平面向量的基本定理及坐标表示
第二节向量基本定理及坐标表示
2. 平面向量基本定理及坐标表示 (1)平面向量基本定理 不共线 向量,那么对于这一 定理:如果e1,e2是同一平面内的两个 平面内的任意向量a, 有且只有 一对实数λ1、λ2,使 a=λ1e1+λ2e2 .其中, 不共线的向量e1,e2 叫做表示这一平面内 所有向量的一组基底. (2)平面向量的正交分解 把一个向量分解为两个互相垂直 的向量,叫做把向量正交分解. (3)平面向量的坐标表示 ①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位 向量i,j作为基底.对于平面内的一个向量a,有且只有一对实数x、 y,使a=xi+yj.把有序数 (x,y) 对叫做向量a的坐标,记作a= , (x,y) 叫a在x轴上的坐标, y x 其中 叫a在y轴上的坐标. ②设OA=xi+yj,则 向量OA的坐标(x,y) 就是终点A的坐标,即若 (x,y) ,反之亦成立(O是坐标原点). OA=(x,y),则A点坐标为
1 )b, 3
)=
1 9
,
∴
1 (m+n)=mn,即 3
1 1 m n
=3.
题型二 平面向量的坐标运算
【例2】已知O(0,0)、A(1,2)、B(4,5)及OP=OA+tAB,试 问: (1)当t为何值时,P在x轴上?P在第二象限? (2)四边形OABP能否构成平行四边形?若能,求出相应的t 值;若不能,请说明理由.
第二节 平面向量的基本定理及坐标表示
基础梳理
1. 两个向量的夹角 (1)定义 非零 向量a和b,作OA=a,OB=b,则∠AOB=θ叫做 已知两个 向量a与b的夹角. (2)范围 向量夹角θ的范围是 0°≤θ≤180° ,a与b同向时, 夹角θ= 0° ;a与b反向时,夹角θ= 180° . (3)向量垂直 如果向量a与b的夹角是 90°,则a与b垂直,记作 a⊥b .
平面向量的基本定理及坐标表示平面向量的坐标运算公式推导用已知向量表示未知向量
一、共面向量基本定理1.如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。
(x,y不全为零)2.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
3.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择两个不共线的向量,平面内的任何一个向量都可以唯一表示,这样几何问题就可以转化为代数问题。
4.平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。
5.当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。
(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。
二、平面向量的坐标运算AB+BC=AC;ABAC=CB;(λμ)a=λ(μa);(λ+μ)a= λa+μa;a·a=|a|²;a·b=b·a等。
在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。
三、向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0<=>a⊥b(6)a=kb<=>a//b(7)e1·e2=|e1||e2|cosθ=cosθ四、基底在向量中的应用:(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。
五、用已知向量表示未知向量:用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。
平面向量的基本定理及坐标表示课件
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
已知 a=(1,0),b=(2,1), (1)当 k 为何值时,ka-b 与 a+2b 共线. → → (2)若AB=2a+3b,BC=a+mb 且 A、B、C 三点共线,求 m 的值.
解析: (1)ka-b=k(1,0)-(2,1)=(k-2,-1). a+2b=(1,0)+2(2,1)=(5,2). ∵ka-b 与 a+2b 共线, ∴2(k-2)-(-1)×5=0, 1 即 2k-4+5=0,得 k=- . 2
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → (2)∵CA=(-2,-4),BC=(1,1), → → → → → ∴MN=CN-CM=-2BC-3CA =(-2,-2)-(-6,-12)=(4,10). 设 M(x1,y1),N(x2,y2), → → 则CM=(x1-3,y1-2),CN=(x2-3,y2-2), → → → → ∵CM=3CA,CN=-2BC, ∴(x1-3,y1-2)=(-6,-12).
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → → → 1 解析: ∵2DC=AB,∴2DC=e2,∴DC= e2. 2 → → → → 又∵BC=BA+AD+DC, → 1 1 ∴BC=-e2+e1+2e2=e1-2e2. → → → → 又由MN=MA+AB+BN得 → 1→ → 1→ MN=2DA+AB+2BC 1 3 1 1 =- e1+e2+ e1-2e2= e2. 2 2 4
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
(x2-3,y2-2)=(-2,-2),
x1-3=-6 x2-3=-2 ∴ , , y1-2=-12 y2-2=-2 x1=-3 x2=1 ∴ , , y1=-10 y2=0
平面向量基本定理及坐标运算
答案
D
解析
→ ⊥AB →, →, → 因为AB 分别以AB 1 2 所以以 A 为原点, 1 AB2所
在直线为 x 轴,y 轴建立平面直角坐标系.设 B1(a,0),B2(0,b), O(x,y), → =AB → +AB → =(a,b),即 P(a,b). 则AP 1 2 → |=|OB → |=1,得(x-a)2+y2=x2+(y-b)2=1. 由|OB 1 2 所以(x-a)2=1-y2≥0,(y-b)2=1-x2≥0. 1 → 2 2 1 由|OP|<2,得(x-a) +(y-b) <4, 1 即 0≤1-x +1-y <4.
x2-x12+y2-y12.
4.向量平行与垂直的条件 设 a=(x1,y1),b=(x2,y2),则 (1)a∥b⇔ x1y2-x2y1=0 .
x1x2+y1y2=0 . a ± (3)a≠0,则与 a 平行的单位向量为 |a| .
