Bayes分类器设计实验报告

合集下载

bayes 分类器设置实验总结

bayes 分类器设置实验总结

bayes 分类器设置实验总结Bayes 分类器设置实验总结在机器学习领域中,分类算法是一个常见的任务之一。

Bayes 分类器是一种基于概率统计的分类算法,它基于贝叶斯定理对样本进行分类。

在本次实验中,我们将对Bayes 分类器的设置进行实验,并总结实验结果。

一、实验目的Bayes 分类器是一种简单但有效的分类算法,通过实验设置我们的目的是验证Bayes 分类器在不同参数下的分类效果,并探索如何对其进行优化。

我们希望通过实验的设计和分析,能够决定最佳的参数设置,并对Bayes 分类器的性能有更深入的了解。

二、数据集选择在进行实验之前,我们需要选择一个合适的数据集作为实验对象。

数据集应具备以下特点:1. 包含有标签的样本数据:由于Bayes 分类器是一种监督学习算法,我们需要有样本的标签信息来进行分类。

2. 具备多类别分类的情况:我们希望能够测试Bayes 分类器在多类别分类问题上的表现,以便更全面地评估其性能。

三、实验设置1. 数据预处理:根据所选数据集的特点,我们需要对数据进行适当的预处理。

可能的预处理步骤包括特征选择、特征缩放、处理缺失值等。

2. 分类器参数设置:Bayes 分类器的性能会受到不同参数的影响,我们希望通过实验找到最佳的参数设置。

例如,在朴素贝叶斯分类器中,我们可以选择不同的先验概率分布,或者使用不同的平滑技术来处理零概率问题。

3. 评价指标选择:为了评估分类器的性能,我们需要选择合适的评价指标。

常见的评价指标包括准确率、召回率、精确率和F1 分数等。

四、实验结果在实验完成后,我们将根据所选的评价指标对实验结果进行分析和总结。

我们可以比较不同参数设置下的分类器性能,并选择最佳的参数设置。

此外,我们还可以考虑其他因素对分类器性能的影响,如数据预处理方法和样本量等。

五、实验总结在本次实验中,我们通过对Bayes 分类器的设置进行实验,得到了一些有价值的结果和经验。

根据实验结果,我们可以总结以下几点:1. 参数设置的重要性:Bayes 分类器的性能受到参数设置的影响。

贝叶斯分类 实验报告

贝叶斯分类 实验报告

机电学院通信工程系实验报告课程名称: 模型识别实验名称:贝叶斯分类实验实验地点:信息楼105 指导老师: 侯强实验时间: 2013.06.15 提交时间:2013.06.19 班级: 075102 – 04姓名:肖敬轩学号:20101000639图1引进新样本,分类前(样本为绿色) 图2新样本分类后 从上图可以看出引进的新样本按照分界边界方程把它们分类,即把分类边界左边的归为鲈鱼类,把分类边界右边的归为鲑鱼类。

第二题 1)此题中判别边界与第一题一样,都是一条直线,且垂直于均值的连线,但不一定通过连线的中点,而是通过x0的表达式为:)()(P )(P ln )(21x j i j i 2ji 2j i 0μμωωμμσμμ---+=的点。

故在第一题的基础上求出x0,即可求出判别边界的表达式。

2)编写代码如下:% x 是第一类数据,每一列代表一个样本(两个特征)x1(1,:) = normrnd(10,4,1,20);x1(2,:) = normrnd(12,4,1,20);x2(1,:) = normrnd(11,4,1,20);x2(2,:) = normrnd(14,4,1,20);plot(x1(1,:),x1(2,:),'bo');hold onplot(x2(1,:),x2(2,:),'ro');mx1=mean(x1');%均值mx2=mean(x2');hold on plot(mx1(:,1),mx1(:,2),'g*',mx2(:,1),mx2(:,2),'g*');u=1/2*(x1+x2);%均值估计e=1/2*((x1-u)*(x1-u)'+(x2-u)*(x2-u)');%协方差估计u1=[10;12];u2=[11;14];w=u1-u2;x0=1/2*(u1+u2)-(16/(u1-u2).^2)*log10(2/3)*(u1-u2);%假设先验概率之比为2/3 b=x0(2)-k*x0(1);k=-(mx1(:,1)-mx2(:,1))/(mx1(:,2)-mx2(:,2));%z=(mx1+mx2)/2;%b=z(2)-k*z(1);x=5:20;y=k*x+b;hold onplot(x,y);axis equal3)运行以上代码,得到如下图:(其中绿色*为两类样本的均值)从上图可以看出,判别边界是一条垂直于均值连线但不通过连线中点的直线,因此我们已按照要求把该图像画出。

2018-分类器实验报告-word范文模板 (16页)

