stm32pwm输入捕捉模式学习笔记
STM32 TIM的PMW模式
STM32 TIM的PMW模式STM32开发板学习日记-[5]TIM的PMW模式脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空比的信号。
在TIMx_CCMRx寄存器中的OCxM位写入’110’(PWM模式1)或’111’(PWM模式2),能够独立地设置每个OCx输出通道产生一路PWM。
必须设置TIMx_CCMRx寄存器OCxPE位以使能相应的预装载寄存器,最后还要设置TIMx_CR1寄存器的ARPE位使能自动重装载的预装载寄存器(在向上计数或中心对称模式中)。
因为仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置TIMx_EGR寄存器中的UG位来初始化所有的寄存器。
OCx的极性可以通过软件在TIMx_CCER寄存器中的CCxP 位设置,它可以设置为高电平有效活或低电平有效。
TIMx_CCER寄存器中的CCxE位控制OCx输出使能。
在PWM模式(模式1或模式2)下,TIMx_CNT和TIM1_CCRx 始终在进行比较,(依据计数器的计数方向)以确定是否符合TIM1_CCRx≤TIM1_CNT或者TIM1_CNT≤TIM1_CCRx。
然而为了与OCREF_CLR的功能(在下一个PWM周期之前,ETR信号上的一个外部事件能够清除OCxREF)一致,OCxREF信号只能在下述条件下产生:●当比较的结果改变●当输出比较模式(TIMx_CCMRx寄存器中的OCxM位)从“冻结”(无比较,OCxM=’000’)切换到某个PWM模式(OCxM=’110’或’111’)。
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)落月风情高工2012-12-23 17:49:43 评分只看楼主 1楼实验内容:利用STM32的一个通用定时器(TIM2)产生4路频率相同(1KHz)占空比不同的PWM。
Ch1占空比75%,Ch2占空比50%,Ch3占空比25%,Ch4占空比10%。
四路输出分别对应PA端口的PA0,PA1,PA2,PA3。
实验目的:掌握通用定时器的基本应用。
(PWM的频率和占空比的计算)STM32的定时器是个强大的模块,定时器使用的频率也是很高的,定时器可以做一些基本的定时,还可以做PWM输出或者输入捕获功能。
补充一个前期时钟源问题:名为TIMx的定时器有8个,其中TIM1和TIM8挂在APB2总线上,而TIM2-TIM7则挂在APB1总线上。
其中TIM1&TIM8称为高级控制定时器. APB2可以工作在72MHz下,而APB1最大是36MHz。
定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器。
(这个问题纳闷了好久才找到的,主要是没有在意时钟树,唉!)下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=3 6MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
STM32输入捕获
输入捕获模式可以用来测量脉冲宽度或者测量频率。
STM32的定时器,除了TIM6和TIM7,其他定时器都有输入捕获功能。
STM32的输入捕获,简单的说就是通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的捕获/比较寄存(TIMx_CCRx)里面,完成一次捕获。
同时还可以配置捕获时是否触发中断/DMA 等. 例如:我们用到TIM5_CH1来捕获高电平脉宽,也就是要先设置输入捕获为上升沿检测,记录发生上升沿的时候TIM5_CNT的值。
然后配置捕获信号为下降沿捕获,当下降沿到来时,发生捕获,并记录此时的TIM5_CNT值。
这样,前后两次TIM5_CNT之差,就是高电平的脉宽,同时TIM5的计数频率我们是知道的,从而可以计算出高电平脉宽的准确时间。
首先TIMx_ARR和TIMx_PSC,这两个寄存器用来设自动重装载值和TIMx的时钟分频。
再来看看捕获/比较模式寄存器1:TIMx_CCMR1,这个寄存器在输入捕获的时候,非常有用;TIMx_CCMR1明显是针对2个通道的配置,低八位[7:0]用于捕获/比较通道1的控制,而高八位[15:8]则用于捕获/比较通道2的控制,因为TIMx还有CCMR2这个寄存器,所以可以知道CCMR2是用来控制通道3和通道4(详见《STM32参考手册》290页,14.4.8节)。
这里用到TIM5的捕获/比较通道1,我们重点介绍TIMx_CMMR1的[7:0]位(其实高8位配置类似)。
再来看看捕获/比较使能寄存器:TIMx_CCER;接下来我们再看看DMA/中断使能寄存器:TIMx_DIER,我们需要用到中断来处理捕获数据,所以必须开启通道1的捕获比较中断,即CC1IE设置为1。
控制寄存器:TIMx_CR1,我们只用到了它的最低位,也就是用来使能定时器的;最后再来看看捕获/比较寄存器1:TIMx_CCR1,该寄存器用来存储捕获发生时,TIMx_CNT的值,我们从TIMx_CCR1就可以读出通道1捕获发生时刻的TIMx_CNT值,通过两次捕获(一次上升沿捕获,一次下降沿捕获)的差值,就可以计算出高电平脉冲的宽度。
深入理解STM32定时器中的输入捕获滤波器
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } void NVIC_Configure(void) { NVIC_InitTypeDef NVIC_InitStruct; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); /* TIM3_CC_IRQHandler */ NVIC_InitStruct.NVIC_IRQChannel =TIM3_IRQn; NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruct); } #define ARR void Tim_Configure( void ) { TIM_TimeBaseInitTypeDef TIM_OCInitTypeDef TIM_ICInitTypeDef //1800, 2000, 2048, 2057
void GPIO_Configure(void) { GPIO_InitTypeDef GPIO_InitStructure; /* 设 置 USART1 复 用 端 ----------------------------------------------------- */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; /* TXD */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; /* RXD */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; 口