(2)a、b 均不为 0 时,a⊥b⇔
→ ⊥AB → ,|OB → |=|OB → |=1,AP →= 5.(2013· 重庆)在平面上,AB 1 2 1 2 1 → → → → |的取值范围是( AB1+AB2.若|OP|<2,则|OA 5 A.(0, 2 ] 5 C.( 2 , 2] 5 7 B.( 2 , 2 ] 7 D.( 2 , 2] )
答案 A
解析
B 中不能是空间向量,C 中 λ1e1+λ2e2 一定在平面 α
内,D 中 λ1,λ2 是唯一的.
→ =(3,7),AB → =(-2,3),对称中心为 O, 2.在▱ABCD 中,AD → 等于( 则CO ) 1 B.(-2,-5) 1 D.(2,5)
1 A.(-2,5) 1 C.(2,-5)
2.3 平面向量的基本定理及坐标表示
2.3 平面向量的基本定理及坐标表示6、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、平面向量的正交分解及坐标表示: ()y x y x ,=+=.8、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
)1=λ,设()()()332211,,,,,y x C y x B y x A ,则⑴ 段AB 中点坐标为()2121,y y x x ++,⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.课堂训练 一、选择题1、平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC OA OB αβ=+,其中α、β∈R,且α+β=1,则点C 的轨迹方程为 ( )A 、3x+2y-11=0B 、(x-1)2+(y-2)2=5 C 、2x-y=0 D 、x+2y-5=02、若向量a =(x+3,x 2-3x -4)与相等,已知A (1,2)和B (3,2),则x 的值为A 、-1B 、-1或4C 、4D 、1或-43、已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是( )A 、(1,5)或(5,5)B 、(1,5)或(-3,-5)C 、(5,-5)或(-3,-5)D 、(1,5)或(5,-5)或(-3,-5)4、设i 、j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且j i OA 24+=,j i 43+=,则△OAB 的面积等于( )A 、15B 、10C 、7.5D 、55、己知P 1(2,-1) 、P 2(0,5) 且点P 在P 1P 2的延长线上,|2|21PP P P =, 则P 点坐标为( )A 、(-2,11)B 、()3,34C 、(32,3)D 、(2,-7)6、一个平行四边形的三个顶点的坐标分别是(5,7),(-3,5),(3,4),则第四个顶点的坐标不可能是。
8.2 平面向量的分解及向量的坐标表示
58
因为k a − b 与 a + 3b 平行,所以3(k − 2) + 7 = 0 ,即得 k = − 7 3 a − b = (k − 2, −1) = (− , −1) , a + 3b = (7,3) , 此时k 3
1
则 a + 3b
= −3(k a − b)
,即此时向量 a + 3b 与 ka − b 方向相反。
运算类型 几何方法
坐标方法
运算性质
a +b =b +a
(a +b) +c = a +(b +c)
向量的加 1.平行四 边形法则2. a+b=(x +x2, y +y2) 法 1 1 三角形法 则 向量的 减法
a−b =(x1 −x2, y1 −y2)
AB + BC = AC
a − b = a + (−b )
向量与函数的综合
高考总复习·数学 高考总复习 数学
已知向量 u = ( x, y) v = ( y,2 y − x) 的对应关系用 v = f (u) 表示。 与 (1)证明:对于任意向量 a, b 及常数m,n恒有 成立;
f (ma + nb) = mf (a) + nf (b)
(2)设 a = (1,1), b = (1,0) ,求向量 f (a) 及 f (b) 的坐标; (3)求使 f (c) = ( p, q) ,(p,q为常数)的向量 故 f (ma + nb) = (ma2 + nb2 ,2ma2 + 2nb2 − ma1 − nb1 )
e1
2
二.平面向量的坐标表示 在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 i , j → 作为基底。由平面向量的基本定理知,该平面内的任一向量 a 可 → a a 表示成 → = xi + yj ,由于→与数对(x,y)是一一对应的,因此把(x,y)叫 做向量 a 的坐标,记作 a =(x,y),其中x叫作在x轴上的坐标,y叫 做在y轴上的坐标。
平面向量的基本定理及坐标表示 课件
d
a AB (4,5) (2,2) (2,3)
yj
a (x,y)叫做向量 a 的坐标,记作
j
x a (x, y)
O
x叫做 a 在x轴上的坐标,
i xi
y叫做 a 在y轴上的坐标,
正交单位
基底
(1)向量
i ,
j
方向 与
(x,y)叫做向量的坐标表示.
x 轴y轴同向,且 i 1,0 j 0,1
i j 1, i 与j垂直
a (2)对于给定向量 ,必有一对实数(x,y)与它对应;
思考? 在平面直角坐标系中:
点
(x, y)
?
向量
(x, y)
平面向量的正角分解及坐标表示.
如图,光滑斜面上一个木块受到的重力
为G,下滑力为F1,木块对斜面的压力
为F2,这三个力的方向分别如何?
三者有何相互关系?
物理背景:
F1
向量的
G
F2
正交分解
三.平面向量的正角分解及坐标表示.
y
a xi +y j
一、平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e1,e2 叫做表示这一平面内 所有向量的 一组基底 .
说明: 1、把不共线的非零向量 e1,e2 叫做表示 这一平面内所有向量的一组基底.
两个非零向量 a,b
B
b
AOB 叫做向量
O aA
a 和 b 的夹角.注意:同起点
夹角的范围:(0 180 ) B
a
ObB
0
a
平面向量基本定理及坐标表示
B.(2, 1) 2
D.(1,3)
解析 ∵A(0,2),B(-1,-2),C(3,1), ∴BC=(3,1)-(-1,-2)=(4,3). 设D(x,y),∵AD =(x,y-2)B,C =2AD , ∴(4,3)=(2x,2y-4).∴x=2,y=7 .