2018-分类器实验报告-word范文模板 (16页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==分类器实验报告篇一:Bayes分类器设计实验报告装订线模式识别实验报告:学院计算机科学与技术专业 xxxxxxxxxxxxxxxx学号xxxxxxxxxxxx姓名xxxx指导教师xxxx201X年xx月xx日题目Bayes分类器设计一、实验目的对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

二、实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知叶斯公式计算出后验概率: ???及给出待识别的X的情况下,根据贝(2)利用计算出的后验概率及决策表,按下面的公式计算出采取险的条件风(3)对(2)中得到的a个条件风险值风险最小的决策????则就是最小风险贝叶斯决策。

,即进行比较,找出使其条件三、实验内容假定某个局部区域细胞识别中正常和非正常两类先验概率分别为正常状态:P (w1)=0.9;异常状态:P(w2)=0.1。

现有一系列待观察的细胞,其观察值为x:-3.9847-3.5549-1.2401-0.9780 -0.7932 -2.8531-2.7605-3.7287-3.5414-2.2692 -3.4549 -3.0752-3.9934 2.8792-0.97800.7932 1.1882 3.0682-1.5799-1.4885-0.7431-0.4221 -1.1186 4.2532已知类条件概率是的曲线如下图:类条件概率分布正态分布分别为N(-2,0.25)、N(2,4)试对观察的结果进行分类。

四、实验要求1)用matlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。

2)根据例子画出后验概率的分布曲线以及分类的结果示意图。

3)如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。

Bayes分类器算法

Bayes分类器算法

⇒ x ∈ωi
2、具体步骤如下 A).算出各类别特征值的均值 B).求出特征值的协方差矩阵 C).将第二步所得矩阵代入判别函数 g1(x)、g2(x) D).将待测试样本集数据依次代入 g1(x)- g2(x),若 g1(x)- g2(x)>0,则判断其为第一类,反
之为第二类。 3、流程图
确定特征及先验概率
体重: clear all; load FEMALE.txt; load MALE.txt; fid=fopen('test2.txt','r'); test1=fscanf(fid,'%f %f %c',[3,inf]); test=test1';
fclose(fid); Fmean = mean(FEMALE); Mmean = mean(MALE); Fvar = std(FEMALE); Mvar = std(MALE); preM = 0.9; preF = 0.1; error=0; Nerror=0; figure; for i=1:300
Nerror = Nerror +1; end; else plot(test(i,1),test(i,2),'k*'); if (test(i,3)=='F')
Nerror = Nerror +1; end end hold on; end; title('身高体重不相关最小风险的 Bayes 决策'); ylabel('身高(cm)'),zlabel('体重(kg)'); error = Nerror/300*100; sprintf('%s %d %s %0.2f%s','分类错误个数:',Nerror,'分类错误率为:',error,'%')

实验一图像的贝叶斯分类一、实验目...

实验一图像的贝叶斯分类一、实验目...

实验一图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件HP D538、MATLAB三、实验原理1 基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。

并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。

此过程中,确定阈值是分割的关键。

对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。

最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。

而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。

类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。

上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。

这时如用全局阈值进行分割必然会产生一定的误差。

分割误差包括将目标分为背景和将背景分为目标两大类。

实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。

这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。

图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。

如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。

如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。

假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。

Bayes分类器原理分析以及实现

Bayes分类器原理分析以及实现

Bayes分类器原理分析以及实现编程环境:python 3.7jupyter notebook⽂章说明:这⾥只是贝叶斯分类器的原理进⾏分析以及实现,重点关注其中的数学原理和逻辑步骤,在测试等阶段直接调⽤了python机器学习的库。

基本步骤:输⼊类数,特征数,待分样本数输⼊训练样本数和训练样本集计算先验概率计算各类条件概率密度计算各类的后验概率若按最⼩错误率原则分类,则根据后验概率判定若按最⼩风险原则分类,则计算各样本属于各类时的风险并判定# 导⼊基本库import pandas as pdimport numpy as npimport mathimport matplotlib.pyplot as plt%matplotlib inline%config InlineBackend.figure_format = 'png'数据预处理colume_names = ['','gender','height','weight','size']df= pd.read_excel('data/gender.xlsx',index_col=0,names=colume_names)df.head(5)gender height weight size1⼥163.062.036.02⼥158.042.036.03男168.067.042.04男180.067.041.05男180.075.046.0df.shape(571, 4)这⾥可以看到数据有4个维度,分别为性别、⾝⾼、体重、鞋码,共有571条记录。

下⾯做⼀些简单的处理:# 性别数据转换df.replace('男',1,inplace=True)df.replace('⼥',2,inplace=True)df.head(5)gender height weight size12163.062.036.022158.042.036.031168.067.042.041180.067.041.0gender height weight size 51180.075.046.0# 男⽣⼥⽣数据分开male_df = df.loc[df['gender']==1]female_df = df.loc[df['gender']==2]female_df.head(5)gender height weight size 12163.062.036.022158.042.036.092160.045.036.0102163.048.037.0112161.045.036.01、单个特征——⾝⾼为了更加深⼊得理解贝叶斯分类器原理,我们从简单的⼀维特征开始。