理解STM32定时器中的输入捕获滤波器
理解STM32定时器中的输入捕获滤波器关于STM32定时器中的输入捕获滤波器的功能描述,在中文参考手册中描述如下:我不理解官方的说明,在网上搜了老半天,基本都是下面这几句话:1)当滤波器连续采样到N次个有效电平时,认为一次有效的输入电平。
2)该数字滤波器实际上是个事件计数器,它记录到N个事件后会产生一个输出的跳变。
例如:当f(CK_INT) = 72MHz, CKD[1:0] = 01时,选择f(DTS) = f(CK_INT)/2 = 36MHz;而ETF[3:0] = 0100,则采样频率f(SAMPLI NG) = f(DTS) / 2 = 18MHz, N = 6,此时高于3M Hz的信号将被这个滤波器滤除,这样就有效地屏蔽了高于3MHz的干扰。
看了这些说法,我还是不理解这个数字滤波器到底是如何工作的,问题如下:问题1:当滤波器连续采样到N次个有效电平时,是输出这个电平?还是输出一个跳变?问题2:当滤波器没有连续采样到N次个有效电平时,输出是的什么?带着这两个问题,我们来分析一下,下面以TIM3为例:首先可以肯定输入捕获过程如下:详细信息见参考手册中的14.2节,通用定时器框图TIM3_C H1(PA.6) ----> TI1(外部信号) -------> 输入滤波器I C1F[3:0] -----> IC1(滤波器输出信号) -------> 输入捕获预分频器IC1PSC[1:0] ----> 捕获/比较1寄存器CCR1从上面的过程可以知道,1)发生输入捕获所需要的跳变沿是由滤波器输出产生的。
2)滤波器和预分频器可软件编程,如果IC1F[3:0] = 0x0,则滤波器全通,即TI1 和IC1是同一个信号。
基于STM32CubeMX配置PWM输出和输入捕获
基于STM32CubeMX配置PWM输出和输⼊捕获PWM输出和输⼊捕获1、试验⽬标 1.输出2路PWM脉冲信号 2.捕获1路PWM脉冲信号 本次试验会使⽤到2个定时器,⼀个⾼级定时器⽤于脉冲捕获,⼀个普通定时器⽤于PWM脉冲输出。
2、准备材料 1. STM32F103C8 2. STM32CubeMX2、STM32CubeMX配置 2.1时钟树 系统时钟为72M,APB1 和APB2 的定时器时钟都为72MHZ。
2.2 PWM输出配置 PWM的输出配置⽐较简单,这⾥我们使⽤到了TIM2普通定时器控制输出,具体参数如下图。
在 Parameter Settings 页配置预分频系数为 72-1,计数周期(⾃动加载值)为 10000-1,定时器溢出频率,即PWM的周期,就是72MHz/(71+1)/(9999+1) = 100Hz 2.3 PWM输⼊捕获配置 PWM捕获,本次试验使⽤到了STM32F103C8的⾼级定时器TIM1。
配置如下图。
中断配置勾线这⾥,因为我们需要使⽤中断回调函数来计算频率占空⽐。
2.4 配置中断分组和中断使能2.5串⼝输出2.6⽣成⼯程 这⾥选择分离C.h⽂件,IDE 根据⾃⼰的环境选择,这⾥我使⽤的GUN编译⽅式的IDE所以选择了SW4SEM32。
以上CubeMX的PWM配置就完成了。
配置完毕后,⽣成⼯程打开。
下⾯我们来分析代码和如何使⽤。
3、代码实现 3.1 tim.c 该代码主要配置了Tim1 和Tim2 的相关配置,为什么要这么配置,在接下来的第4⼤点会详细说明。
这⾥主要了解HAL_TIM_IC_CaptureCallback 捕获中断回调函数这⾥函数主要处理计算占空⽐和频率。
/********************************************************************************* @file tim.c* @brief This file provides code for the configuration* of the TIM instances.******************************************************************************* @attention** <h2><center>© Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:* /licenses/BSD-3-Clause********************************************************************************//* Includes ------------------------------------------------------------------*/#include "tim.h"/* USER CODE BEGIN 0 *//// 计算占空⽐时使⽤__IO uint16_t IC2Value = 0;__IO uint16_t IC1Value = 0;__IO float DutyCycle = 0;__IO float Frequency = 0;/* USER CODE END 0 */TIM_HandleTypeDef htim1; // ⾼级定时器捕获PWMTIM_HandleTypeDef htim2; // 普通定时器输出PWM/* TIM1 init function */void MX_TIM1_Init(void){TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_SlaveConfigTypeDef sSlaveConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};TIM_IC_InitTypeDef sConfigIC = {0};htim1.Instance = TIM1;htim1.Init.Prescaler = 72-1;htim1.Init.CounterMode = TIM_COUNTERMODE_UP; /* 计数⽅式上计数 */htim1.Init.Period = 65535; /* 计数器更新上限值 */htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; /* 采样时钟分频 */htim1.Init.RepetitionCounter = 0; /* 重装值=0 */htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; /* ⾃动装载值软件使能 */ if (HAL_TIM_Base_Init(&htim1) != HAL_OK) /* 初始定时器 */{Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; /* 内部时钟源 */if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK){Error_Handler();}if (HAL_TIM_IC_Init(&htim1) != HAL_OK){Error_Handler();}///选择从模式: 复位模式sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;sSlaveConfig.InputTrigger = TIM_TS_TI1FP1; /* 选择定时器输⼊触发: TI1FP1 */ sSlaveConfig.