桥梁抗震分析方法研究
地震作用下桥梁动态响应分析

地震作用下桥梁动态响应分析地震是一种破坏力极大的自然灾害,对桥梁等基础设施的安全构成严重威胁。
桥梁作为交通运输的关键节点,其在地震作用下的动态响应特性直接关系到人员生命和财产安全。
因此,深入研究地震作用下桥梁的动态响应具有重要的理论和实际意义。
一、桥梁在地震中的受力特点桥梁在地震作用下主要受到水平地震力和竖向地震力的影响。
水平地震力通常是导致桥梁结构破坏的主要因素,它会使桥梁产生水平位移、弯曲变形和剪切破坏。
竖向地震力虽然相对较小,但在某些情况下也可能引起桥梁的墩柱破坏、支座失效等问题。
此外,地震波的传播特性也会对桥梁的受力产生影响。
地震波包括纵波、横波和面波,它们的传播速度和振动方式不同,使得桥梁在不同部位受到的地震作用存在差异。
例如,面波在地表附近传播,其能量较大,对桥梁基础的影响较为显著。
二、桥梁结构对地震响应的影响1、桥梁的类型和跨度不同类型的桥梁(如梁桥、拱桥、斜拉桥等)在地震作用下的响应有所不同。
一般来说,梁桥的结构相对简单,但其跨度较小,在地震中的变形能力有限;拱桥具有较好的抗压性能,但对水平地震力的抵抗能力相对较弱;斜拉桥由于其复杂的结构体系,地震响应较为复杂,需要进行详细的分析。
桥梁的跨度也是影响地震响应的重要因素。
跨度越大,桥梁的自振周期越长,与地震波的共振可能性就越大,从而导致更大的地震响应。
2、桥墩和桥台的形式桥墩和桥台是桥梁的重要支撑结构,它们的形式和尺寸对地震响应有显著影响。
实心桥墩的抗弯和抗剪能力较强,但在地震作用下容易产生较大的内力;空心桥墩则具有较好的延性,但在强震作用下可能发生局部屈曲。
桥台的类型(如重力式桥台、轻型桥台等)也会影响桥梁与地基的相互作用,进而改变地震响应。
3、支座和伸缩缝支座是连接桥梁上部结构和下部结构的关键部件,其力学性能直接影响桥梁在地震中的变形和受力。
常见的支座类型如板式橡胶支座、盆式支座等,它们在地震中的滑移和变形特性不同,会导致桥梁的地震响应有所差异。
铁路桥梁的抗震设计与分析

铁路桥梁的抗震设计与分析铁路作为现代交通运输的重要方式,其桥梁的安全性至关重要。
在地震等自然灾害面前,铁路桥梁需要具备足够的抗震能力,以保障铁路运输的畅通和乘客的生命财产安全。
本文将对铁路桥梁的抗震设计与分析进行详细探讨。
一、铁路桥梁抗震设计的重要性铁路桥梁通常跨越河流、山谷等地形,是铁路线路中的关键节点。
一旦在地震中受损,不仅会导致铁路运输中断,还可能引发次生灾害,造成巨大的经济损失和社会影响。
例如,强烈的地震可能导致桥梁坍塌,使列车脱轨,威胁乘客生命安全;也可能损坏桥梁的基础和支撑结构,影响桥梁的长期稳定性。
因此,进行科学合理的抗震设计是确保铁路桥梁在地震中安全可靠的关键。
二、地震对铁路桥梁的影响地震作用下,铁路桥梁可能会受到多种形式的破坏。
首先是水平地震力引起的桥梁结构的位移和变形。
桥梁的梁体、墩柱等部件可能会因水平力而发生相对位移,导致连接部位的破坏,如支座的损坏、伸缩缝的失效等。
其次,竖向地震力也不可忽视。
它可能会增加桥梁结构的竖向荷载,导致桥墩的受压破坏,或者使梁体与桥墩之间的接触面产生过大的压力,影响结构的整体性。
此外,地震还可能引发地基的液化和不均匀沉降,从而削弱桥梁基础的承载能力,导致桥梁倾斜甚至倒塌。
三、铁路桥梁抗震设计的原则1、多防线设计原则在抗震设计中,应设置多重抗震防线,避免因单一构件的破坏而导致整个结构的倒塌。
例如,除了主要的承载构件外,还应考虑次要构件和连接部位的抗震性能,形成相互协同的抗震体系。
2、能力设计原则通过合理的设计,确保结构中的关键构件和部位具有足够的强度和延性,能够在地震中承受较大的变形而不发生脆性破坏。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够有效地协同工作,共同抵抗地震作用。
