数。若膜内外表 面性质相同,则k外=k内, aH+外‘ = aH+内’ ,则
E膜 E道,外 E道,内 0.0592 lg
EE
0 Ce 4 Ce 3
4
3
0.059 lg
aCe 4 aCe 3
p9
第二节
离子选择性电极
膜电极,又称离子选择性电极(Ion Selective Electrode,ISE) (1)敏感膜:对特定的离子有选择性的响应
(2)响应机理:与金属指示电极区别,没有电子的得失(即 氧化还原反应)
p 31
产生原因
由于玻璃膜内外结构、性质并不完全一致,导致
内外水化胶层中aH+外’ ≠ aH+内 ’ ,在这种情况下, 即使aH+外 = aH+内时, E膜也不为0。 消除或减小、稳定不对称电位方法: 在水中长时间浸泡(24h); 用标准缓冲溶液校正。
p 32
(2)碱差(钠差) 定义:普通玻璃电极的适应范围为1-10,当用 玻璃电极测定pH>10的溶液或钠离子浓度较高的溶液 时,测量值与实际值相比偏低,这种现象称为碱差
电极可用符号记为:
Hg 2C2O4 , CaC2O4 , Ca2 Hg
汞电极的电位可有下式确定
0 E EHg 2 / Hg 0.059 lg aHg 2
第十章-电位分析法

玻璃膜
15
玻璃膜电位的形成:
玻璃电极在水溶液中浸泡,形成一个三层结构,即 中间的干玻璃层和两边的水化硅胶层。 浸泡后的玻璃膜示意图:
膜电位构成:相界电位、扩散电位之和。
16
玻璃膜电位的形成:
水化硅胶层具有界面, 构成单独的一相,厚度一 般为0.01~10 μm。在水化 层,玻璃上的Na+与溶液 中的H+发生离子交换而产 生相界电位。
测定的只是某种型体离子的平衡浓度。
电位滴定法:利用电极电位的突变来指示滴定终点的
滴定分析法,是电位测量方法在容量分析中的应用。 测定的是某种参与滴定反应物质总浓度。
概
述
指示电极: 在电位分析中,将电极电位随被测电活性物
质活度变化的电极称为指示电极。
参比电极: 与被测物质无关的、电位比较稳定的、提供
的电极,K后取负号; b. Ki j 称之为电极的选择性系数; 其意义为:在相同的测定条件下,待测离子和干扰离 子产生相同电位时待测离子的活度αi与干扰离子活度αj的
Zi/Zj次方的比值:
Ki j = αi /(α j)Zi/Zj
25
离子选择性电极的性能参数
Nernst响应,线性范围和检测下限
① 线性范围:AB段对应的检测离子 的活度(或浓度)范围。(Nernst响应)
② 级差: AB段的斜率(S), 活度相差一数量级时,电位 改变值,S=2.303 RT/nF , 25℃时,一价离子S=0.0592 V, 二价离子S=0.0296 V。离子电荷数越大,级差越小,测定 灵敏度也越低,电位法多用于低价离子测定。
电极电位(25℃): EAgCl/Ag = EAgCl/Ag - 0.059lgaCl-
7
电位分析法

主要响 应离子
Na+
K+ Ag+
玻璃膜组成(摩尔分数,%) Na2O Al2O3 SiO2 11 18 71 27 11 28.8 Li2O 15 5 18 19.1 25 68 71 52.1 60
外,D
RT α外 k 外,D ln ZF α'外
内, D
RT 内 k内, D ln ZF '内
RT 外 '内 膜 k外, D k内, D ln ZF 内 '外 RT 外 ln ZF 内
(膜内外表面相同,k外,D=k内,D α’外= α’内)
RT 电 极 k' ln X F
AgX+2CN
-
= Ag(CN)2-+
X
-
可用于测定CN-
三、流动载体(液膜)电极
(一)种类
带电荷(正、负)的液膜电极 中性液膜电极
Ag-AgCl电极
内参比溶液(凝胶)
液体离子交换剂 (活性物质溶液)
(二)构造
多孔膜
(三) 带电荷的液膜电极
响应机理
膜
活性物质(缔合物)在有机相和水相中的分配系
数,分配系数越大,灵敏度越高。 流动载体
测定阳离子采用带负电荷的流动载体,测定阴离 子采用带正电荷的流动载体,形成离子缔合物
例:Ca2+电极 电活性物质:二癸基磷酸钙 溶剂:苯基磷酸二正辛酯;内参比溶液:CaCl2
(四) 中性液膜电极
O
O
O
O
O
H3C
CH 3
第六章 电位分析法

M
n
/M
0 M n / M
RT ln aM n nF
从上式可见,金属—金属离子电极的电位随
金属离子活度不同而异。这里将电极电位随待测
离子活度变化而变化的电极称为指示电极。 原则上,只要测出指示电极的电极电位, 就可根据Nernst方程式求出溶液中的离子活度 。但单一电极的绝对电位无法直接测量,在电 位分析法中,需要使用另一支电位恒定的即所