2
2.已知a=(4,2),b=(x,3),且a∥b,则x等于(B )
2
8-2x= (16+x)
题型分类 深度剖析
题型一 平面对量基本定理 【例1】如图所示,在平行四边形ABCD中,
M,N分别为DC,BC旳中点,已知AM =c, AN =d,试用c,d表达AB ,AD .
思维启迪 直接用c、d表达AB、AD有难度,可换一 种角度,由 AB、AD表达 AM、AN ,进而解方程组可 求 AB、 A.D
(x-4)2+(y-1)2=1,
2分 4分 6分
8分
解得
x 4
5 5
或x 4
5 5
.
y
1
25 5
y
1
2
5
5
10分
d ( 20 5 , 5 2 5 )或d ( 20 5 , 5 2 5 ). 12分
5
5
5
5
探究提向升量平行旳坐标公式实质是把向量问题转 化为实数旳运算问题.经过坐标公式建立参数旳方 程,经过解方程或方程组求得参数,充分体现了方程 思想在向量中旳应用.
知能迁移3 已知点O(0,0),A(1,2),B(4, 5)且 OP OA t AB, (1)求点P在第二象限时,实数t旳取值范围; (2)四边形OABP能否为平行四边形?若能,求出 相应旳实数t;若不能,请阐明理由. 解 ∵O(0,0),A(1,2),B(4,5), ∴ OA =(1,2),AB =(4-1,5-2)=(3,3). (1)设P(x,y),则OP =(x,y),若点P在第 二象限, 则 x<0 且(x,y)=(1,2)+t(3,3), y>0
平面向量的基本定理及坐标运算
一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。
平面向量基本定理及向量坐标表示
平面向量基本定理及向量坐标表示一、平面向量基本定理平面向量基本定理是平面向量运算中的重要基石。
基本定理表明,一个平面向量可以通过两个非零平面向量的线性组合来表示。
设有平面向量 a 和 b,以及任意实数 k1 和 k2,则有:a和b,以及任意实数 k1 和 k2,则有:v = k1a + k2b = k1a + k2b其中,k1 和 k2 是实数,称为 a 和 b 的系数,v 是由 a 和 b 组成的平面向量。
a和b的系数,v是由a和b组成的平面向量。
这一定理的证明较为简单,可根据向量加法和数量乘法的定义进行推导。
二、向量坐标表示向量坐标表示是在向量运算中常用的表示方法。
它将向量转化为有序数对或有序三元组的形式,便于进行计算和研究。
以平面向量为例,设平面上有向量 v,其起点坐标为 (x1, y1),终点坐标为 (x2, y2)。
则向量 v 的坐标表示为:v,其起点坐标为(x1, y1),终点坐标为 (x2, y2)。
则向量v的坐标表示为:其中,Δx = x2 - x1,Δy = y2 - y1。
同样,可以进行类似的推导,将三维空间中的向量用坐标表示。
向量坐标表示可以便捷地进行向量的加法、减法和数量乘法等运算,是向量分析的基础。
三、小结本文介绍了平面向量基本定理及向量坐标表示。
平面向量基本定理表明一个平面向量可以通过两个非零平面向量的线性组合来表示。
向量坐标表示将向量转化为有序数对或有序三元组的形式,方便进行运算和研究。
了解和掌握平面向量基本定理和向量坐标表示,对于进一步学习和应用向量运算具有重要意义。
平面向量基本定理及坐标表示知识点
平面向量基本定理及坐标表示知识点一、平面向量基本定理。
1. 定理内容。
- 如果B e_1,B e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量B a,有且只有一对实数λ_1,λ_2,使B a=λ_1B e_1+λ_2B e_2。
其中B e_1,B e_2叫做表示这一平面内所有向量的一组基底。
2. 基底的要求。
- 不共线:这是基底的重要条件。
若两个向量共线,则不能作为基底来表示平面内的所有向量。
例如,在平面内,如果B e_1与B e_2共线,那么对于与B e_1不共线的向量B a,就无法用B e_1和B e_2的线性组合来表示。
3. 唯一性。
- 对于给定的基底B e_1,B e_2和向量B a,实数对λ_1,λ_2是唯一确定的。
这可以通过反证法来证明,如果存在两组不同的实数对(λ_1,λ_2)和(μ_1,μ_2)使得B a=λ_1B e_1+λ_2B e_2=μ_1B e_1+μ_2B e_2,那么(λ_1-μ_1)B e_1+(λ_2-μ_2)B e_2=B0,由于B e_1,B e_2不共线,所以λ_1=μ_1且λ_2=μ_2。
二、平面向量的坐标表示。
1. 向量的坐标定义。
- 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量B i,B j 作为基底。
对于平面内的一个向量B a,由平面向量基本定理可知,有且只有一对实数x,y,使得B a=x B i+y B j,我们把有序数对(x,y)叫做向量B a的坐标,记作B a=(x,y)。
2. 坐标运算。
- 加法运算:若B a=(x_1,y_1),B b=(x_2,y_2),则B a+B b=(x_1+x_2,y_1+y_2)。
- 减法运算:若B a=(x_1,y_1),B b=(x_2,y_2),则B a-B b=(x_1-x_2,y_1-y_2)。
- 数乘运算:若B a=(x,y),λ∈ R,则λB a=(λ x,λ y)。
平面向量基本定理及坐标表示
平面向量基本定理及坐标表示一.知识点总结1.平面向量基本定理:如果1e u r 、2e u u r 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r ,有且只有一对实数1λ、2λ,使1122a e e λλ=+u r u u r r .(不共线的向量1e u r 、2e u u r 作为这一平面内所有向量的一组基底)(1)平面内用来表示一个向量的基底有无数组;(2)若基底选取不同,则表示同一向量的实数21,λλ可以相同,也可以不同;(3)任意不共线的两个向量都可以作为基底。