加强连接部位的设计,确保力的传递顺畅。
4、经济性原则在满足抗震性能要求的前提下,尽量降低工程造价,通过优化设计方案,选择合适的材料和结构形式,实现经济与安全的平衡。
桥梁延性抗震设计方法研究

桥梁延性抗震设计方法研究桥梁在地震中的表现和抵抗能力一直是抗震设计中的关键问题之一、桥梁的结构特点决定了其对震动的敏感性和脆性。
桥梁的延性是指在地震作用下,桥梁能够发生一定程度的塑性变形而不发生破坏的能力。
因此,研究桥梁延性抗震设计方法对于提高桥梁结构的抗震能力具有重要意义。
第一,基于土木工程结构的动力响应理论。
当前,桥梁抗震设计主要依据地震波的输入和结构的动力响应进行。
因此,深入研究桥梁结构在地震作用下的动力响应特征,探索桥梁结构的动力反应控制方法,对提高桥梁的抗震能力具有重要意义。
第二,采用塑性设计原理。
桥梁的延性是指在地震作用下,结构能够发生塑性变形,从而能够承受更大的能量,降低震害程度。
因此,采用塑性设计原理对桥梁进行抗震设计是有效的方法之一、研究桥梁延性抗震设计方法,需要对桥梁的受力性能进行全面的分析和评估,确保结构在地震作用下具有良好的延性。
第三,探索合理的能量耗散机制。
桥梁在地震中会受到巨大的动力荷载,因此能量的耗散是保证结构稳定性的关键。
通过合理设置耗能元件,如阻尼器、摩擦支座等,可以降低结构的震害程度。
因此,研究桥梁延性抗震设计方法需要考虑合理的能量耗散机制,并探索适用于桥梁结构的耗能元件的设计方法。
第四,考虑桥梁的整体性能。
桥梁是一个整体结构,各部分之间具有复杂的相互作用关系。
因此,研究桥梁延性抗震设计方法需要考虑桥梁结构的整体性能,而不仅仅是局部部分的性能。
通过全面的结构分析,找出桥梁结构的薄弱环节,并针对性地加强这些薄弱环节,可以提高整个桥梁结构的抗震能力。
通过以上的研究方法,可以提出一种桥梁延性抗震设计方法,该方法能够保证桥梁结构在地震作用下具有良好的延性和耗能能力,降低地震造成的破坏和震害。
同时,该方法还需要综合考虑经济性和可行性,确保抗震设计的有效性和实用性。
总之,研究桥梁延性抗震设计方法对于提高桥梁结构的抗震能力具有重要意义。
通过基于土木工程结构的动力响应理论、采用塑性设计原理、探索合理的能量耗散机制以及考虑桥梁的整体性能,可以提出一种有效的桥梁延性抗震设计方法,为实际工程提供有效的抗震设计参考。
钢筋混凝土梁桥弹塑性抗震分析方法研究

0引言钢筋混凝土梁桥作为我国桥梁结构中的主要形式,具有耐久性高、可维修性强、结构整体性好等优点,因此应用最为广泛。
在地震灾害作用下,相比其上部结构,梁桥工程中的下部结构更易发生破坏且破坏程度更为严重,这些破坏可能会造成桥梁倾斜、梁体位移或弯曲等,难以维修和修复,严重时甚至导致落梁[1-2]。
从过去的地震破坏经验中可知,梁桥工程在地震灾害作用下,其下部结构发生破坏时通常已处于弹塑性阶段,因此近年来国内外学者针对梁桥结构的弹塑性开展了大量的研究。
张振浩等[3]对钢筋混凝土梁桥结构的弹塑性进行抗震研究,考虑多点非一致激励,结合桥梁结构设计基准期内抗震可靠度的计算结果和指标,对实际工程结构进行数值模拟分析,计算结果表明:采用结构可靠度理论与结构弹塑性分析相结合的方法,可有效获取设计基准期内梁桥结构在多种地震荷载作用下的结构抗震可靠度指标。
该研究为钢筋混凝土梁桥结构的抗震分析和研究提供了一定的参考。
李喜梅等[4]研究钢筋混凝土梁桥结构材料劣化对其抗震性能的影响规律,通过对比不同材料劣化程度、不同地震荷载作用下的结构应力和位移响应,提取梁桥结构不同时期的受力特性和破坏特性,明确了材料劣化和地震荷载对梁桥结构抗震性能的影响。
该研究为钢筋混凝土梁桥的安全设计和管理提供了一定的参考。