谓的参比电极与指示电极共同组成工作电池,
并测量其电动势。
设工作电池为:
-)M/Mn+‖参比电极(+ 该电池的电动势为: E 参比 - M
0
n
/M
RT 参比 - M n / M ln aM n nF RT =K ln aM n nF
上式中参比、0Mn+/M在一定温度下都是常数,可 见,aMn+可通过测量电池电动势而求得。上式是 电位分析法的基本公式及依据。
0 M n / M
RT ln aM n nF
式中:电极电位(V); 0标准电极电位(V); R理想气体常数(8.31445J∙mol-1∙K-1); T热力学温度(K); n电极反应中传递的电子数; F法拉第常数(96487); aMn+ 金属离子Mn+的活度(mol∙L-1)。
电极的电位不应有明显的变化。 参比电极的结构包括:(1)内参比电极;(2) 盐桥电解质;(3)电极尖端的一个小通道,盐桥 电解质非常缓慢地通过它,以便构成一个电通 道。
常用的参比电极有甘汞电极和银-氯化银电极。
1.甘汞电极 甘汞电极属于金 属—金属难溶盐 电极。 将一根铂丝插入汞、 甘汞(氯化亚汞)糊中,并将糊体浸入浓度一定 的氯化钾溶液中,组成甘汞电极。
电位分析法

内、外参比电极的电位值固定,且内充溶液中离子的活度 也一定,则电池电动势为:
RT EK ln ai nF
离子选择性电极的类型和结构
1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
注意:离子活度系数保持不变时,膜电位才与log ci
呈线性关系。
总离子强度调节缓冲溶液简称TISAB
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度; 0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
公式使用时注意:对阳
离子,△E不变;对阴离子,△E
前加负号或取△E的绝对值。
优点:
(1)无须绘制标准曲线
(仅需一种浓度标液) (2)无需配制或添加 TISAB (3)操作步骤简单、快 速
3、直读法--pH测定原理与方法 ⑴ 直读法:对于被测溶液中
的某种成分能够在仪器上直接读 出其浓度的方法称为直读法。如 在pH计或pNa计上就能测定pH值
影响电位测定准确性的因素
(1) 测量温度:影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上。 仪器可对前两项进行校正,但多数仅校正斜率。 温度的波动可以使离子活度变化,在测量过程中应尽量 保持温度恒定。 (2) 线性范围和电位平衡时间:一般线性范围在10-1~10-6 mol / L;平衡时间越短越好。测量时可通过搅拌使待测离子 快速扩散到电极敏感膜,以缩短平衡时间。 测量不同浓度试液时,应由低到高测量。
电位分析法

电位分析法
一、电化学基础知识
电极电位:M Mn+ + ne
金属离子受金属表面负电子的吸引聚集在金属表面,达到动态平衡,金属和盐溶液之产生一定电位差,这种电位差叫做电极电位。
能斯特方程:电极电位与待测离子间的定量关系。
电位分析法分类:
◆电位法:电极电位与溶液中所对应的离子活度有确定的关系,通过电极电位的测定,可以确定被测离子的活度。
◆电位滴定法:利用电极电位的变化来指示滴定终点,通过滴定剂体积和浓度求待测物质含量。
二、电位法(pH测定)
参比电极:常用的参比电极为甘汞电极和银-氯化银电极。
指示电极:测定pH值的指示电极为玻璃电极。
当内外玻璃膜与水溶液接触时,Na2SiO3晶体骨架中的Na+与水中的H+发生交换:
G-Na+ + H+====G-H+ + Na+
玻璃电极使用前,必须在水溶液中浸泡。
三、电位滴定法
在滴定液中插入指示电极和参比电极,通过测量电池电动势在滴定过程中pH或电位的变化来确定终点的方法。
进行有色或混浊液的滴定时,使用指示剂确定滴定终点会比较困难。
此时可采用电位滴定法。
酸碱滴定以玻璃电极为指示电极;氧化还原滴定以Pt为指示电极;沉淀滴定可采用Ag电极作指示电极;络合滴定以第三类电极为指示电极。
电位滴定终点确定方法
(1)E-V曲线法:曲线切线斜率最大对应的体积为滴定终点。
(2)ΔE/ΔV - V曲线法:曲线上极大值对应的体积点为滴定终点。
(3)Δ2E/ΔV 2 - V曲线法: Δ2E/ΔV 2=0对应的体积为滴定终点。
电位分析法

此即电位法测pH值的操作定义.