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;sSlaveConfig.TriggerFilter = 0;if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK){Error_Handler();}///IC1捕获上升沿触发 TI1FP1sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;sConfigIC.ICFilter = 0;if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK){Error_Handler();}///IC2捕获下降沿捕获 TI1FP2sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_2) != HAL_OK){Error_Handler();}}/* TIM2 init function */void MX_TIM2_Init(void){TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};TIM_OC_InitTypeDef sConfigOC = {0};htim2.Instance = TIM2;/** htim2.Init.Prescaler 分频计算* 定时器时钟源TIMxCLK = 2 * PCLK1* PCLK1 = HCLK / 2* => TIMxCLK = HCLK/2 = SystemCoreClock / 2 *2=72MHz (APB1)* 设定定时器频率为=TIMxCLK/(TIM_Prescaler+1)=10KHz* */htim2.Init.Prescaler = 72-1;htim2.Init.CounterMode = TIM_COUNTERMODE_UP; /* 计数⽅式上升沿有效 */htim2.Init.Period = 10000-1; /* 累计 TIM_Period个后产⽣⼀个更新或者中断当定时器从0计数到10000,即为10000次,为⼀个定时周期*/ htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;if (HAL_TIM_Base_Init(&htim2) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; /* 内部时钟源 */if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK){Error_Handler();}if (HAL_TIM_PWM_Init(&htim2) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK){Error_Handler();}///PWM模式配置sConfigOC.OCMode = TIM_OCMODE_PWM1; /* 配置为PWM模式1*/sConfigOC.Pulse = 5000; /* 默认占空⽐为50%*/sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; /* 当定时器计数值⼩于CCR1_Val时为⾼电平*/sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) /* 配置PWM通道*/{Error_Handler();}if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK){Error_Handler();}HAL_TIM_MspPostInit(&htim2); /* 外置GPIO初始化 */}void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle){GPIO_InitTypeDef GPIO_InitStruct = {0};if(tim_baseHandle->Instance==TIM1){/* USER CODE BEGIN TIM1_MspInit 0 *//* USER CODE END TIM1_MspInit 0 *//* TIM1 clock enable */__HAL_RCC_TIM1_CLK_ENABLE(); /*定时器时钟使能*/__HAL_RCC_GPIOA_CLK_ENABLE(); /*GPIO时钟使能*//**TIM1 GPIO ConfigurationPA8 ------> TIM1_CH1*/GPIO_InitStruct.Pin = GPIO_PIN_8; /* 36脚的F103 不能改变引脚编号*/GPIO_InitStruct.Mode = GPIO_MODE_INPUT; /* 输⼊模式*/GPIO_InitStruct.Pull = GPIO_NOPULL; /* ⽆上下拉*/HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* TIM1 interrupt Init */HAL_NVIC_SetPriority(TIM1_CC_IRQn, 0, 0); /* 配置中断分组*/HAL_NVIC_EnableIRQ(TIM1_CC_IRQn); /* 使能中断*//* USER CODE BEGIN TIM1_MspInit 1 *//* USER CODE END TIM1_MspInit 1 */}else if(tim_baseHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspInit 0 *//* USER CODE END TIM2_MspInit 0 *//* TIM2 clock enable */__HAL_RCC_TIM2_CLK_ENABLE();/* USER CODE BEGIN TIM2_MspInit 1 *//* USER CODE END TIM2_MspInit 1 */}}void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle){GPIO_InitTypeDef GPIO_InitStruct = {0};if(timHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspPostInit 0 *//* USER CODE END TIM2_MspPostInit 0 */__HAL_RCC_GPIOA_CLK_ENABLE();/**TIM2 GPIO ConfigurationPA0-WKUP ------> TIM2_CH1PA1 ------> TIM2_CH2*/GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; /* 这⾥定义了2路PMW输出⽤PA0 和PA1*/ GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* USER CODE BEGIN TIM2_MspPostInit 1 *//* USER CODE END TIM2_MspPostInit 1 */}}void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle){if(tim_baseHandle->Instance==TIM1){/* USER CODE BEGIN TIM1_MspDeInit 0 *//* USER CODE END TIM1_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_TIM1_CLK_DISABLE();/**TIM1 GPIO ConfigurationPA8 ------> TIM1_CH1*/HAL_GPIO_DeInit(GPIOA, GPIO_PIN_8);/* TIM1 interrupt Deinit */HAL_NVIC_DisableIRQ(TIM1_CC_IRQn);/* USER CODE BEGIN TIM1_MspDeInit 1 *//* USER CODE END TIM1_MspDeInit 1 */}else if(tim_baseHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspDeInit 0 *//* USER CODE END TIM2_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_TIM2_CLK_DISABLE();/* USER CODE BEGIN TIM2_MspDeInit 1 *//* USER CODE END TIM2_MspDeInit 1 */}}/* USER CODE BEGIN 1 *//*** @brief Conversion complete callback in non blocking mode 捕获回调函数* @param htim : hadc handle* @retval None*/void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1){/* 获取输⼊捕获值 */IC1Value = HAL_TIM_ReadCapturedValue(&htim1,TIM_CHANNEL_1);IC2Value = HAL_TIM_ReadCapturedValue(&htim1,TIM_CHANNEL_2);if (IC1Value != 0){/* 占空⽐计算 */DutyCycle = (float)((IC2Value+1) * 100) / (IC1Value+1);/* 频率计算 */Frequency = 72000000/72/(float)(IC1Value+1);}else{DutyCycle = 0;Frequency = 0;}}}/* USER CODE END 1 *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/3.2 main.c ⽤于计算的变量//计算占空⽐时的全局表变量extern __IO uint16_t IC2Value;extern __IO uint16_t IC1Value;extern __IO float DutyCycle;extern __IO float Frequency; 使能和输出PWM/// 使能捕获/⽐较2中断请求HAL_TIM_IC_Start_IT(&htim1,TIM_CHANNEL_1);HAL_TIM_IC_Start_IT(&htim1,TIM_CHANNEL_2);/// 开始输出PWMHAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_1);HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_2); 打印调试输出while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */printSwo("IC1Value =",IC1Value,LINE_FEED_EN);printSwo("IC2Value =",IC2Value,LINE_FEED_EN);printSwo("占空⽐:",DutyCycle,LINE_FEED_EN);printSwo("频率:",Frequency,LINE_FEED_EN);HAL_Delay(500);}3.3 输出结果短接任意⼀路输出 PA0与PA8 PWM输出与捕获,或 PA1与PA8 PWM输出与捕获。
PWM输入捕获学习笔记
2016.4.17PWM 输入 ◆ STM32 输入捕获工作过程(通道1为例)一句话总结工作过程:通过检测TIMx_CHx 上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。
● 步骤1:设置输入捕获滤波器(TIMx 捕获/比较模式寄存器 1 (TIMx_CCMR1))位 7:4 IC1F :输入捕获 1 滤波器 (Input capture 1 filter)此位域可定义 TI1 输入的采样频率和适用于 TI1 的数字滤波器带宽。
数字滤波器由事件计数器组成,每 N 个事件才视为一个有效边沿:0000:无滤波器,按 fDTS 频率进行采样1000:fSAMPLING=fDTS/8, N=60001: fSAMPLING=fCK_INTN=21001: fSAMPLING=fDTS/8, N=80010: fSAMPLING=fCK_INTN=41010: fSAMPLING=fDTS/16, N=50011: fSAMPLING=fCK_INTN=81011: fSAMPLING=fDTS/16, N=60100: fSAMPLING=fDTS/2N=61100:fSAMPLING=fDTS/16,N=80101: fSAMPLING=fDTS/2N=8 1101: fSAMPLING=fDTS/32,N=50110: fSAMPLING=fDTS/4N=6 1110: fSAMPLING=fDTS/32, N=6 0111: fSAMPLING=fDTS/4N=8 1111: fSAMPLING=fDTS/32, N=8注意:在当前硅版本中,当ICxF[3:0]= 1、 2 或 3 时,将用CK_INT 代替公式中的f DTS。