赵杰等[5]针对城市高架桥的抗震性能,利用OpenSees 有限元软件,以某六跨连续梁桥为研究对象进行静力弹塑性和动力弹塑性分析,明确了桥墩的延性系数和承载能力以及地震荷载作用结构的变形和受力特性。
不同于前人的研究角度,本文研究纤维单元模型、集中塑性铰模型和等效线弹性分析方法在梁桥结构弹塑性抗震分析中的差异,通过Midas/Civil 有限元分析软件建立全桥模型,基于增量动力分析法对比分析3种不同分析方法的墩底弯矩、墩底剪力及墩顶位移指标等梁桥的抗震性能指标,明确不同分析方法的适用性。
1工程背景和模型建立1.1工程背景本文以实际工程结构为背景,研究对象为三跨钢筋混凝土梁桥,该桥计算跨径为20m+20m+20m=60m ;桥面净空为7m+2×0.75m 人行道;桥梁等级为B 类;桥梁设计车道数为2车道。
桥梁抗震研究综述

桥梁抗震研究综述桥梁是连接城市和乡村的重要交通枢纽,承载着车辆和行人的重要交通工程。
地震是世界范围内常见的自然灾害,桥梁在地震中往往面临严重破坏甚至倒塌的风险。
对桥梁的抗震性能进行研究,提高桥梁在地震中的承载能力和安全性,对于保障交通安全和城乡联通具有极其重要的意义。
目前,关于桥梁抗震性能的研究已经取得了很多进展,本文将综述桥梁抗震研究的现状和发展趋势,以期为相关领域的研究人员提供参考和借鉴,推动桥梁抗震性能的提升。
一、桥梁抗震研究的现状1. 桥梁抗震设计规范目前,国内外都建立了一系列规范和标准,用于规范桥梁的抗震设计和施工。
中国国家标准《公路桥梁抗震设计规范》(GB 50441-2007)、美国国家标准《桥梁设计规范》(AASHTO LRFD Bridge Design Specifications),这些规范主要包括桥梁的抗震设计参数、地震作用下的受力分析、抗震构造形式等内容,为桥梁的抗震设计提供了基本依据。
2. 桥梁抗震性能研究方法在桥梁抗震性能研究中,主要采用了试验、数值模拟和理论分析等方法。
试验包括静力试验和动力试验,通过对不同类型桥梁的地震响应进行试验观测,获取有关结构在地震作用下的变形、位移和应力等数据。
数值模拟则是通过有限元分析等方法,对桥梁在地震作用下的响应进行模拟计算,得到结构的动力特性和抗震性能参数。
理论分析主要以结构动力学和地震工程理论为基础,通过推导和计算,研究桥梁在地震中的受力、变形和破坏机理。
3. 桥梁抗震性能评估与加固技术桥梁抗震性能评估是指对已有桥梁的抗震性能进行评估分析,确定结构的抗震能力及存在的安全隐患。
针对评估结果提出相应的加固措施,包括增加剪力墙、设置阻尼器、加固桥墩等技术手段,以提高桥梁的抗震性能和安全性。
1. 多学科交叉研究随着科学技术的不断进步,桥梁抗震研究已经逐渐向多学科交叉研究的方向发展。
除了结构工程领域的研究外,还需要借助地震工程、材料科学、机械工程等多个学科的知识,开展相关研究,从而全面提高桥梁在地震中的抗震性能。
桥梁结构地震响应分析与评估方法研究

桥梁结构地震响应分析与评估方法研究地震是自然界中一种具有破坏性的自然灾害,对于桥梁结构来说,地震所带来的影响尤为重要。
因此,研究桥梁结构地震响应的分析与评估方法显得十分必要。
本文将探讨桥梁结构地震响应的分析与评估方法,以期提供有效的指导和保障桥梁结构在地震中的安全性能。
一、地震响应分析方法地震响应分析是指利用工程力学原理和地震学原理,对桥梁结构在地震作用下的动力响应进行计算和分析。
常用的地震响应分析方法包括静力弹性分析法、谐波响应分析法、时程分析法和模态分析法。
静力弹性分析法是一种简化的分析方法,假设结构具有线性弹性行为,并忽略结构的非线性效应。
该方法适用于较小震级的地震,对于大震级地震的响应评估则较为不准确。
谐波响应分析法是一种利用谐波激励模拟地震响应的分析方法。
该方法将地震作用看作是一系列正弦波组成的谐波激励,通过对结构在各个谐波激励下的响应进行分析,得到结构的地震反应。