D、对 H+ 有高度选择性的指示电极,使用 范围广,不受氧化剂还原剂影响,可用于 有色、浑浊或胶态溶液的 pH 测定;响应 快 ( 达到平衡快 )、不沾污试液。
E、膜太薄,易破损,且不能用于含 F-的 溶液;电极阻抗高,须配用高阻抗的测量 仪表。 F、 通过改变玻璃膜的结构可制成对 K+、 Na+、 Ag+、 Li+等响应的电极。
(3) 溶液pH值的测定
• pH值定义:pH=-lga H+ =-lgrH+[H+] • 玻璃电极作为氢离子的指示电极,饱和 甘汞电极作为参比电极,两者插入溶液组 成如下电池:
参比电极‖未知溶液或标准缓冲溶液│玻璃电极
• 在实际操作中,未知溶液的pH值是同已知 pH值的标准缓冲溶液相比较而求得。 • 若为未知溶液,该溶液的pH值以pHx来表 示,测得的电动势为Ex,则 Ex=E玻 – ESCE + E接 • 25℃时, E玻 =K – 0.059pH
用水浸泡玻璃膜时,玻璃表面的Na+与水中的H+交换, 在表面形成一层水合硅胶层 。当组成一定时 ,玻璃电极功能 的好坏主要取决于它的表面性质。 玻璃电极使用前,必须在水溶液中浸泡,使之生成一个三 层结构,即中间的干玻璃层和两边的水化硅胶层。 浸泡后的玻璃膜示意图:
水化硅胶层的化学性质和电性质不同于干玻璃层和溶液, 具有界面,构成单独的一相,厚度一般为0.01~10μm。
(1) 构造:
• 软质球状玻璃膜: 含 Na2O 、 CaO 和 SiO2 厚 度 小 于 0.1mm 对H+选择性响应 • 内部溶液: pH6—7 的 膜 内 缓 冲 溶 液 0.1 mol/L 的KCl内参比溶液 • 内参比电极:Ag-AgCl电极
2-电位分析法

式中: K—离子选择性电极常数,在一定实验条件下为一常 数,它与电极的敏感膜、内参比电极、内参比溶液 及温度等有关; ai—为i离子的活度; ni—为i离子的电荷数。 当i为阳离子时,式中第二项取正值,i为阴离子时该 项取负值。
(3)离子选择性电极的电极电位
离子选择性电极的电极电位是内参比电极电 位和膜电位之和: φ ISE= φ 内参+ φ 膜
优点是不受溶液中氧化剂或还原剂的影响,玻璃膜 不易因杂质的作用而中毒,能在胶体溶液和有色溶 液中应用。 缺点是本身具有很高的电阻,必须辅以电子放大装
置才能测定,其电阻又随温度而变化,一般只能在
5~60℃使用。
b. 不对称电位
根据上式,当玻璃膜内、外溶液氢离子活度相同时, φ 膜应为零,但实际上测量表明φ 膜≠0,玻璃膜两 侧仍存在几到几十毫伏的电位差,这是由于玻璃膜 内、外结构和表面张力性质的微小差异而产生的, 称为玻璃电极的不对称电位φ 不。 当玻璃电极在水溶液中长时间浸泡后,可使φ 不达到 恒定值。
式中,i为待测离子,j为干扰离子;ni、nj分别 为i离子和j离子的电荷;Kij称为选择性系数。
选择性系数Kij的意义为:在相同实验条件下,产生相 同电位的待测离子活度ai与干扰离子活度nj的比值。 即
K ij
ai
aj
ni n j
Kij越小越好。 如果Kij<1,说明电极对i离子有选择性的响应; 当Kij=1,说明电极对i 离子与j离子有同等的响应; 当Kij>1,说明电极对j离子有选择性的响应。
(3)汞电极
汞电极是第三类电极的一种,它是由金属汞浸入含少 量Hg2+-EDTA配合物及被测金属离子Mn+的溶液中所 组成。 电极体系可表示为:
电位分析法的定义、分类和特点

电位分析法的定义、分类和特点1、电位分析法的定义、分类和特点定义:利用测得电极电位与被测物质离子浓度的关系求得被测物质含量的方法叫电位分析法。
分类:直接电位法――利用专用的指示电极――离子选择性电极,选择性地把待测离子的活度(或浓度)转化为电极电位加以测量,依据Nernst方程式,求出待测离子的活度(或浓度),也称为离子选择电极法。
这是二十世纪七十时代初才进展起来的一种应用广泛的快速分析方法。
·电位滴定法――利用指示电极在滴定过程中电位的变化及化学计量点相近电位的突跃来确定滴定尽头的滴定分析方法。