●步骤2:设置输入捕获极性 (TIMx 捕获/比较使能寄存器(TIMx_CCER))CC1 通道配置为输出:0: OC1 高电平有效1: OC1 低电平有效CC1 通道配置为输入:该位选择是IC1还是IC1的反相信号作为触发或捕获信号00:非反相/上升沿触发10:保留,不使用此配置。
STM32笔记(二)TIM模块产生PWM
STM32笔记(二)TIM模块产生PWM这个是STM32的PWM输出模式,STM32的TIM1模块是增强型的定时器模块,天生就是为电机控制而生,可以产生3组6路PWM,同时每组2路PW M为互补,并可以带有死区,可以用来驱动H桥。
下面的代码,是利用TIM1模块的1、2通道产生一共4路PWM的代码例子,类似代码也可以参考ST的固件库中相应exampleC语言: TIM1模块产生PWM,带死区//Step1.开启TIM和相应端口时钟//启动GPIORCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GP IOB | \RCC_APB2Periph_GPIOC | RCC_APB2Periph_GP IOD,\ENABLE);//启动AFIORCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);//启动TIM1RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);//Step2. GPIO做相应设置,为AF输出//PA.8/9口设置为TIM1的OC1输出口GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);//PB.13/14口设置为TIM1_CH1N和TIM1_CH2N输出口GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);//Step3. TIM模块初始化void TIM_Configuration(void){TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;TIM_OCInitTypeDef TIM_OCInitStructure;TIM_BDTRInitTypeDef TIM_BDTRInitStructure;//TIM1基本计数器设置(设置PWM频率)//频率=TIM1_CLK/(ARR+1)TIM_BaseInitStructure.TIM_Period = 1000-1;TIM_BaseInitStructure.TIM_Prescaler = 72-1;TIM_BaseInitStructure.TIM_ClockDivision = 0;TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_BaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);//启用ARR的影子寄存器(直到产生更新事件才更改设置)TIM_ARRPreloadConfig(TIM1, ENABLE);//TIM1_OC1模块设置(设置1通道占空比)TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enabl e;TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Ena ble;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; TIM_OCInitStructure.TIM_Pulse = 120;TIM_OC1Init(TIM1, &TIM_OCInitStructure);//启用CCR1寄存器的影子寄存器(直到产生更新事件才更改设置)TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);//TIM2_OC2模块设置(设置2通道占空比)TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enabl e;TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Ena ble;TIM_OCInitStructure.TIM_Pulse = 680;TIM_OC2Init(TIM1, &TIM_OCInitStructure);//启用CCR2寄存器的影子寄存器(直到产生更新事件才更改设置)TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);//死区设置TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;TIM_BDTRInitStructure.TIM_DeadTime = 0x90; //这里调整死区大小0-0xffTIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity _High;TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOu tput_Enable;TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);//TIM1开启TIM_Cmd(TIM1, ENABLE);//TIM1_OC通道输出PWM(一定要加)TIM_CtrlPWMOutputs(TIM1, ENABLE);}其实,PWM模块还可以有很多花样可以玩,比方在异常时(如CPU时钟有问题),可以紧急关闭输出,以免发生电路烧毁等严重事故。
STM32TIM的PMW模式
STM32TIM的PMW模式STM32 TIM的PMW模式STM32开发板学习⽇记-[5]TIM的PMW模式脉冲宽度调制模式可以产⽣⼀个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空⽐的信号。
在TIMx_CCMRx寄存器中的OCxM位写⼊’110’(PWM模式1)或’111’(PWM模式2),能够独⽴地设置每个OCx输出通道产⽣⼀路PWM。
必须设置TIMx_CCMRx寄存器OCxPE位以使能相应的预装载寄存器,最后还要设置TIMx_CR1寄存器的ARPE位使能⾃动重装载的预装载寄存器(在向上计数或中⼼对称模式中)。
因为仅当发⽣⼀个更新事件的时候,预装载寄存器才能被传送到影⼦寄存器,因此在计数器开始计数之前,必须通过设置TIMx_EGR寄存器中的UG位来初始化所有的寄存器。
OCx的极性可以通过软件在TIMx_CCER寄存器中的CCxP 位设置,它可以设置为⾼电平有效活或低电平有效。