贝叶斯分类算法实验报告

贝叶斯分类算法实验报告

贝叶斯分类算法实验报告贝叶斯分类算法是一种基于统计学原理的分类算法,在文本分类、垃圾邮件过滤和情感分析等领域得到了广泛应用。

本实验通过使用Python语言和sklearn库实现了贝叶斯分类算法,并在果蔬分类数据集上进行了实验。

实验数据果蔬分类数据集是一个有监督的分类数据集,包含了81个样本和9个特征。

特征包括水分、纤维、硬度、色泽、含糖量、口感、储存期、气味和价格。

样本的分类标签包括红萝卜、西红柿和黄瓜三种类型。

实验过程首先,我们需要将数据集划分为训练集和测试集,我们选择将数据集的70%用作训练集,30%用作测试集。

然后,我们需要对数据进行预处理,包括特征选择和标准化。

对于特征选择,我们可以使用卡方检验进行特征评估。

```pythonfrom sklearn.feature_selection import SelectKBest, chi2对于标准化,我们可以使用z-score标准化方法进行处理。

最后,我们可以使用sklearn库中的GaussianNB类实现高斯朴素贝叶斯分类算法。

结果分析我们使用准确率和混淆矩阵来评估算法的性能。

首先,我们计算了算法在测试集上的准确率,结果为0.8。

accuracy = accuracy_score(y_test, y_pred)print('Accuracy: {:.2f}%'.format(accuracy * 100))```混淆矩阵可以用来查看分类器在每个类别中的表现,包括正确分类数和错误分类数。

混淆矩阵的行表示实际分类结果,列表示预测分类结果。

混淆矩阵结果为:```[[8 0 1][1 5 0][2 0 9]]```我们可以看到,分类器在红萝卜和黄瓜两个类别上表现良好,但在西红柿一类中有错误分类。

这可能是由于数据集中这个类别的样本数量较少,导致算法对于这个类别的分类效果较差。

总结。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类一、实验目的通过使用贝叶斯分类算法,实现对数据集中的样本进行分类的准确率评估,熟悉并掌握贝叶斯分类算法的实现过程,以及对结果的解释。

二、实验原理1.先验概率先验概率指在不考虑其他变量的情况下,某个事件的概率分布。

在贝叶斯分类中,需要先知道每个类别的先验概率,例如:A类占总样本的40%,B类占总样本的60%。

2.条件概率后验概率指在已知先验概率和条件概率下,某个事件发生的概率分布。

在贝叶斯分类中,需要计算每个样本在各特征值下的后验概率,即属于某个类别的概率。

4.贝叶斯公式贝叶斯公式就是计算后验概率的公式,它是由条件概率和先验概率推导而来的。

5.贝叶斯分类器贝叶斯分类器是一种基于贝叶斯定理实现的分类器,可以用于在多个类别的情况下分类,是一种常用的分类方法。

具体实现过程为:首先,使用训练数据计算各个类别的先验概率和各特征值下的条件概率。

然后,将测试数据的各特征值代入条件概率公式中,计算出各个类别的后验概率。

最后,取后验概率最大的类别作为测试数据的分类结果。

三、实验步骤1.数据集准备本次实验使用的是Iris数据集,数据包含150个Iris鸢尾花的样本,分为三个类别:Setosa、Versicolour和Virginica,每个样本有四个特征值:花萼长度、花萼宽度、花瓣长度、花瓣宽度。

2.数据集划分将数据集按7:3的比例分为训练集和测试集,其中训练集共105个样本,测试集共45个样本。

计算三个类别的先验概率,即Setosa、Versicolour和Virginica类别在训练集中出现的频率。

对于每个特征值,根据训练集中每个类别所占的样本数量,计算每个类别在该特征值下出现的频率,作为条件概率。

5.测试数据分类将测试集中的每个样本的四个特征值代入条件概率公式中,计算出各个类别的后验概率,最后将后验概率最大的类别作为该测试样本的分类结果。

6.分类结果评估将测试集分类结果与实际类别进行比较,计算分类准确率和混淆矩阵。

贝叶斯分类器报告

贝叶斯分类器报告

实验报告一、实验目的通过上机编程加深对贝叶斯分类器分类过程的理解,同时提高分析问题、解决问题、实际操作的能力。

二、实验数据说明实验数据来源于/ml/,详细说明请见附件一。

数据源的完整名称是Wine Data Set,是对3种不同的酒进行分类。

这三种酒包括13种不同的属性。

13种属性分别为:Alcohol,Malic acid,Ash,Alcalinity of ash,Magnesium,Total phenols,Flavanoids,Nonflavanoid phenols,Proanthocyanins,Color intensity,Hue,OD280/OD315 of diluted wines,Proline。

在“wine.data”文件中,每行代表一种酒的样本,共有178个样本;一共有14列,其中,第一列为类标志属性,共有三类,分别记为“1”,“2”,“3”;后面的13列为每个样本的对应属性的样本值。

其中第1类有59个样本,第2类有71个样本,第3类有48个样本。

三、朴素贝叶斯分类算法分析贝叶斯分类器是用于分类的贝叶斯网络。

该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。

对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式:P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 而由贝叶斯公式:P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x)其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。

贝叶斯分类实验报告doc

贝叶斯分类实验报告doc

贝叶斯分类实验报告篇一:贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯分类年级XX级专业信息与计算科学学生姓名学号 1207010220理学院实验时间:XX年12月2日学生实验室守则一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。

二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。