时程分析法是一种基于实际地震波记录对结构进行响应分析的方法。
该方法将实际地震波的时程作为输入,通过数值模拟求解结构在地震作用下的动力响应。
时程分析法考虑了地震波的非线性和非平稳性特征,因此可以更准确地评估结构的地震响应。
模态分析法是一种将结构的地震响应分解为不同模态的分析方法。
该方法通过求解结构的振动模态和模态振型,得到结构在不同模态下的地震响应,并将其叠加得到总体响应。
模态分析法适用于复杂结构和多自由度系统的地震响应分析。
二、地震响应评估方法地震响应评估是指通过对桥梁结构的地震响应进行分析和评估,判断结构的安全性能和耐震能力。
常用的地震响应评估方法包括位移评估、应力评估和能量评估。
位移评估方法主要关注结构的位移响应情况,通过计算和分析结构的最大位移、塑性位移等指标,评估结构的变形程度和塑性变形能力。
位移评估方法更注重结构的整体性能和抗震能力。
应力评估方法主要关注结构的应力状态,通过计算和分析结构的最大应力、剪应力、弯矩等指标,评估结构的承载能力和抗震性能。
桥梁震害和抗震措施分析

常发生 ,主要是 因为有岸坡移动 、地基 失效 ,以及桥墩 的折 断和倾斜倒塌 。落梁 不 仅破坏桥梁结 构本身 ,还会使交通 中断 ,阻碍救援速度 和恢 复工作 ,从而引起 更 大损失。
1 桥 梁震害
地震对桥 梁的危害与很 多因素有关 ,有桥梁 的结 构型式 、体系布置 、抗震 构 造 、桥梁选址 以及地基条件 。地震 对桥梁上部结构 的破坏包 括梁移位 、落梁 、梁 端撞击 、桥 面伸缩缝损坏 、支 座损 坏等 。地震对桥梁 下部结构的破坏包括桥墩 折 断 、钢筋混凝土剥落 、系梁 开裂、挡块 失效 、倾斜等。
1 . 3伸缩缝及挡块破损
桥梁结 构体 系中抗震 性能 比较薄 弱的部 位包括伸 缩缝 和剪力键 等支承 连接 件 。在地震发生时 ,这些 支承连接件往往 发生破 坏。另外 ,经 常发 生的破 坏还有 桥梁 附属支 座移位与变形 ,以及护栏开裂和伸缩缝张开或挤压等 。
1 . 4 墩台破坏
与梁之间 ,以及梁与桥台胸墙之间。 2 . 3 桥 台和桥 墩 当主河槽与河滩分界处 的地形发生突变时 ,不适合把桥墩设置在 这些地 方 ; 位于软弱地基和容 易液化 失效地基上的桥墩基础 ,应该采用深基础 ;桥墩不宜承
地震发生 时 ,巨大的地震作用使 上部结构在纵 向 、横向发生移动 ,进而 引起
绍了一些桥 梁震害 ,并分析 了发生震 害的原 因,以及针对具体震 害提 出一 些抗震措施 。 关键 词 :桥梁结构 ;地震震 害;抗震措施
水平移动 ,进 而破坏桥梁结构 。在选择桥位 时应该 尽量避开不 良地质 区,这些不 良地质 区包 阔活动断层及其临近地段和有 可能滑坡 或崩塌地段 ,还有可能液化 的 软弱 土层地段 。因为一些原 因无法避免 时,可以采 用深基础 ,或者对地基进行处 理 ,而且桥梁 中线应与河流正交 。
桥梁设计中的抗震性能分析

桥梁设计中的抗震性能分析桥梁作为交通运输的重要枢纽,在现代社会中发挥着不可或缺的作用。
然而,地震作为一种不可预测且破坏力巨大的自然灾害,对桥梁的安全构成了严重威胁。
因此,在桥梁设计中充分考虑抗震性能至关重要。
地震对桥梁的破坏形式多种多样。
常见的有桥梁结构的倒塌、桥墩的断裂、梁体的移位以及支座的损坏等。
这些破坏不仅会导致交通中断,还可能造成严重的人员伤亡和财产损失。
为了减少地震带来的危害,桥梁设计中的抗震性能分析就显得尤为重要。
首先,我们来了解一下影响桥梁抗震性能的因素。
桥梁的结构形式是一个关键因素。
不同的结构形式在地震中的表现差异较大。
例如,简支梁桥相对连续梁桥在抗震性能上可能会有所不同。
桥梁的跨度、墩高以及墩的形式也会对其抗震能力产生影响。
较长的跨度和较高的桥墩在地震作用下更容易产生较大的变形和内力。