TIMx_CCER寄存器中的CCxE位控制OCx输出使能。
在PWM模式(模式1或模式2)下,TIMx_CNT和TIM1_CCRx始终在进⾏⽐较,(依据计数器的计数⽅向)以确定是否符合TIM1_CCRx≤TIM1_CNT或者TIM1_CNT≤TIM1_CCRx。
然⽽为了与OCREF_CLR 的功能(在下⼀个PWM周期之前,ETR信号上的⼀个外部事件能够清除OCxREF)⼀致,OCxREF信号只能在下述条件下产⽣:●当⽐较的结果改变●当输出⽐较模式(TIMx_CCMRx寄存器中的OCxM位)从“冻结”(⽆⽐较,OCxM=’000’)切换到某个PWM模式(OCxM=’110’或’111’)。
这样在运⾏中可以通过软件强置PWM输出。
根据TIMx_CR1寄存器中CMS位的状态,定时器能够产⽣边沿对齐的PWM信号或中央对齐的PWM信号。
110:PWM模式1-在向上计数时,⼀旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为⽆效电平;在向下计数时,⼀旦TIMx_CNT>TIMx_CCR1时通道1为⽆效电平(OC1REF=0),否则为有效电平(OC1REF=1)。
STM32Cube学习之八:输入捕获
STM32Cube学习之八:输入捕获假设已经安装好STM32CubeMX和STM32CubeF4支持包。
Step1.打开STM32CubeMX,点击“New Project”,选择芯片型号,STM32F407ZETx。
Step2. 在Pinout界面下配置晶振输入引脚。
配置TIM2使用内部时钟源,CH1作为输入捕获通道,默认映射到PA0引脚。
配置TIM3使用内部时钟,CH1~CH4为PWM输出通道,默认映射引脚分别为PA6,PA7,PB0,PB1。
配置TIM4使用内部时钟,CH1,CH2为PWM输出通道,映射引脚分别为PD12,PD13。
配置串口,作为信息输出接口。
Step3.在Clock Configuration界面配置时钟源。
使用外部8M晶振作PLL时钟输入,并使用PLL输出作为系统时钟。
为了后面的计算方便,将系统时钟配置成160MHz。
Step4.配置外设参数。
在configuration界面中点击TIM2/ TIM3/ TIM4按钮,可以进入参数配置界面。
TIM2:在Parameter Settings页配置预分频系数为7,其计数时钟就是80MHz/(7+1)=10MHz。
计数周期(自动加载值),转换为十六进制形式,输入32bit最大值0xFFFFFFFF。
注意,TIM2的自动加载寄存器ARR和各个通道的捕获/比较寄存器CCRx都是32bit的。
在NVIC页面使能捕获/比较中断。
在GPIO页面设置捕获输入引脚下拉电阻,设置成上拉也可以,主要是为了使在没有信号输入时在输入引脚上得到稳定的电平。
TIM3:在Parameter页配置预分频系数为7,计数周期(自动加载值)为9999。
其溢出频率就是80MHz/(7+1)/(9999+1)=1kHz,这就是TIM3各通道输出的PWM信号的频率。
各通道输出PWM的占空比参数如上图红框标注,其他参数使用默认值。
按照图中参数,CH1~CH4输出的PWM周期都是1ms,而高电平时间分别是123.4us,234.5us,567.8us,678.9us。
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)落月风情高工2012-12-23 17:49:43 评分只看楼主 1楼实验内容:利用STM32的一个通用定时器(TIM2)产生4路频率相同(1KHz)占空比不同的PWM。
Ch1占空比75%,Ch2占空比50%,Ch3占空比25%,Ch4占空比10%。
四路输出分别对应PA端口的PA0,PA1,PA2,PA3。
实验目的:掌握通用定时器的基本应用。
(PWM的频率和占空比的计算)STM32的定时器是个强大的模块,定时器使用的频率也是很高的,定时器可以做一些基本的定时,还可以做PWM输出或者输入捕获功能。
补充一个前期时钟源问题:名为TIMx的定时器有8个,其中TIM1和TIM8挂在APB2总线上,而TIM2-TIM7则挂在APB1总线上。
其中TIM1&TIM8称为高级控制定时器. APB2可以工作在72MHz下,而APB1最大是36MHz。
定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器。
(这个问题纳闷了好久才找到的,主要是没有在意时钟树,唉!)下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=3 6MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
stm32 pwm输入捕捉模式学习笔记
stm32 pwm输入捕捉模式学习笔记(本文来自:android_chunhui的博客)PWM输入是输入捕获的一个特殊应用,输入捕获就是当连接到定时器的引脚上产生电平变化时对应的捕获装置会立即将当前计数值复制到另一个寄存器中。
你可以开启捕获中断然后在中断处理函数中读出保存的计数值。
主要用于读取pwm的频率和占空比。
与输入捕获不同的是PWM输入模式时,用到两个通道(一般用TIMx_CH1或TIMx_CH2),只给其中一个通道分配gpio时钟即可,另一个在内部使用。
给一个通道分配gpio时钟后,需要设置另一个为从机且复位模式。
(例如使用ch2,ch1就得设置成从机模式)。
当一个输入信号(TI1或TI2)来临时,主通道捕获上升沿,从机捕获下降沿。
假设pwm从低电平开始触发,当上升沿来临时,两个通道TIM_CNT均复位开始计数,下一个下降沿来临,从机读取TIM_CNT中的值,记为CCR1,下一个上升沿来临,主通道读取TIM_CNT的值,记为CCR2。
所以CCR2/f,为pwm周期,倒数即频率。
CCR1/CCR2就是占空比。
下面是pwm捕获模式下的配置:void Tim2_PWMIC_Init(void){TIM_ICInitTypeDef TIM_ICInitStructure;TIM_ICInitStructure.TIM_Channel = TIM_Channel_2; //***通道选择,通道一为从机TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿触发TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //管脚与寄存器对应关系TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //输入预分频。
STM32学习笔记,定时器,PWM,ADC,UART,DMA
RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\ ENABLE); //启动 AFIO RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //启动 TIM1 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