2.向量的坐标表示与坐标运算:(1)平面向量的坐标表示:在坐标系下,平面上任何一点都可用一对实数(坐标)来表示 取x 轴、y 轴上两个单位向量i , j 作基底,则平面内作一向量a =x i +y j , 记作:a =(x, y) 称作向量a 的坐标(2).注意:①每一平面向量的坐标表示是唯一的;②设A(1x ,1y ) B(2x , 2y ) 则()1212,y y x x --= 结论:同理可得,一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。
(3).两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
(4).两个向量相等的充要条件是两个向量坐标相等。
(5).实数与向量积的坐标运算:已知a =(x, y)和实数λ,则λa =λ(x i +y j )=λx i +λy j ∴λa =(λx, λy) 结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
3.向量平行的坐标表示: 结论:a ≠01221=-y x y x 二.练习1.在梯形ABCD 中,AB CD CD AB 2=F E ,BA DC ,b AB a AD ==,b a ,EF BC DC ,,知ABCD 为矩形,且AB AD 2=,又ADE ∆为等腰直角三角形,F 为ED 的中点,2121,,,e e e e 以==为基底,表示向量,,,.4.已知a =(x,3),b =(3,-1)且a ∥b ,则x 等于( )A .-1B .9C .-9D .15.已知A (3,-6),B (-5,2),且A 、B 、C 三点在一条直线上,则C 点坐标不可能是( )A .(-9,6)B .(-1,-2)C .(-7,-2)D .(6,-9)6.已知向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4)7.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n 等于( )A. 12 B .2 C .-12D .-2 8.已知向量a =(x,1),b =(1,x )方向相反,则x =________.9..已知M ={a |a =(1,2)+λ(3,4),λ∈R },N ={a |a =(-2,-2)+μ(4,5),μ∈R },则M ∩N =________.10.已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),如果A 、B 、C 三点共线,则实数k =________.11.如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值,使A 、B 、C 三点共线.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问:(1)t 为何值时,P 在x 轴上,P 在y 轴上,P 在第二象限(2)四边形OABP 能否成为平行四边形,若能,求出t 的值,若不能,请说明理由.13.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于( )A. 34 B .-34 C. 43 D .-4314.已知A (2,3),B (6,-3),P 是靠近A 的线段AB 的一个三等分点,则点P 的坐标是________.15.已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),当BC →∥DA →时,求x ,y 应满足的关系式.16.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .17.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.18.已知A (1,1)、B (3,-1)、C (a ,b ).(1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC u u u r =2AB u u u r ,求点C 的坐标.19.下列向量中,不是单位向量的有: ( )(1)()θθsin ,cos -= (2)()5lg ,2lg =(3)()22,x x c -=(4)()x x d ,1-=个 个 个 个。
平面向量的坐标与基本定理
平面向量的坐标与基本定理平面向量是解决平面几何问题的重要工具之一。
在平面直角坐标系中,我们可以用坐标表示平面中的向量,并且可以利用向量的坐标进行运算和推导。
本文将介绍平面向量的坐标表示方法以及基本定理的应用。
一、平面向量的坐标表示方法1. 平面直角坐标系在平面直角坐标系中,我们通常将横轴称为x轴,纵轴称为y轴。
一个平面向量可以用其在x轴和y轴上的投影(即坐标)表示。
例如,一个向量a在x轴上的投影为aₓ,在y轴上的投影为aᵧ。
那么向量a的坐标表示为(aₓ,aᵧ)。
2. 向量的坐标运算(1)向量的加法运算:设有两个向量a=(aₓ,aᵧ)和b=(bₓ,bᵧ),则它们的和向量c=a+b的坐标表示为(cₓ,cᵧ),其中cₓ=aₓ+bₓ,cᵧ=aᵧ+bᵧ。
(2)向量的数乘运算:设有一个向量a=(aₓ,aᵧ)和一个实数k,那么向量ka的坐标表示为(kaₓ,kaᵧ),其中kaₓ=kaₓ,kaᵧ=kaᵧ。
二、平面向量的基本定理1. 向量共线定理如果有两个非零向量a和b,它们的坐标表示分别为(aₓ,aᵧ)和(bₓ,bᵧ),那么a与b共线的充要条件是存在一个不为零的实数k,使得ka=b。
即a与b共线的条件是:aₓ/bₓ=aᵧ/bᵧ。
2. 平行四边形定理设有两个向量a=(aₓ,aᵧ)和b=(bₓ,bᵧ),那么以a和b为邻边的平行四边形的面积S等于向量a和b的叉乘的模长。
即S=|a×b|=|aₓbᵧ-aᵧbₓ|。
3. 向量的数量积向量的数量积是指两个向量之间的乘积。
设有两个向量a=(aₓ,aᵧ)和b=(bₓ,bᵧ),那么向量a和b的数量积a·b等于aₓbₓ+aᵧbᵧ。
三、平面向量的应用1. 判断向量共线根据向量共线定理,我们可以通过计算向量的坐标比值来判断向量是否共线。
如果两个向量的坐标比值相等,则它们共线;否则,它们不共线。
2. 计算平行四边形的面积根据平行四边形定理,我们可以通过计算向量的叉乘的模长来求平行四边形的面积。
人教版数学必修第二册6.3平面向量基本定理及坐标表示课件
1
1
A. a+ b
2
4
2
2
C. a+ b
3
3
B.