地基条件也是不可忽视的因素之一。
软弱地基在地震时容易发生较大的变形,从而增加桥梁结构的地震响应。
而坚实的地基则能为桥梁提供更好的支撑,减小地震的影响。
材料的性能同样会影响桥梁的抗震性能。
高强度、高韧性的材料能够更好地承受地震作用下的应力和变形。
在桥梁设计中,抗震设计方法主要包括静力法、反应谱法和时程分析法。
静力法是一种较为简单的方法,但它过于保守,不能准确反映地震的动态特性。
反应谱法考虑了结构的动力特性,能够较为合理地评估结构在地震作用下的响应。
时程分析法则通过直接输入地震波,对结构进行动态分析,可以更精确地模拟地震对桥梁的作用过程。
为了提高桥梁的抗震性能,在设计中通常会采取一系列的措施。
合理的桥梁布局是基础。
例如,尽量使桥梁的质量和刚度分布均匀,避免出现局部薄弱环节。
加强桥墩和桥台的设计,增加其强度和延性。
采用减隔震装置也是一种有效的手段。
常见的减隔震装置有橡胶支座、铅芯橡胶支座等,它们能够有效地减小地震传递到桥梁结构上的能量。
此外,对桥梁进行抗震验算也是必不可少的环节。
通过计算结构在地震作用下的内力和变形,确保其满足抗震要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁抗震分析方法研究摘要:桥梁的抗震设计是各国土木工程师现在都非常重视的问题,进行抗震分析是抗震设计的前提。
介绍了静力法、线弹性反应谱法、时程分析法、Push-over法、虚拟激励法,并对这几种分析方法的优缺点作了初步的分析。
着重介绍了随机振动虚拟激励的基本原理和特点.最后提出了有待进一步研究的几个问题。
关键词:桥梁抗震;静力法;弹性反应谱法;时程分析法;虚拟激励法1 静力法早期结构抗震计算采用的是静力理论,1900年日本大房森吉提出静力法的概念,它假设结构物各个部分与地震动具有相同的振动。
此时,结构物上只作用着地面运动加速度乘以结构物质量所产生的惯性力。
即忽略地面运动特性与结构的动力特性因素,简单地把结构在地震时的动力反应看作是静止的地震惯性力(作为地震荷载)作用下结构的内力分析。
1915年,佐野提出震度法,即根据静力法的概念提出以结构的10%的重量作为水平地震荷载,于1923年关东大地震后的次年建立了最早的桥梁下部结构工程的抗震分析方法。
从动力学的角度分析,把地震加速度看作是结构破坏的单一因素有极大的局限性,因为它忽略了结构的动力特性这一重要因素。
只有当结构物的基本固有周期比地面卓越周期小很多时,结构物在地震振动时才可能几乎不产生变形而被当作刚体,静力法才能成立。
由于其理论上的局限性,现在已较少使用,但因为它概念简单,计算公式简明扼要,在桥台和挡土结构等质量较大的刚性结构的抗震计算中仍常常用到。
2 弹性反应谱法应用反应谱法进行抗震设计,最关心的是地震力的最大值。
对于单质点体系最大地震力的计算式为:P=m|δ¨g+y¨|max=kHβW式中:KH——水平地震系数;β——动力放大系数;W——体系的总重量;水平地震系数的取值根据抗震设防的烈度水准选用。
对于一特定的地震波其加速度反应谱是不规则的,而且一个反应谱总相应于一定的体系阻尼比,实际上我们所使用的规范反应谱,是在输入大量的地震加速度记录后所绘制的很多反应谱曲线经过处理后得到的平均反应谱,平均反应谱在《公路工程抗震设计规范》(004-89)即是动力放大系数β。
所以,结构的地震反应,是以卓越周期为主要成分的地震波激励下的结构的强迫振动。
由此即反映出具有不同特征周期的不同场地土对应的反应谱,《公路工程抗震设计规范》(004-89)根据场地土的分类分别规定了5%阻尼比的不同的反应谱曲线。
对于多质点体系,其振动方程可用下式表达:[M]{δ¨}+[C]δ+[K]{δ}=-[M]{I}δ¨g (t)式中:[M]——多质点体系的质量矩阵;[C]——多质点体系的阻尼矩阵;[K]——多质点体系的刚度矩阵。