电位滴定法与一般的滴定分析法的根本差别在于确定尽头的方法不同。
特点:应用范围广――可用于很多阴离子、阳离子、有机物离子的测定,尤其是一些其他方法较难测定的碱金属、碱土金属离子、一价阴离子及气体的测定。
由于测定的是离子的活度,所以可以用于化学平衡、动力学、电化学理论的讨论及热力学常数的测定。
·测定速度快,测定的离子浓度范围宽。
·可以制作成传感器,用于工业生产流程或环境监测的自动检测;可以微型化,做成微电极,用于微区、血液、活体、细胞等对象的分析。
2.化学电池化学电池是由两组金属—溶液体系构成的。
每一个化学电池有两个电极。
分别浸入适当的电解质溶液中,用金属导线从外部将两个电极连接起来,同时使两个电解质溶液接触,构成电流通路。
电子通过外电路导线从一个电极流到另一个电极,在溶液中带正负电荷的离子从一个区域移动到另一个区域以输送电荷,*后在金属—溶液界面处发生电极反应,即离子从电极上取得电子或将电子交给电极,发生氧化—还原反应。
假如两个电极浸在同一个电解质溶液中,这样构成的电池称为无液体接界电池;假如两个电极分别浸在用半透膜或烧结玻璃隔开的或用盐桥连接的两种不同的电解质溶液中,这样构成的电池称为有液体接界电池。
用半透膜、烧结玻璃隔开或用盐桥连接两个电解质溶液,是为了避开两种电解质溶液的机械混合,同时又能让离子通过。
电位分析法

2、指示电极
常用的指示电极种类很多,主要有金属电极及近年来发展 起来的离子选择性电极。
惰性金属电极亦称零类电极,它是将惰性金属如铂插入含 有可溶性氧化态或还原态物质的溶液中所构成。金属铂并 不参加电极反应,在这里仅起传导电子的作用,没有离子 穿越相界面。铂电极的电位在25℃时为:
2.1 惰性金属电极
c 0.04 nE c
干扰离子 溶液离子强度 溶液pH 搅拌
第六节 电位滴定法
电位滴定法是根据工作电池电动势在滴定过程中 的变化来确定滴定终点的一种滴定分析方法。
由于电位滴定法只需观测滴定过程中电位的变化 情况,而不需知道终点电位的绝对值,因此与直 接电位法相比,受电极性质、液接电位和活度系 数等的影响要小得多。因此测定的精密度、准确 度均比直接电位法高,与滴定分析相当。
Co(NH2)2+H2O
2NH HCO
脲酶 4
3
产物铵离子在氨电极上产生电位的响应,从而 间接测定了试样中脲的含量。
四、离子选择性电极的性能
1.检测限和线性范围 检测限:电极能够有效检测待测离子的最 低活度(或浓度) 线性范围: lg aM 校准曲线的直线部分
(1)结构
(2)膜电位
说明:在一定温度下玻璃电极的膜电位与试液的pH值呈线性关系
玻璃电极的电极电位
玻璃膜电极具有内参比电极,如Ag-AgCl电 极,因此整个玻璃膜电极的电位,应是内参 比电极电位与膜电位之和,即
玻 Ag / AgCl 膜
玻 Ag / AgCl (K 0.059pH)
溶液中组成的,这类电极亦称为第二类电极。
如Ag-AgCl电极, 25℃时电极电位为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻抗高、电流小、KCl渗漏少 适宜于水溶剂 阻抗小、有渗漏、接触好 适宜非水溶液及粘稠液
二、Ag/AgCl电极
定 义:该参比电极由插入用AgCl 饱和的一定浓度(3.5M或饱和KCl溶
液)的 KCl 溶液中构成。 电极组成:Ag AgCl,(xM)KCl 电极反应:AgCl + e == Ag + Clo 电极电位: Ag 0.059 lg aCl / Ag
2
式中比值aHgY/aCaY 可视为常数,
因此得到:
0'
同上例,该电极可用于指示Ca2+活度的变化(测定时,可在试液中加入少 量HgY)。
0.0592 lg aCa 2 2
4. 零类电极(Metallic redox indicators):亦称惰性电极。 电极本身不发生氧化还原反应,只提供电子交换场所。
2 4
]
1 2
aC O 2
2 4