D.
1
a+
3
1
a+
2
5
b
6
3
b
4
因为DE=EC.
所以
1
= (
2
1
2
1
+)=
3
4
= + = a+ b.
1
)= (
2
1
+
2
+)
法二
2.已知在△ABC中,点O满足 + + =0,点P是OC上异于端点
即ቊ
1=6−
=1
解得ቊ
=5
5.已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,
则
1
-
=________.
2
由向量a=(2,3),b=(-1,2),
得ma+nb=(2m-n,3m+2n),a-2b=(4,-1).
由ma+nb与a-2b共线,
2−
得
4
=
3+2
所以 =. 因为DE=EC,所以
1
2
1
3
a+ b.
2
4
所以 = + = + =
1
1
3
)= +
2
2
4
=
1
1
= = ,
2
2
1
+ ( - )=
2
1
2
+ (-
法一
跟踪训练
1.(一题多解)如图,在梯形ABCD中,BC=2AD,DE=EC,设 =a,
平面向量的基本定理及坐标表示
∵A,B,C三点共线,∴―A→B ,―A→C 共线,
∴-2×(4-k)=-7×(-2k),
解得k=-23.
课前·双基落实
答案:A
课·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
2.(2017·贵阳监测)已知向量m=(λ+1,1),n=(λ+2,2),若 (m+n)∥(m-n),则λ=________. 解析:因为m+n=(2λ+3,3),m-n=(-1,-1),又 (m+n)∥(m-n),所以(2λ+3)×(-1)=3×(-1),解得 λ=0. 答案:0
a∥b⇔ x1y2-x2y1=0 .
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
[小题体验] 1.已知a=(4,2),b=(-6,m),若a∥b,则m的值为______.
答案:-3 2.(教材习题改编)已知a=(2,1),b=(-3,4),则3a+4b=_____.
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
[谨记通法]
平面向量坐标运算的技巧 (1)向量的坐标运算主要是利用向量加、减、数乘运算的法 则来进行求解的,若已知有向线段两端点的坐标,则应先求向 量的坐标. (2)解题过程中,常利用向量相等则其坐标相同这一原则, 通过列方程(组)来进行求解.
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
考点二 平面向量的坐标运算
[题组练透]
1.向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为( )
A.(-3,4)
B.(3,4)
C.(3,-4)
平面向量的基本定理及坐标表示
例3、已知 ABCD的三个顶点 A、B、C的坐标分别为(2,1)、 (1,3)、(3, 4),求顶点D的坐标.
巩固练习: 已知A(1,1)、B(3, 0)、C(2, 5)是 平行四边形的三个顶点,求第 四个顶点D的坐标.
四、向量平行的坐标表示
设a (x1, y1),b (x2, y2 ),其 中b 0,则a b的充要条件是
a b x1 x2且y1 y2
4、向量平行的坐标表示
a b x1y2 x2 y1 0
六、作业
➢习题5.4第3、4、 7、8题.
➢ 完成《三维设计》
谢谢同学们
再 见
例1、如图,用基底i、j表示向量a、
b、c、d,并求出它们的坐标.A2 5 Nhomakorabea4
b
a
3
2
A
1 j -4 -3 -2 -1 o i 1 2 3
-1
-2
c
-3 d
-4
B
A1 4x
-5
三、平面向量的坐标运算
已知a (x1, y1),b (x2, y2 ),则
a b __(x_1___x_2_, _y_1 __y_2_)_____;
一、复 习 引 入
1、平面向量基本定理
已知e1、e2是同一平面内的两不共线向量, 那么对这一平面内的任意向量a,有且
只有一对实数1、2,使a 1e1 2 e2.
2、什么是平面向量的基底?
不共线向量e1、e2叫做这一平面内所有 向量的一组基底.
二、平面向量的坐标表示
在直角坐标系中,我们分别取与x轴、
a b _(_x_1___x_2_, _y_1 ___y_2 )_____; a ___(__x_1_, __x_2 )__________ .