三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。

四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。

五、实验中要节约水、电、气及其它消耗材料。

六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。

七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。

仪器设备发生故障和损坏,应立即停止实验, 并主动向指导教师报告,不得自行拆卸查看和拼装。

八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。

九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。

十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。

H^一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。

学生所在学院:理学院专业:信息与计算科学班级: 信计121篇二:数据挖掘-贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯的实现年级专业学生姓名学号00学院实验时间:年月曰13篇三:模式识别实验报告贝叶斯分类器模式识别理论与方法课程作业实验报告实验名称:Generating Pattern Classes 实验编号:Proj02-01规定提交日期:XX年3月30日实际提交日期:XX年3 月24日摘要:在熟悉贝叶斯分类器基本原理基础上,通过对比分类特征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。

贝叶斯实验报告

贝叶斯实验报告

贝叶斯实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】HUNAN UNIVERSITY人工智能实验报告题目实验三:分类算法实验学生姓名匿名学生学号 02xx专业班级智能科学与技术1302班指导老师袁进一.实验目的1.了解朴素贝叶斯算法的基本原理;2.能够使用朴素贝叶斯算法对数据进行分类3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器4.学会对于分类器的性能评估方法二、实验的硬件、软件平台硬件:计算机软件:操作系统:WINDOWS10应用软件:C,Java或者Matlab相关知识点:贝叶斯定理:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A 的条件概率,其基本求解公式为:贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。

直接给出贝叶斯定理:朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

朴素贝叶斯分类的正式定义如下:1、设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合。

3、计算。

4、如果,则。

那么现在的关键就是如何计算第3步中的各个条件概率。

我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。

即3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。

又因为各特征属性是条件独立的,所以有:整个朴素贝叶斯分类分为三个阶段:第一阶段: 准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。

knime贝叶斯实验报告总结

knime贝叶斯实验报告总结

knime贝叶斯实验报告总结一、引言Knime是一款开源的数据分析平台,可以方便地进行数据处理、建模和可视化等操作。

贝叶斯分类器是其中一种常用的机器学习算法,可以用于分类问题。

本报告旨在介绍使用Knime进行贝叶斯分类器实验的过程和结果。

二、实验目的本次实验旨在探究使用Knime进行贝叶斯分类器的效果,并通过对比不同参数设置下的预测结果,寻找最优参数组合。

三、实验步骤1. 数据准备:选择适合贝叶斯分类器的数据集,并将其导入Knime中。

2. 数据预处理:对数据进行缺失值填充、特征选择、归一化等处理。

3. 模型训练:将处理后的数据集分为训练集和测试集,使用Naive Bayes Learner节点建立贝叶斯分类器模型,并通过Cross Validation节点进行交叉验证。

4. 模型评估:使用Scorer节点对模型进行评估,并根据评估结果调整参数。

5. 结果分析:通过比较不同参数组合下的预测准确率和其他指标,确定最优参数组合。

四、实验结果1. 数据集选择:本次实验选择了UCI Machine Learning Repository中的Iris数据集,该数据集包含150个样本,每个样本有4个特征和一个类别标签。

数据集中的三种不同花卉的类别标签分别为Iris Setosa、Iris Versicolour和Iris Virginica。

2. 数据预处理:对于缺失值填充,使用Missing Value节点将缺失值替换为平均值;对于特征选择,使用Correlation Filter节点选取相关性较弱的特征;对于归一化,使用Normalize节点将特征值缩放到0-1之间。

3. 模型训练:将处理后的数据集分为训练集(70%)和测试集(30%),使用Naive Bayes Learner节点建立贝叶斯分类器模型,并通过Cross Validation节点进行交叉验证。

交叉验证结果显示,在默认参数下,模型在测试集上的准确率为95%。

贝叶斯算法实验报告

贝叶斯算法实验报告

贝叶斯算法实验报告近年来,随着机器学习的发展,贝叶斯算法越来越受到关注。

本文将介绍我们在使用贝叶斯算法时所进行的实验及结果。

实验背景为了提高机器学习算法在实际应用中的准确性和效率,我们需要对其进行参数调整和优化。

其中,贝叶斯算法作为一种概率模型,通过对先验知识进行更新,能够更好地进行参数调整,从而提高算法的效率和准确性。

实验流程我们选取了一个分类问题作为实验对象,具体步骤如下:1. 数据集选择我们使用了一份开源数据集,该数据集包含了一些图片的特征和标签,其中标签为0或1,表示该图片是否为某种特定物体。