//Step2. GPIO 做相应设置,为 AF 输出 //PA.8/9 口设置为 TIM1 的 OC1 输出口 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure);
}
关于 TIM 的操作,要注意的是 STM32 处理器因为低功耗的需要,各模块需要分别独立开启时钟,所以, 一定不要忘记给用到的模块和管脚使能时钟,因为这个原因,浪费了我好多时间阿~~!
STM32 笔记(二)TIM 模块产生 PWM 这个是 STM32 的 PWM 输出模式,STM32 的 TIM1 模块是增强型的定时器模块,天生就是为电机控制而生,可 以产生 3 组 6 路 PWM,同时每组 2 路 PWM 为互补,并可以带有死区,可以用来驱动 H 桥。
(stm32f103学习总结)—输入捕获模式
(stm32f103学习总结)—输⼊捕获模式⼀、输⼊捕获介绍 在定时器中断实验章节中我们介绍了通⽤定时器具有多种功能,输⼊捕获就是其中⼀种。
STM32F1 除了基本定时器 TIM6和 TIM7,其他定时器都具有输⼊捕获功能。
输⼊捕获可以对输⼊的信号的上升沿,下降沿或者双边沿进⾏捕获,通常⽤于测量输⼊信号的脉宽、测量 PWM 输⼊信号的频率及占空⽐。
输⼊捕获的⼯作原理⽐较简单,在输⼊捕获模式下,当相应的 ICx 信号检测到跳变沿后,将使⽤捕获/⽐较寄存器(TIMx_CCRx)来锁存计数器的值。
简单的说就是通过检测 TIMx_CHx 上的边沿信号,在边沿信号发⽣跳变(⽐如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的捕获/⽐较寄存(TIMx_CCRx)⾥⾯,完成⼀次捕获。
同时还可以配置捕获时是否触发中断/DMA 等。
下⾯我们以输⼊捕获测量脉宽为例,通过⼀个简图来介绍输⼊捕获的⼯作原理,如图所⽰: 从上图可以看出,t1-t2 时间就是我们需要测量的⾼电平时间,假如定时器⼯作在向上计数模式,测量⽅法是:⾸先设置定时器通道 x 为上升沿捕获,这样在 t1 时刻,就会捕获到当前的 CNT 值,然后⽴即清零 CNT,并设置通道 x 为下降沿捕获,这样到 t2 时刻,⼜会发⽣捕获事件,得到此时的 CNT 值,记为 CCRx2。
根据定时器的计数频率,我们就可以算出 t1-t2 的时间,从⽽得到⾼电平脉宽。
在 t1-t2 时间内可能会出现 N 次定时器溢出,因此我们还需要对定时器溢出进⾏处理,防⽌因⾼电平时间过长发⽣溢出导致测量数据不准。
CNT计数的次数等于:N*ARR+CCRx2,有了这个计数次数,再乘以 CNT 的计数周期,即可得到 t2-t1 的时间长度,即⾼电平持续时间。
⼆、输⼊捕获配置步骤(1)使能定时器及端⼝时钟,并设置引脚复⽤器映射和引脚模式等 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPD;(2)初始化定时器参数,包含⾃动重装值,分频系数,计数⽅式等 TIM_TimeBaseInit(TIM_TypeDef*TIMx,TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);(3)设置通⽤定时器的输⼊捕获参数,开启输⼊捕获功能 TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct);(4)开启捕获和定时器溢出(更新)中断 TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)(5)设置定时器中断优先级,使能定时器中断通道 NVIC初始化库函数是 NVIC_Init()(6)使能定时器 TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState);(7)编写定时器中断服务函数 void TIM5_IRQHandle()三、代码举例所要实现的功能是:使⽤TIM5的CH1检测输⼊信号⾼电平脉宽,将检测的⾼电平脉宽时间通过printf函数打印出来,同时让D1指⽰灯不断闪烁表⽰系统正常运⾏。
STM32CubeMX学习:004-PWM
STM32CubeMX学习:004-PWM背景上⼀讲,我们介绍了,并⽰范了如何使⽤定时器来定时。
这⼀讲我们来试试PWM(Pulse Width Modulation, 脉冲宽度调制),这是利⽤微处理器的数字输出来对模拟电路进⾏控制的⼀种⾮常有效的技术。
⼴泛应⽤在从测量、通信到功率控制与变换的许多领域中。
HOST-OS : Windows-10STM32 Cube :v5.6MCU : STM32F429LIB : stm32cube_fw_f4_v1250知识基本概念脉冲调制有两个重要的参数,(在STM32中,这两个因素分别通过两个寄存器控制:TIMX_ARR和TIMX_CCRX)输出频率 : 频率越⾼,则模拟的效果越好。
占空⽐ : 占空⽐就是改变输出模拟效果的电压⼤⼩。
占空⽐越⼤则模拟出的电压越⼤。
PWM值:在⼀个周期内,开关管导通时间长短相加的平均值。
导通时间越长,则直流输出的平均值越⼤。
(因此,可以等效于模拟电路)例如输出占空⽐为50%,频率为10Hz的脉冲,⾼电平为3.3V.则其输出的模拟效果相当于输出⼀个1.65V的⾼电平。
PWM输出频率 : 指这⼀次导通到下⼀次导通的时间的倒数。
PWM占空⽐:指的是输出的PWM中,⾼电平保持的时间与该PWM的时钟周期的时间之⽐。
如,⼀个PWM的频率是1000Hz(时钟周期就是1ms,1000us),如果⾼电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空⽐就是200:1000,也就是说PWM的占空⽐就是1:5。
PWM分辨率:分辨率也就是占空⽐最⼩能达到多少,如8位的PWM,理论的分辨率就是1:255(单斜率),16位的的PWM理论就是1:65535(单斜率)。
频率就是这样的,如16位的PWM,它的分辨率达到了1:65535,要达到这个分辨率,T/C就必须从0计数到65535才能达到,如果计数从0计到80之后⼜从0开始计到80,那么它的分辨率最⼩就是1:80了,但是它也快了,也就是说PWM的输出频率⾼了。
PWM输入捕获频率
PWM输入捕获频率学习笔记陈宏敏2013-5-251、PWM:脉冲宽度调制,英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
简单一点,就是对脉冲宽度的控制。
2、STM32的定时器除了TIM6和TIM7。
其他的定时器都可以用来产生PWM输出。
其中高级定时器TIM1和TIM8可以同时产生多达7路的PWM输出。
而通用定时器也能同时产生多达4路的PWM输出,这样STM32最多可以同时产生30路PWM输出!等下我用TIM2的CH2产生一路PWM输出和PWM输入。
3、要使STM32的通用定时器TIMx产生PWM输出,我们会用到3个寄存器,来控制PWM。