6.3.1平面向量的基本定理及坐标表示
6.3 平面向量的基本定理及坐标表示【知识一】平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底. 【知识二】平面向量的正交分解及坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.坐标表示:(1)在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).(2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 【知识三】平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 【知识四】平面向量数乘运算的坐标表示1.数乘:已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.2.共线:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb . 如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线. 注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.【例1-1】下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e ==B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=-⎪⎝⎭【变式1-1】已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.【例1-2】如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用{a ,b }为基底表示DC →,EF →,FC →.【变式1-2】如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则以{a ,b }为基底时,AC →可表示为________,以{a ,c }为基底时,AC →可表示为________.【例1-3】在三角形ABC 中,M 为AC 的中点,若(),AB BM BC λμλμ=+∈R ,则下列结论正确的是( ) A .1λμ+=B .3λμ-=C .20λμ+=D .20λμ-=【变式1-3】如图,已知OAB ,若点C 满足2AC CB =,(),OC xOA yOB x y R =+∈,则11x y+=( )A .14B .34C .92D .29【例2-1】如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.【变式2-1】已知点M (5,-6),且MN →=(-3,6),则N 点的坐标为________. 【例2-2】已知()0,1A -,()0,3B ,则AB =( )A .2BC .4D .【变式2-2】已知()3,2M -,()5,1N -,若NP MN =,则P 点的坐标为( ) A .(3,2)B .(3,-1)C .(7,0)D .(1,0)【变式2-4】已知点()3,2A ,()5,1B ,则与AB 反方向的单位向量为( )A .⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎝⎭【变式2-5】已知向量(),2a m =,()1,2b =-,若0a b +=,则实数m 的值为( ) A .-4B .4C .-1D .1【例3-1】(1)已知向量a =(1,2),2a +b =(3,2),则b 等于( ) A.(1,-2) B.(1,2) C.(5,6)D.(2,0)(2)已知向量AB →=(2,4),AC →=(0,2),则12BC →等于( )A.(-2,-2)B.(2,2)C.(1,1)D.(-1,-1)【变式3-1】已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .【例3-2】已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)【例3-3】(1)已知非零向量a ,b ,c ,若()1,a x =,()4,1b =-,且//a c ,//b c 则x =( ) A .4B .-4C .14D .14-(2)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6B .2-C .6-D .2【变式3-2】与(1,3,2)a =-平行的一个向量的坐标是( )A .1,1,13⎛⎫ ⎪⎝⎭B .13,,122⎛⎫-- ⎪⎝⎭C .13,,122⎛⎫-- ⎪⎝⎭ D .3,--【变式3-3】已知()3,a m →=,()21,1b m →=+,则“1m =”是“//a b →→”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【变式3-4】已知向量()1,1a =,()2,1b =-,若()()2//a b a b λ+-,则实数λ=( ) A .8 B .8-C .2D .2-课后练习题1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e =D .()12,3e =-,213,24e ⎛⎫=-⎪⎝⎭2.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15-B .15C .75-D .753.已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0B .()1,1C .()2,2--D .()2,24.已知()5,2a =-,()4,3b =-,(),c x y =,若220a b c -+=,则c 等于( ) A .(1,4)B .13,42⎛⎫⎪⎝⎭C .13,42⎛⎫-⎪⎝⎭D .13,42⎛⎫-- ⎪⎝⎭5.已知()13A ,,()41B -,,则与向量AB 共线的单位向量为( ) A .4355⎛⎫ ⎪⎝⎭,或4355⎛⎫- ⎪⎝⎭,B .3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭, C .4355⎛⎫-- ⎪⎝⎭,或4355⎛⎫ ⎪⎝⎭, D .3455⎛⎫-- ⎪⎝⎭,或3455⎛⎫ ⎪⎝⎭, 6.设向量a =(1,4),b =(2,x ),c a b =+.若//a c ,则实数x 的值是( ) A .-4B .2C .4D .87.若(3,cos ),(3,sin ),a b αα==且a //b ,则锐角α=__________ . 8.已知O 为单位圆,A 、B 在圆上,向量OA ,OB 的夹角为60°,点C 在劣弧AB 上运动,若OC xOA yOB =+,其中,x y R ∈,则x y +的取值范围___________.9.在ABC 中,D 为BC 的中点,P 为AD 上的一点且满足3BA BC BP +=,则ABP △与ABC 面积之比为( ) A .14B .13C .23D .1610.已知ABC 所在的平面内一点P (点P 与点A ,B ,C 不重合),且523AP PO OB OC =++,则ACP △与BCP 的面积之比为( ) A .2:1B .3:1C .3:2D .4:36.3.1 平面向量的基本定理及坐标表示【知识一】平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底. 【知识二】平面向量的正交分解及坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.坐标表示:(1)在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).(2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 【知识三】平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 【知识四】平面向量数乘运算的坐标表示1.数乘:已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.2.共线:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb . 如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线. 注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.【例1-1】下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e ==B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=-⎪⎝⎭【答案】B【解析】对A :因为零向量和任意向量平行,故A 中向量不可作基底; 对B :因为710-≠,故B 中两个向量不共线;对C :因为31056⨯=⨯,故C 中两个向量共线,故C 中向量不可作基底; 对D :因为312342⎛⎫⨯-=-⨯ ⎪⎝⎭,故D 中两个向量共线,故D 中向量不可作基底.故选:B. 【变式1-1】已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________. 【答案】3【解析】因为{a ,b }是一个基底, 所以a 与b 不共线,由平面向量基本定理得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,所以⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【例1-2】如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用{a ,b }为基底表示DC →,EF →,FC →.【解析】因为DC ∥AB ,AB =2DC ,E ,F 分别是DC ,AB 的中点, 所以FC →=AD →=a ,DC →=AF →=12AB →=12b .EF →=ED →+DA →+AF →=-12DC →-AD →+12AB →=-12×12b -a +12b =14b -a .