2. 数据预处理对数据进行预处理是机器学习中非常重要的一步。

在本实验中,我们对数据进行了以下预处理:- 将图片转换为灰度图,并调整大小为28x28像素,减少算法运算的难度;- 对图片进行二值化处理,将像素点的灰度值设置为0或255。

3. 模型训练我们使用了贝叶斯算法中的朴素贝叶斯分类器对数据进行训练。

具体步骤如下:- 将数据集分为训练集和测试集,比例为8:2;- 对训练集进行特征提取,获得每个标签属性的概率分布;- 计算出测试集每个样本属于各个标签的后验概率,并选择具有最高概率的标签为其分类结果。

4. 模型评估我们使用了准确率和召回率作为模型评估指标。

具体计算方法如下:- 准确率 = (分类结果正确的样本数) / (测试集总数)- 召回率 = (分类结果正确的正样本数) / (正样本总数)实验结果分类器在测试集上的准确率为97.5%,召回率为97.4%。

我们认为这个结果是比较好的,说明朴素贝叶斯分类器在该问题上表现优异。

结论与展望本实验使用朴素贝叶斯分类器对一组图片进行了分类预测,并通过准确率和召回率对其进行了评估。

实验结果表明朴素贝叶斯分类器在该问题上表现良好。

但是,我们也意识到该算法还有一些局限性,例如对特征之间的独立性假设过于简单。

在今后的研究中,我们将会探索更多的机器学习算法,并尝试应用到更广泛的应用场景中。

Bayes分类器设计

Bayes分类器设计

Bayes分类器设计实验⼆ Bayes 分类器设计⼀、实验⽬的通过实验,加深对统计判决与概率密度估计基本思想、⽅法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理与⽅法。

⼆、实验内容设计Bayes 决策理论的随机模式分类器。

假定某个局部区域细胞识别中正常(a 1)与⾮正常(a 2)两类先验概率分别为正常状态:P(a 1)=0、9; 异常状态:P(a 2)=0、1。

三、⽅法⼿段Bayes 分类器的基本思想就是依据类的概率、概密,按照某种准则使分类结果从统计上讲就是最佳的。

换⾔之,根据类的概率、概密将模式空间划分成若⼲个⼦空间,在此基础上形成模式分类的判决规则。

准则函数不同,所导出的判决规则就不同,分类结果也不同。

使⽤哪种准则或⽅法应根据具体问题来确定。

四、Bayes 算法1、实验原理多元正太分布的概率密度函数由下式定义112211()exp ()()2(2)T dp X X X µµπ-??=--∑-∑ 由最⼩错误概率判决规则,可得采⽤如下的函数作为判别函数()(|)(),1,2,,i i i g x p X P i N ωω==L这⾥,()i P ω为类别i ω发⽣的先验概率,(|)i p X ω为类别i ω的类条件概率密度函数,⽽N 为类别数。

设类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p X ω,i=1,2,……,N 服从正态分布,即有(|)i p X ω~(,)i i N µ∑,那么上式就可以写为1122()1()exp ()(),1,2,,2(2)T i i dP g X X X i N ωµµπ-??=--∑-=∑L由于对数函数为单调变化的函数,⽤上式右端取对数后得到的新的判别函数替代原来的判别函数()i g X 不会改变相应分类器的性能。

因此,可取111()()()ln ()ln ln(2)222T i i i i i i d g X X X P µµωπ-=--∑-+-∑- 显然,上式中的第⼆项与样本所属类别⽆关,将其从判别函数中消去,不会改变分类结果。

贝叶斯分类器设计原理与实现

贝叶斯分类器设计原理与实现

贝叶斯分类器设计原理与实现贝叶斯分类器是一种基于贝叶斯定理的机器学习算法,常被用于文本分类、垃圾邮件过滤等任务。

本文将介绍贝叶斯分类器的设计原理和实现。

一、贝叶斯分类器的原理贝叶斯分类器基于贝叶斯定理,该定理描述了在已知一些先验条件下,如何通过新的观测数据来更新我们对于某个事件发生概率的判断。

在分类任务中,我们希望通过已知的特征,预测出一个样本属于某一类别的概率。

在贝叶斯分类器中,我们通过计算后验概率来决定样本的分类。

后验概率是指在已知某个条件下,事件发生的概率。

根据贝叶斯定理,后验概率可以通过先验概率和条件概率来计算。

先验概率是指在没有任何其他信息的情况下,事件发生的概率;条件概率是指在已知其他相关信息的情况下,事件发生的概率。

贝叶斯分类器根据特征的条件独立性假设,将样本的特征表示为一个向量。

通过训练数据,我们可以计算出每个特征在不同类别中的条件概率。

当有一个新的样本需要分类时,我们可以根据贝叶斯定理和特征的条件独立性假设,计算出该样本属于每个类别的后验概率,从而实现分类。

二、贝叶斯分类器的实现贝叶斯分类器的实现主要包括训练和预测两个步骤。

1. 训练过程训练过程中,我们需要从已知的训练数据中学习每个特征在不同类别下的条件概率。

首先,我们需要统计每个类别出现的频率,即先验概率。

然后,对于每个特征,我们需要统计它在每个类别下的频率,并计算出条件概率。

可以使用频率计数或者平滑方法来估计这些概率。

2. 预测过程预测过程中,我们根据已训练好的模型,计算出待分类样本属于每个类别的后验概率,并选择具有最大后验概率的类别作为最终的分类结果。

为了避免概率下溢问题,通常会将概率取对数,并使用对数概率进行计算。

三、贝叶斯分类器的应用贝叶斯分类器在自然语言处理领域有广泛的应用,尤其是文本分类和垃圾邮件过滤。

在文本分类任务中,贝叶斯分类器可以通过学习已有的标记文本,自动将新的文本分类到相应的类别中。

在垃圾邮件过滤任务中,贝叶斯分类器可以通过学习已有的垃圾邮件和正常邮件,自动判断新的邮件是否为垃圾邮件。

贝叶斯分类实验报告

贝叶斯分类实验报告

贝叶斯分类实验报告贝叶斯分类实验报告引言:贝叶斯分类是一种经典的机器学习算法,它基于贝叶斯定理,通过计算给定特征条件下某个类别的概率来进行分类。

在本次实验中,我们将探索贝叶斯分类算法的原理和应用,并通过实验验证其性能。

一、实验目的本次实验的目的是通过使用贝叶斯分类算法,对一组给定的数据集进行分类,并评估其分类性能。

通过实验,我们希望了解贝叶斯分类算法的原理和优势,以及在实际应用中的效果。

二、实验方法1. 数据集准备:我们从公开数据集中选择了一个包含多个特征和标签的数据集,用于训练和测试贝叶斯分类器。

数据集包含了不同种类的样本,其中每个样本都有一组特征和对应的标签。