上述振动方程一般通过转换到正则坐标和振型坐标用非耦合或正交振型反应叠加求解,将多质点体系分解为多个独立的广义单质点体系,广义单质点体系的最大反应可由反应谱曲线查出。
由于地震地面运动更容易激起最低振型而不是较高振型的反应,因此仅仅需要几个振型叠加就能得到近似的而又很好的桥梁地震反应情况,尤其对于大量的少自由度桥梁体系更是如此。
一般情况下,广义单质点体系的最大反应不同时发生,因此需要将它们组合起来;同时每个振型对地震反应的贡献也是不同的,每个振型的参与情况可以通过振型参与系数得到,如下式所示Pi={φ}i[M]{I}{φ}i[M]{φ}i振型组合方法是反应谱理论的另一重要问题,是影响桥梁地震反应预测精度的关键因素。
目前各国抗震规范采用的组合方法主要是基于平稳随机振动理论的SRSS,CQC等一致激励振型组合方法。
最普遍的SRSS法,对于频率分离较好的平面结构的抗震计算有良好的精度,为大多数国家的抗震设计规范所采用,如我国现行部规JTJ004-89,美国的AASHTO 规范,欧洲的Eurocode8规范。
该方法对于中小桥梁的地震反应计算有较高精度,但对于频率密集的空间结构由于忽略了各振型间的耦合影响,通常会过高或过低地估计结构的地震反应。
CQC法是80年代初W ilson等人基于随机过程导出的比例阻尼线性多自由度体系振型组合规则。
较好地考虑了密集频率时的振型相关性,克服了SRSS法的不足。
3 时程分析法时程分析可以进行有线弹性材料行为、非线性材料滞回特征、几何非线性效应的模型分析。
但是,除了二维或三维空间坐标,必须考虑一个附加的时间坐标。
对桥梁模型进行地震时程分析,有三种可用的分析方法:①时域内的逐步积分,②时域内的标准振型时程的叠加;③频域反应的计算变换到时域内叠加。
因为对于一个特定的地震地面运动,线弹性时程反应分析得到的设计信息总量很少,因此方法②和③在总体形式上因依赖于叠加原理而受到限制。
进行时程分析可以得到数值上较为精确的分析结果,但是存在着在一些参数难以确定的问题,因而本质仍然比较模糊。
其他问题如:输入地震动;简化结构分析模型是否与实际相符;结构-基础-土相互作用问题;结构构件的非线性动力特性和屈服后的行为;数值积分的精度及稳定性等都有待于解决时程分析不仅计算量大,建立模型复杂,而且对分析结果的整理要求也很高,结果的准确性很大程度上取决于输入的地面运动的情况。
其主要缺点是计算结果过渡依赖于所选取的加速度时程曲线,离散性很大.为得到较可靠的计算结果常要计算许多时程样本,并加以统计评论,为此需要进行大量的计算.实际上只对特别重要的大跨度结构才使用该法4 Push-over法Push-over分析方法是将地震荷载等效成侧向荷载,通过对结构施加单调递增水平荷载来进行分析的一种非线性静力分析方法,它研究结构在地震作用下进入塑性状态时的非线性性能。
采用对结构施加呈一定分布的单调递增水平力的加载方式,用二维或伪三维力学模型代替原结构,按预先确定的水平荷载加载方式将结构“推”至一个给定的目标位移,来分析其进入非线性状态的反应,从而得到结构及构件的变形能力是否满足设计及使用功能的要求.尽管这一方法还有待进一步完善,但它基本可以满足工程要求。
对于桥梁结构来说,Push-over分析方法通常将相邻伸缩缝之间的桥梁结构当做空间独立框架考虑,上部结构通常假定为刚性,分析的初始阶段是对单独的排架墩在所考虑的方向上(顺桥向或横桥向)进行独立的倒塌分析,以获得构件在单调递增水平荷载作用下的整个破坏过程和变形特征,从而发现桥梁结构的薄弱环节。
Push-over方法作为一种非线性静力方法,其计算过程简便易于操作,结果可以以图形方式示出,能够计算结构从线弹性、屈服一直到极限倒塌状态的内力、变形、塑性铰位臵及转角,找出结构的薄弱部位。