【变式1-2】如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则以{a ,b }为基底时,AC →可表示为________,以{a ,c }为基底时,AC →可表示为________.【答案】a +b 2a +c【解析】以{a ,b }为基底时,AC →=AB →+AD →=a +b ; 以{a ,c }为基底时,将BD →平移,使B 与A 重合, 再由三角形法则或平行四边形法则即得AC →=2a +c .【例1-3】在三角形ABC 中,M 为AC 的中点,若(),AB BM BC λμλμ=+∈R ,则下列结论正确的是( ) A .1λμ+= B .3λμ-=C .20λμ+=D .20λμ-=【答案】C【解析】因为M 为AC 的中点,所以1122BM BA BC =+,所以2AB BM BC =-+, 又(),AB BM BC λμλμ=+∈R ,所以2λ=-,1μ=,故选:C.【变式1-3】如图,已知OAB ,若点C 满足2AC CB =,(),OC xOA yOB x y R =+∈,则11x y+=( )A .14B .34C .92D .29【答案】C【解析】由2AC CB =得()2OC OA OB OC -=-,即1233OC OA OB =+, 又(),OC xOA yOB x y R =+∈,所以1323x y ⎧=⎪⎪⎨⎪=⎪⎩,因此1139322x y +=+=.故选:C. 【例2-1】如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.【解析】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45° =4×22=22, AM =OA ·sin 45° =4×22=2 2. ∴A (22,22),故a =(22,22).∵∠AOC =180°-105°=75°,∠AOy =45°, ∴∠COy =30°. 又∵OC =AB =3,∴C ⎝⎛⎭⎫-32,332,∴AB →=OC →=⎝⎛⎭⎫-32,332,即b =⎝⎛⎭⎫-32,332.(2)BA →=-AB →=⎝⎛⎭⎫32,-332.(3)OB →=OA →+AB →=(22,22)+⎝⎛⎭⎫-32,332=⎝⎛⎭⎫22-32,22+332.∴点B 的坐标为⎝⎛⎭⎫22-32,22+332.【变式2-1】已知点M (5,-6),且MN →=(-3,6),则N 点的坐标为________.【答案】 (2,0)【解析】∵MN →=(-3,6),设N (x ,y ), 则MN →=ON →-OM →=(x -5,y +6)=(-3,6).∴⎩⎪⎨⎪⎧ x -5=-3,y +6=6,解得⎩⎪⎨⎪⎧x =2,y =0.即N (2,0). 【例2-2】已知()0,1A -,()0,3B ,则AB =( )A .2BC .4D .【解析】由题得AB =(0,4)所以||0(31)4AB =++.故选C【变式2-2】已知()3,2M -,()5,1N -,若NP MN =,则P 点的坐标为( ) A .(3,2)B .(3,-1)C .(7,0)D .(1,0)【解析】设点P 的坐标为(),x y ,则(5,1)NP x y =-+,(53,12)(2,1)MN =--+=,因为NP MN =,即(5,1)(2,1)x y -+=,所以5211x y -=⎧⎨+=⎩,解得70x y =⎧⎨=⎩,所以()7,0P .故选:C.【变式2-4】已知点()3,2A ,()5,1B ,则与AB 反方向的单位向量为( )A .⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎝⎭【答案】B【解析】()3,2A ,()5,1B ,2,1AB,则22AB ==,所以与AB 反方向的单位向量为255,55AB AB.故选:B.【变式2-5】已知向量(),2a m =,()1,2b =-,若0a b +=,则实数m 的值为( ) A .-4 B .4C .-1D .1【答案】C【解析】由题意,向量(),2a m =,()1,2b =-,所以()()1,00,0a b m +=+=, 可得50m +=,解得1m =-.故选:C .【例3-1】(1)已知向量a =(1,2),2a +b =(3,2),则b 等于( ) A.(1,-2)B.(1,2)C.(5,6)D.(2,0)【答案】B【解析】由题意得b -a =(3,1)-(1,2)=(2,-1). (2)已知向量AB →=(2,4),AC →=(0,2),则12BC →等于( )A.(-2,-2)B.(2,2)C.(1,1)D.(-1,-1)【答案】D【解析】12BC →=12(AC →-AB →)=12(-2,-2)=(-1,-1).【变式3-1】已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .【解析】(1)2a +3b =2(-1,2)+3(2,1) =(-2,4)+(6,3)=(4,7). (2)a -3b =(-1,2)-3(2,1) =(-1,2)-(6,3)=(-7,-1). (3)12a -13b =12(-1,2)-13(2,1) =⎝⎛⎭⎫-12,1-⎝⎛⎭⎫23,13=⎝⎛⎭⎫-76,23. 【例3-2】已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫ ⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)【答案】ABC【解析】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确.选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确.选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确故选:ABC 【例3-3】(1)已知非零向量a ,b ,c ,若()1,a x =,()4,1b =-,且//a c ,//b c 则x =( ) A .4 B .-4 C .14D .14-【答案】D【解析】由题意知//a c ,//b c ,所以//a b ;又(1,)a x =,(4,1)b =-,所以1(1)40x ⨯--=,解得14x =-.故选:D(2)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6 B .2-C .6-D .2【答案】B【解析】因为三点()0,2A ,()1,0B -,(),2C m -共线,所以(1,2),(1,2)AB BC m =--=+- , 若()0,2A ,()1,0B -,(),2C m -三点共线,则AB 和BC 共线 可得:(1)(2)(2)(1)m --=-+,解得2m =-;故选:B 【变式3-2】与(1,3,2)a =-平行的一个向量的坐标是( )A .1,1,13⎛⎫ ⎪⎝⎭B .13,,122⎛⎫-- ⎪⎝⎭C .13,,122⎛⎫-- ⎪⎝⎭D .3,--【答案】C【解析】若向量b 与向量a 平行,则b a λ=,(1,3,2)a =-,则(,3,2)b λλλ=- 设向量(),,b x y z =,则x 与y 符号相同,y 与z 符号相反,所以可知A ,B ,D 不成立, 选项C :若12λ=-,则12x =-,32y =-,1z =,故C 正确.故选:C.【变式3-3】已知()3,a m →=,()21,1b m →=+,则“1m =”是“//a b →→”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】由//a b →→可得()213m m +=,解得32m =-或1m =,所以“1m =”是“//a b →→” 充分不必要条件.故选:A.【变式3-4】已知向量()1,1a =,()2,1b =-,若()()2//a b a b λ+-,则实数λ=( ) A .8 B .8-C .2D .2-【答案】D【解析】由()1,1a =,()2,1b =-,可得()24,2a b λλλ+=+-,()1,2a b -=-, 因为()()2//a b a b λ+-,所以()()()24210λλ+--⨯-=,解得2λ=-.故选:D.课后练习题1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e = D .()12,3e =-,213,24e ⎛⎫=-⎪⎝⎭ 【答案】B【解析】因为()11,2e =-与()25,7e =不共线,其余选项中1e 、2e 均共线,所以B 选项中的两向量可以作为基底.故选:B2.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15- B .15C .75-D .75【答案】B【解析】由题意,设AB a AD b ,==,则在平行四边形ABCD 中,因为12BE BC =,13DF DC =,所以点E 为BC 的中点,点F 在线段DC 上,且2CF DF =, 所以1123AE a b AF a b =+=+,, 又因为BD AE AF λμ=+,且BD AD AB b a =-=-,所以11112332a b AE AF a b a b a b λμλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫-+=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,3.已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0 B .()1,1C .()2,2--D .()2,2【答案】C【解析】由题意可得()()()1,11,12,2AB =---=--.故选:C.所以113112λμλμ⎧+=-⎪⎪⎨⎪+=⎪⎩,解得8595λμ⎧=-⎪⎪⎨⎪=⎪⎩,所以15λμ+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的基本定理及坐标表示
【考点梳理】
1.平面向量基本定理
(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.