K sp ,CaC2O4 aCa 2
0.0592 lg aCa 2 2
代入前式得: 0 0.0592 lg
2
K sp , Ag2C2O4 K sp ,CaC 2O4
2
简化上式得: 0' 0.0592 lg aCa
2
可见该类电极可指示Ca2+活度的变化。
性。
2. Donnan电位: 选择性渗透膜或离子交换膜,它至少阻止一种离子从一个液相扩散至 另一液相或与溶液中的离子发生交换。这样将使两相界面之间电荷分布不
均匀——形成双电层——产生电位差——Donnan 电位。
这类扩散具强制性和选择性。
二、离子选择性电极分类
按ISE敏感膜组成和结构,IUPAC推荐分类:
晶体膜 均相膜
F-, Cl-, Cu+2
非均相膜 如硅橡胶膜 原电极 非晶体膜 ISE 流动载体 气敏电极 敏化电极 生物电极 刚性基质
pH,pNa 带正电荷
带负电荷 中性
+
如 NO3 , ClO4 ,BF4
2+ 2+ 如 Ca , Mg
-
-
-
如 K+
如 CO2 , NH4 电极
如酶电极,生物组织电极
从上述分类可见到所有膜电极的共性: 1)低溶解性:膜在溶液介质(通常是水)的溶解度近似为0,因此,膜材料多为玻璃、高分子树脂、低溶 性的无机晶体等; 2)导电性(尽管很小):通常以荷电离子的在膜内的迁移形式传导; 3)高选择性:膜或膜内的物质能选择性地和待测离子“结合”。通常的“结合”方式有:离子交换、 结晶 、络合。
求出待测物质含量的方法。
电位滴定法:向试液中滴加可与被测物发生氧化还原反应的试剂, 以 电极电位的变化来确定滴定终点,根据滴定试剂的消耗量间接计算待 测物含量的方法。
11.1 参比电极及其构成 定义:与被测物质无关、电位已知且稳定,提供测量电位参考的电极,称为参 比电极。前述标准氢电极可用作测量标准电极电位的参比电极。但因该 种电极制作麻烦、使用过程中要使用氢气,因此,在实际测量中,常用 其它参比电极来代替。 一、甘汞电极(Calomel electrode) 定 义:甘汞电极由汞、Hg2Cl2和已知浓度(0.1, 3.5, 4.6M)的KCl溶液组成。 电极组成:Hg Hg2Cl2,KCl(xM) ; 如下图所示。
可见,电极电位与 Cl-的活度或浓度有关。当 Cl- 浓度不同时,可得到具有不 同电极电位的参比电极。(注意:饱和甘汞电极指 KCl 浓度为4.6M)
特点:
a) 制作简单、应用广泛; b) 使用温度较低(<40oC)。但受温度影响较 大。(当T从20oC~25oC时,饱和甘汞电极 电位从0.2479V~2444V, E=0.0035 V); c) 当温度改变时,电极电位平衡时间较长; d) Hg(II)可与一些离子产生反应。
z
Sn, 虽然它们的电极电位较负,因氢在这些电极上的超电位较大,仍可
做一些金属离子的指示电极。
特 点:因下列原因,此类电极用作指示电极并不广泛。 a) 选择性差,既对本身阳离子响应,亦对其它阳离子响应; b) 许多这类电极只能在碱性或中性溶液中使用,因为酸可使其溶解; c) 电极易被氧化,使用时必须同时对溶液作脱气处理; d) 一些“硬”金属,如Fe, Cr, Co, Ni。其电极电位的重现性差; e) pM-aMn+作图,所得斜率与理论值(-0.059/n)相差很大、且难以预测;
内部参比 a内 Ag+AgCl
干玻璃 水化层 外部试液 a外
形成所谓的“水化层”。
从图可见: 玻璃膜=水化层+干玻璃层+水化层 电极的相=内参比液相+内水化层+干玻璃相+外水化层+试液相 膜电位M= 外(外部试液与外水化层之间) +g(外水化层与干玻璃之间) -g’(干玻璃与内水化层之间) -内(内水化层与内部试液之间) 设膜内外表面结构相同(g=g’),即 M 外 内
11.3 膜电位与离子选择性电极(Membrane potential and ISE)