Push-over方法由于其近似假定的存在及对支承条件的考虑等因素,影响了更大范围的推广应用,上述问题仍有待进一步研究。
尽管Push-over方法还有待完善,但是它对抗震分析的作用不可低估。
Push-over方法可以比较准确地给出构件的屈服顺序、承载的薄弱部位和可能发生的破坏形式等重要的信息,这些对抗震分析来说十分重要。
更重要的是,Push-over方法可作为基于可靠度和功能的结构抗震设计的工具。
从长远来看,我国规范中势必引入基于功能的抗震设计要求,因此,工程上需要简便而又有一定精度的地震响应分析方法。
对于特定类型的结构,可以选择不同的设计方案,用Push-over方法得到结构失效时能抵抗的最大的水平荷载以及相应的内力和变形状态。
这些结果可以方便地用于可靠度指标的计算中。
Push-over方法以其方便、快捷、计算较准确、能反映抗震能力与需求的特点,在今后抗震设计方法的发展中有着较大的发展空间。
5 虚拟激励法随机振动是一门应用概率统计方法研究随机荷载作用下结构动力性态的技术学科.上世纪50年代末,由于航天工程的推动,在工程振动的研究中引入了概率和数理统计理论,极大的推动了对随机振动的研究.随机振动描述了客观存在的不确定性,在土木、机械、航空和航海等工程领域得到了广泛应用随机振动方法较充分地考虑了地震发生的统计特性,被广泛认为是一种较为先进合理的抗震分析工具.已被1995年颁布的欧洲桥梁规范采用.大连理工大学建立的虚拟激励法作为一种新的随机振动分析方法,已对被认为很困难的多点非均匀随机激励问题给出精确高效的计算方法,在普通微机上已可快速而精确地计算有数千自由度、几十个地面支座的大跨度多点地震激励问题,达到了实用要求。
虚拟激励法的基本原理虚拟激励法的基本原理可用图1的单源激励问题予以阐述.Sxx(ω)为一个零值平稳随机激励x(t)的自功率谱密度;H(ω)为结构频率响应函数,则任意输出响应量y(t)也为平稳随机过程,其功率谱密度如图1(a)右端.当线性系统作用单位简谐激励eiωt时,相应的响应为Heiωt,如图1(b).显然,当作用为简谐激励时~x= Sxxeiωt,其相应的响应必为~y= SyyHeiωt,如图1(c).将带“~”的量称为虚拟量.考虑简谐激励~x= Sxxeiωt作用于该线性系统,容易证明响应量~y和自谱密度函数Syy有如下关系式~y*~y =|~y |2=|H |2Sxx(ω) =Syy(ω)(1)同样,容易证明互谱密度函数Sxy、Syx同激励x和响应y之间有如下等式成立~x*~y = Sxx(ω)e-iωtSxx(ω)Heiωt=Sxx(ω)H =Sxy(ω)(2)~y*~x = Sxx(ω)H*e-iωtSxx(ω)eiωt=H*Sxx(ω)=Syx(ω)(3)在上述虚拟简谐激励~x = Sxx(ω)eiωt作用下,考虑两个响应量~y1、~y2,其相应的频率响应函数分别为H1和H2,如图1(d),则有~y1*~y2= Sxx(ω)H1*e-iωtSxx(ω)H2eiωt=H*1Sxx (ω)H2=Sy1y2(ω)~y2*~y1= Sxx(ω)H2*e-iωtSxx(ω)H1eiωt=H*2Sxx (ω)H1=Sy2y1(ω)(4)由式(2) ~(4)可以看出,通过引入虚拟激励~x= Sxxeiωt 可以很方便地通过简谐振动分析计算结构随机响应的功率谱.以上通过对单源激励问题的说明对随机振动虚拟激励的基本原理进行了简要的介绍.参考文献[1] 赵岩.桥梁抗震的线性/非线性分析方法研究[D].大连:大连理工大学,2003.[2] Shi Z Y,Law S S. Structural Damage Localization from Modal Strain Energy Change[J].Journal of Sound and Vibration,1998,218(5):825-844.11。