2. 数据预处理:在进行分类之前,我们对数据集进行了预处理。

首先,我们对数据进行了清洗,去除了缺失值和异常值。

然后,我们对特征进行了标准化处理,以确保它们具有相似的尺度。

3. 模型训练:我们使用训练集对贝叶斯分类器进行了训练。

在训练过程中,贝叶斯分类器会计算每个类别的先验概率和每个特征在给定类别下的条件概率。

这些概率将用于后续的分类过程。

4. 模型评估:我们使用测试集对训练好的贝叶斯分类器进行了评估。

评估过程中,我们计算了分类器的准确率、精确率、召回率和F1值等指标,以综合评估其性能。

三、实验结果经过实验,我们得到了以下结果:1. 准确率:贝叶斯分类器在测试集上的准确率达到了90%,表明其在分类任务中具有较高的准确性。

2. 精确率和召回率:贝叶斯分类器在不同类别上的精确率和召回率表现较好。

其中,类别A的精确率为85%,召回率为92%;类别B的精确率为92%,召回率为88%。

3. F1值:综合考虑精确率和召回率,我们计算了贝叶斯分类器的F1值。

结果显示,贝叶斯分类器的F1值为0.89,说明其在平衡准确率和召回率方面表现良好。

四、实验讨论本次实验结果表明,贝叶斯分类器在处理多类别分类问题上具有较高的准确性和性能。

然而,我们也注意到一些潜在的局限性和改进空间。

作业一 Bayes分类器设计

作业一 Bayes分类器设计

作业一 Bayes 分类器设计一 实验目的对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

二 实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j ii i i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==c j j j ii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x == )2,2(~)(2∑μN x p 则k a 就是最小风险贝叶斯决策。

三 实验程序及结果分析clcclearx =[0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099];y =[2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.06812.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.2948 1.77142.3939 1.5648 1.9329 2.2027 2.4568 1.7523 1.6991 2.48831.72592.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.94492.3801 2.2373 2.1614 1.9235 2.2604];z =[0.5338 0.8514 1.0831 0.4164 1.1176 0.5536 0.6071 0.4439 0.4928 0.5901 1.0927 1.0756 1.0072 0.4272 0.43530.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.85441.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548];x2 =[1.4010 1.2301 2.0814 1.1655 1.3740 1.1829 1.76321.97392.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.26142.0071 2.1831 1.7909 1.3322 1.1466 1.7087 1.5920 2.93531.46642.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.03532.6030 1.2327 2.1465 1.5673 2.9414];y2 =[1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 1.1405 1.0678 0.8050 1.2889 1.4601 1.4334 0.7091 1.2942 1.3744 0.9387 1.2266 1.1833 0.8798 0.5592 0.5150 0.9983 0.9120 0.7126 1.2833 1.1029 1.2680 0.7140 1.2446 1.3392 1.1808 0.5503 1.4708 1.1435 0.7679 1.1288];z2 =[0.6210 1.3656 0.5498 0.6708 0.8932 1.4342 0.9508 0.7324 0.5784 1.4943 1.0915 0.7644 1.2159 1.3049 1.14080.9398 0.6197 0.6603 1.3928 1.4084 0.6909 0.8400 0.53811.3729 0.7731 0.7319 1.3439 0.8142 0.9586 0.7379 0.7548 0.7393 0.6739 0.8651 1.3699 1.1458];samp1=[x' y' z'];samp2=[x2' y2' z2'];u1=mean(samp1,1) %求均值u2=mean(samp2,1)length1=length(samp1) ;%样本数据的个数length2=length(samp2);E1=cov(samp1) %协方差矩阵E2=cov(samp2)%r1=std(samp1,0,1) %求均方差%r2=std(samp2,0,1)pw1=0.6;pw2=0.4;%判别函数 gi(x)%其中(i=1,2),d为x的维数,此处d=3%计算(1 1.5 0.6 ) (1.2 1.0 0.55) (2.0 0.9 0.68) (1.2 1.5 0.89) (0.23 2.33 1.43) a1=[1 1.5 0.6] ;a2=[1.2 1.0 0.55];a3=[2.0 0.9 0.68];a4=[1.2 1.5 0.89];a5=[0.23 2.33 1.43];A=[a1' a2' a3' a4' a5'];w0=-1.5*log(2*pi);%计算gi(x),利用公式 p(wi|x)=p(x|wi)*p(wi)/p(x) 求出 p(wi|x)for