一、膜电位及其产生 膜电位=扩散电位(膜内) + Donnan电位(膜与溶液之间) 1. 扩散电位: 液液界面或固体膜内,因不同离子之间或离子相同而浓度不同而发生 扩散即扩散电位。其中,液液界面之间产生的扩散电位也叫液接电位。 这类扩散是自由扩散,正负离子可自由通过界面,没有强制性和选择
三、离子选择性电极各论 1. pH 玻璃膜电极 玻璃电极是最早使用的膜电极。
1906年,M. Cremer(Z. Biol.,1906,47,562)首先发现玻璃电极可用于测定;
1909年,F. Haber(Z. Phys. Chem., 1909, 67,385)对其系统的实验研究; 1930年代,玻璃电极测定pH的方法是成为最为方便的方法(通过测定分隔
[ H ]内 [ H ]外 ( K 1 0.059 lg ) ( K 2 0.059 lg ) [ H ]外 表 面 [ H ]内 表 面 K 0.059 lg aH K 0.059 pH
上式为pH 值溶液的膜电位表达式或采用玻璃电极进行pH 测定的理论依据! 测定pH 值的电池组成表达式为:
开的玻璃电极和参比电极之间的电位差);
1950年代,由于真空管的发明,很容易测量阻抗为100M以上的电极电 位,因此其应用开始普及; 1960年代,对 pH 敏感膜进行了大量而系统的研究,发展了许多对 K+、 Na+、Ca2+、F-、NO3-响应的膜电极并市场化。
电极构造: 球状玻璃膜 (Na2SiO3 , 厚 0.1mm)+[ 内参比电极 (Ag/AgCl)+缓冲液] 膜电位产生机理: 当内外玻璃膜与水溶液接触时,Na2SiO3晶 体骨架中的Na+与水中的H+发生交换: G-Na+ + H+====G-H+ + Na+ 因为平衡常数很大,因此,玻璃膜内外表 层中的 Na+ 的位置几乎全部被 H+ 所占据,从而
如Pt/Fe3+,Fe2+电极, Pt/Ce4+,Ce3+电极等。
电极反应:Fe3+ + e === Fe2+
电极电位: 0.0592lg
0
aFe 3 aFe 2
可见 Pt 未参加电极反应,只提供Fe3+及Fe2+之间电子交换场所。
5. 离子选择性电极(Ion selective electrode, ISE), 在下一节中详述。
电极反应:Hg2Cl2(s) + 2e == 2Hg(l) + 2Cl电极电位:
K sp ,Hg2Cl2 0.059 aHg22 0.059 0 lg 2 0 lg aHg2 0 0.059 lg 2 2 2 aHg ( aCl )2
' 0 0.059 lg aCl
对于难离解的配合物,如Hg/HgY,CaY,Ca2+电极 电极反应:HgY2- + 2e ===Hg + Y4电极电位: 0.0592 K f ,CaY 0.0592 aHgY 0.0592 0 lg lg lg aCa
2 K f ,HgY 2 aCaY 2 0' 0.0592 lg aCa 2 2
1. 第一类电极(Electrode of the first kind):亦称金属基电极(M Mn+) 电极反应: M n ne M 电极电位: o M n / M 0.0592 lg a M n 要 求:0(Mn+/M)> 0, 如Cu, Ag, Hg 等;其它元素,如Zn, Cd, In, Tl,
3. 第三类电极:M (MX+NX+N+)
其中MX,NX是难溶化合物或难离解配合物。举例如下。
• Ag/Ag2C2O4,CaC2O4,Ca2+
电极反应:Ag2C2O4+2e==2Ag+ + C2O420.0592 电极电位: 0 lg a Ag z
因为: a Ag [
K sp , Ag2C2O4 ac O 2
0
0
0.0592 a M n lg z aM
0.0592 lg a M n z 0.0592 K sp , MX n 0 lg z ( a X )n
此类电极可作为一些与电极离子产生难溶盐或稳定配合物的阴离 子的指示电极 ; 如对 Cl-响应的 Ag/AgCl和 Hg/Hg2Cl2电极,对Y4-响应的 Hg/HgY(可在待测EDTA试液中加入少量HgY)电极。 但该类电极最为重要的应用是作参比电极。