这三个寄存器分别是:捕获/比较模式寄存器(TIMx_CCMR1/2)、捕获/比较使能寄存器(TIMx_CCER)、捕获/比较寄存器(TIMx_CCR1~4)。
(注意,还有个TIMx的ARR寄存器是用来控制pwm的输出频率)。
首先是捕获/比较模式寄存器(TIMx_CCMR1/2),该寄存器总共有2个,TIMx _CCMR1和TIMx _CCMR2。
TIMx_CCMR1控制CH1和2,而TIMx_CCMR2控制CH3和CH4。
其次是捕获/比较使能寄存器(TIMx_CCER),该寄存器控制着各个输入输出通道的开关。
最后是捕获/比较寄存器(TIMx_CCR1~4),该寄存器总共有4个,对应4个输通道CH1~4。
4个寄存器都差不多,说的简单一点,这个寄存器就是用来设置pwm的占空比。
4、具体看STM芯片手册。
TIMx_ARR寄存器的值怎么样来确定PWM的频率?TIM_Period(即是TIMx_ARR寄存器的值)的大小实际上表示的是需要经过TIM_Period次计数后才会发生一次更新或中断。
接下来需要设置时钟预分频数TIM_Prescaler,这里有个公式,我们举例来说明:例如系统频率是72MHz,TIM_Prescaler=71,那么PWM的时钟频率是72MHz/(71+1)=1MHz。
STM32的PWM精讲
STM32的PWM精讲通过对TIM1定时器进行控制,使之各通道输出插入死区的互补PWM输出,各通道输出频率均为17.57KHz。
其中,通道1输出的占空比为50%,通道2输出的占空比为25%,通道3输出的占空比为12.5%。
各通道互补输出为反相输出。
TIM1定时器的通道1到4的输出分别对应PA.08、PA.09、PA.10和PA.11引脚,而通道1到3的互补输出分别对应PB.13、PB.14和PB.15引脚,中止输入引脚为PB.12。
将这些引脚分别接入示波器,在示波器上观查相应通道占空比的方波[12]。
配置好各通道后, 编译运行工程;点击MDK 的Debug菜单,点击Start/Stop Debug Session;通过示波器察看PA.08、PA.09、PA.10、PB.13、PB.14、PB.15的输出波形,其中PA.08和PB.13为第一通道和互补通道,PB.09和PB.14为第二通道和其互补通道,PB.10和PB.15为第三通道和其互补通道;第一通道显示占空比为50%,第二通道占空比为25%,第三通道占空比为12.5%。
第2章 STM32处理器概述STM32F103xx增强型系列产品中内置了多达3个同步的标准定时器。
每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。
它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。
在调试模式下,计数器可以被冻结。
任一个标准定时器都能用于产生PWM 输出。
每个定时器都有独立的DMA请求机制。
2.4.2 高级控制定时器[22]高级控制定时器(TIM1)由一个 16位的自动装载计数器组成,它由一个可编程预分频器驱动。
它适合多种用途,包含测量输入信号的脉冲宽度(输入捕获),或者产生输出波形(输出比较,PWM,嵌入死区时间的互补 PWM等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
stm32 pwm输入捕捉模式学习笔记
(本文来自:android_chunhui的博客)
PWM输入是输入捕获的一个特殊应用,输入捕获就是当连接到定时器的引脚上产生电平变化时对应的捕获装置会立即将当前计数值复制到另一个寄存器中。
你可以开启捕获中断然后在中断处理函数中读出保存的计数值。
主要用于读取pwm的频率和占空比。
与输入捕获不同的是PWM输入模式时,用到两个通道(一般用TIMx_CH1或TIMx_CH2),只给其中一个通道分配gpio时钟即可,另一个在内部使用。
给一个通道分配gpio时钟后,需要设置另一个为从机且复位模式。
(例如使用ch2,ch1就得设置成从机模式)。
当一个输入信号(TI1或TI2)来临时,主通道捕获上升沿,从机捕获下降沿。
假设pwm从低电平开始触发,当上升沿来临时,两个通道TIM_CNT均复位开始计数,下一个下降沿来临,从机读取TIM_CNT中的值,记为CCR1,下一个上升沿来临,主通道读取TIM_CNT的值,记为CCR2。
所以CCR2/f,为pwm周期,倒数即频率。
CCR1/CCR2就是占空比。
下面是pwm捕获模式下的配置:
void Tim2_PWMIC_Init(void)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICInitStructure.TIM_Channel = TIM_Channel_2; //***通道选择,通道一为从机TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿触发
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //管脚与寄存器对应关系TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //输入预分频。
意思是控制在多少个输入周期做一次捕获,如果
//输入的信号频率没有变,测得的周期也不会变。
比如选择4分频,则每四个输入周期才做一次捕获,这样在输入信号变化不频繁的情况下,
//可以减少软件被不断中断的次数。
TIM_ICInitStructure.TIM_ICFilter = 0x0; //滤波设置,经历几个周期跳变认定波形稳定0x0~0xF
TIM_PWMIConfig(TIM2, &TIM_ICInitStructure); //根据参数配置TIM外设信息TIM_SelectInputTrigger(TIM2, TIM_TS_TI2FP2); //选择IC2为始终触发源
TIM_SelectSlaveMode(TIM2, TIM_SlaveMode_Reset);//TIM从模式:触发信号的上升沿重新初始化计数器和触发寄存器的更新事件
TIM_SelectMasterSlaveMode(TIM2, TIM_MasterSlaveMode_Enable); //启动定时器的被动触发
TIM_Cmd(TIM2,ENABLE); //启动TIM2
TIM_ITConfig(TIM2, TIM_IT_CC2, ENABLE); //打开中断
}
//中断服务函数
void TIM2_IRQHandler(void)
{
TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update); CCR1=TIM_GetCapture1(TIM2);
CCR2=TIM_GetCapture2(TIM2);
frequency=72000000/CCR2;
duty=CCR1*100/CCR2;
}
另外主程序先要给主通道的io口分配时钟即可。