i=1:5g1a(i)=-0.5*(A(:,i)-u1')'*inv(E1)*(A(:,i)-u1')-0.5*log(det(E1))+log(pw1)+w0;g2a(i)=-0.5*(A(:,i)-u2')'*inv(E2)*(A(:,i)-u2')-0.5*log(det(E2))+log(pw2)+w0;pw1a(i)=exp(g1a(i))/(1/((2*pi)^1.5*(det(E1))^0.5)*exp(-0.5*(A(i)-u1')'*inv(E1)*(A(i)-u1'))) ;%计算p(w1|ai)pw2a(i)=exp(g2a(i))/(1/((2*pi)^1.5*(det(E2))^0.5)*exp(-0.5*(A(i)-u2')'*inv(E2)*(A(i)-u2'))) ;%计算p(w2|ai)Ra1(i)=pw2a(i)*6;Ra2(i)=pw1a(i)*1;endfigure(1)plot3(x,y,z,'r*') %第一类hold onplot3(x2,y2,z2,'bp') %第二类for i=1:5if g1a(i)>g2a(i)plot3(A(1,i),A(2,i),A(3,i),'go')elseplot3(A(1,i),A(2,i),A(3,i),'m^')endendgrid onlegend('第一类','第二类','被分在第一类','被分在第二类');figure(2)plot3(x,y,z,'r*') %第一类hold onplot3(x2,y2,z2,'bp') %第二类for i=1:5if Ra2(i)>Ra1(i)plot3(A(1,i),A(2,i),A(3,i),'go')elseplot3(A(1,i),A(2,i),A(3,i),'m^')endendgrid onlegend('第一类','第二类','被分在第一类','被分在第二类');实验结果:样本的概率密度函数)1,1(~)(1∑μN x p ,)2,2()(2∑=μN x p其中]7802.0,0304.2,4187.0[1=μ,]9494.0,0514.1,9058.1[2=μ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=∑⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=∑0923.00098.00575.00098.00754.00205.00575.00205.03376.010642.00014.00039.00014.00755.00148.00039.00148.03198.01,,,,,,,,,,,,,。

统计学习_朴素贝叶斯分类器实验报告

统计学习_朴素贝叶斯分类器实验报告

作业6编程题实验报告(一)实验内容:编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。

用讲义提供的训练数据进行试验,观察分类器在121.x x m ==时,输出如何。

如果在分类器中加入Laplace 平滑(取∂=1),结果是否改变。

(二)实验原理:1)朴素贝叶斯分类器:对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计.在实验中,朴素贝叶斯分类器问题可以表示为下面的式子:~1*arg max ()()Di y i y p y p x y ==∏ 其中,~()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。

2)Laplace 平滑:在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。

解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数∂。

依然采用最大后验概率准则.(三)实验数据及程序:1)实验数据处理:在实验中,所用数据中变量2x 的取值,对应1,2,3s m I ===讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果.2)实验程序:比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取∂=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是∂=0时,特定的Laplace 平滑情况。

实现函数:[kind ] =N_Bayes_Lap(X1,X2,y ,x1,x2,a )输入参数:X1,X2,y 为已知的训练数据;x1,x2为测试样本值;a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑. 输出结果:kind ,输出的分类结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模式识别实验报告题目: Bayes 分类器设计学 院 计算机科学与技术 专 业 xxxxxxxxxxxxxxxx 学 号 xxxxxxxxxxxx 姓 名 xxxx 指导教师 xxxx2015年xx 月xx 日装 订 线Bayes分类器设计一、实验目的对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

二、实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率:(2)利用计算出的后验概率及决策表,按下面的公式计算出采取的条件风险(3)对(2)中得到的a个条件风险值进行比较,找出使其条件风险最小的决策,即则就是最小风险贝叶斯决策。

三、实验内容假定某个局部区域细胞识别中正常和非正常两类先验概率分别为正常状态:P(w1)=0.9;异常状态:P(w2)=0.1。

现有一系列待观察的细胞,其观察值为x:-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532已知类条件概率是的曲线如下图:类条件概率分布正态分布分别为N(-2,0.25)、N(2,4)试对观察的结果进行分类。

四、实验要求1)用matlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。

2)根据例子画出后验概率的分布曲线以及分类的结果示意图。

3)如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。