(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示
在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,由于a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中a 在x 轴上的坐标是x ,a 在y 轴上的坐标是y .
3.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则
a +
b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),
λa =(λx 1,λy 1),|a |=x 2
1+y 21.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →
=(x 2-x 1,y 2-y 1), |AB →
|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示
设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 【考点突破】
考点一、平面向量基本定理及其应用
【例1】(1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →
=( )
A .AD →
B .12AD →
C .12BC →
D .BC →
(2)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →
+μAF →
,其中λ,μ∈R ,则λ+μ=________.
[答案] (1) A (2)4
3
[解析] (1)如图所示,EB →+FC →=(EC →-BC →)+(FB →+BC →
) =EC →+FB →=12AC →+12AB →=12
(AC →+AB →)=AD →.
(2)选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →
=AB →+12AD →,
又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,
于是得⎩⎪⎨⎪⎧
1
2λ+μ=1,λ+1
2μ=1,解得⎩⎪⎨
⎪⎧
λ=2
3,
μ=23,
所以λ+μ=4
3. 【类题通法】
1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
【对点训练】
1.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →
=( )
A .12AC →+13A
B → B .12A
C →+16AB → C .16AC →+12AB →
D .16AC →+32AB →
[答案] C
[解析] 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →
)=12AB →+16AC →.
2.如图,在平行四边形ABCD 中,AC ,BD 相交于点O , E 为线段AO 的中点.若BE →=λBA →+μBD →
(λ,μ∈R ),则λ+μ=________.
[答案] 3
4
[解析] 由题意可得BE →=12BA →+12BO →=12BA →+14BD →
,由平面向量基本定理可得λ=12,μ=14,所以λ+μ=34.
考点二、平面向量的坐标运算
【例2】(1)向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)
D .(-3,-4)
(2)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R ),则λ
μ=( )
A .1
B .2
C .3
D .4 [答案] (1)A (2)D
[解析] (1)由a +b =(-1,5),a -b =(5,-3), 得2b =(-1,5)-(5,-3)=(-6,8), ∴b =1
2(-6,8)=(-3,4),故选A.
(2)以向量a ,b 的交点为坐标原点,建立如图直角坐标系(设每个小正方形边长为1),A (1,-1),B (6,2),C (5,-1),所以a =(-1,1),b =(6,2),c =(-1,-3),∵c =λa +μb ,∴⎩⎨⎧-1=-λ+6μ,-3=λ+2μ,解之得λ=-2且μ=-12,因此,λμ=-2-
12=4,故选D.
【类题通法】
1.巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.
2.向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.
【对点训练】
1.已知点A (-1,5)和向量a =(2,3),若AB →
=3a ,则点B 的坐标为( ) A .(7,4) B .(7,14) C .(5,4) D .(5,14)
[答案] D
[解析] 设点B 的坐标为(x ,y ),则AB →
=(x +1,y -5). 由AB →
=3a ,得⎩⎨⎧x +1=6,y -5=9,解得⎩⎨⎧x =5,y =14.
2.已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -
n 的值为________.
[答案] -3
[解析] 由向量a =(2,1),b =(1,-2),得m a +n b =(2m +n ,m -2n )=(9,-8),则⎩⎨⎧2m +n =9,m -2n =-8,解得⎩⎨⎧m =2,
n =5,
故m -n =-3.
考点三、平面向量共线的坐标表示
【例3】(1)已知向量a =(-1,1),b =(3,m ),若a ∥(a +b ),则m =( ) A .-2 B .2 C .-3
D .3
(2) 已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=3
2
|BP |,则点P 的坐标为________.
[答案] (1)C (2) (8,-15)
[解析] (1)由题意可知a +b =(2,1+m ), ∵a ∥(a +b ),
∴2+(m +1)=0⇒m =-3.
(2) 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP →=32BP →
,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.
所以点P 的坐标为(8,-15). 【类题通法】
1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;(2)若a ∥b (b ≠0),则a =λb .
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
【对点训练】
1.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. [答案] -5
4
[解析] AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →
, ∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-5
4.
2.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →
的坐标为________. [答案] (-2,-4)
[解析] 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →
=(3,6), DA →=(-1-x 2,2-y 2),BA →
=(-3,-6). 因为AC →=13AB →,DA →
=-13BA →, 所以有⎩⎨⎧x 1+1=1,y 1-2=2和⎩⎨⎧-1-x 2=1,2-y 2=2.
解得⎩⎨⎧x 1=0,y 1=4和⎩⎨⎧x 2=-2,
y 2=0.
所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →
=(-2,-4).。