五、实验程序最小错误率贝叶斯决策分类器设计x=[-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.269 2 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4 885 -0.7431 -0.4221 -1.1186 4.2532 ] pw1=0.9 pw2=0.1 e1=-2; a1=0.5 e2=2;a2=2m=numel(x) %得到待测细胞个数pw1_x=zeros(1,m) %存放对w1的后验概率矩阵pw2_x=zeros(1,m) %存放对w2的后验概率矩阵results=zeros(1,m) %存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0 %正常细胞elseresult(i)=1 %异常细胞endenda=[-5:0.05:5] %取样本点以画图 n=numel(a)pw1_plot=zeros(1,n)pw2_plot=zeros(1,n)for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) %计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) endfigure(1)hold onplot(a,pw1_plot,'k-',a,pw2_plot,'r-.')for k=1:mif result(k)==0plot(x(k),-0.1,'b*') %正常细胞用*表示elseplot(x(k),-0.1,'rp') %异常细胞用五角星表示end;end;legend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞')xlabel('样本细胞的观察值') ylabel('后验概率')title('后验概率分布曲线')grid onreturn实验内容仿真x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 , -3.7287 , -3.5414 , -2.2692 , -3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.579 9 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ]disp(x)pw1=0.9pw2=0.1[result]=bayes(x,pw1,pw2)最小风险贝叶斯决策分类器设计function [R1_x,R2_x,result]=danger(x,pw1,pw2)m=numel(x) %得到待测细胞个数R1_x=zeros(1,m) %存放把样本X判为正常细胞所造成的整体损失R2_x=zeros(1,m) %存放把样本X判为异常细胞所造成的整体损失result=zeros(1,m) %存放比较结果e1=-2a1=0.5e2=2a2=2%类条件概率分布px_w1:(-2,0.25) px_w2(2,4)r11=0r12=2r21=4r22=0%风险决策表for i=1:m %计算两类风险值R1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))+r21 *pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))+r22 *pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))endfor i=1:mif R2_x(i)>R1_x(i)%第二类比第一类风险大result(i)=0 %判为正常细胞(损失较小),用0表示elseresult(i)=1 %判为异常细胞,用1表示endenda=[-5:0.05:5] %取样本点以画图n=numel(a)R1_plot=zeros(1,n)R2_plot=zeros(1,n)for j=1:nR1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2))+r 21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2))R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2))+r 22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2))%计算各样本点的风险以画图endfigure(1)hold onplot(a,R1_plot,'b-',a,R2_plot,'g*-')for k=1:mif result(k)==0plot(x(k),-0.1,'b^')%正常细胞用上三角表示elseplot(x(k),-0.1,'go')%异常细胞用圆表示end;end;legend('正常细胞','异常细胞','Location','Best')xlabel('细胞分类结果')ylabel('条件风险')title('风险判决曲线')grid onreturn实验内容仿真x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 , -3.7287 , -3.5414 , -2.2692 , -3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.5799 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ]disp(x)pw1=0.9pw2=0.1[R1_x,R2_x,result]=danger(x,pw1,pw2)六、实验结果和数据最小错误率贝叶斯决策后验概率曲线与判决结果在一张图上:后验概率曲线如图所示,带*的绿色曲线为判决成异常细胞的后验概率曲线;另一条平滑的蓝色曲线为判为正常细胞的后验概率曲线。

根据最小错误概率准则,判决结果见曲线下方,其中“上三角”代表判决为正常细胞,“圆圈”代表异常细胞。

各细胞分类结果:0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 10为判成正常细胞,1为判成异常细胞最小风险贝叶斯决策风险判决曲线如图2所示,其中带*的绿色曲线代表异常细胞的条件风险曲线;另一条光滑的蓝色曲线为判为正常细胞的条件风险曲线。

相关文档
最新文档