第三章合金相结构和相图
合集下载
合金相图.ppt
1、铜镍合金相图相区分析 液相线tAa2aa1tB:开始结晶的温度线。 固相线tAb2cb1tB :结晶终止线。 由线包围的区域称为相区
单相区:液相线以上为液体L 固相线以下为固溶体α
双相区:固液相线之间L、α两相 同时共存,以L+α表示
二、匀晶相图 2 、合金的结晶过程 匀晶转变的结晶过程:L→L+α →α
性能: 一般较硬、脆
三、机械混合物
液态金属在平衡凝固时形成的两种固溶体或 固溶体加金属化合物的混合物(机械混合物)
单一固溶体:强度、硬度较低 单一化合物:硬而脆 机械混合物——不是一种单一相
3.2 二元合金相图
概念: 合金相图是用图解的方法表示不同 温度及成分下合金系中各相的平衡 关系,又称平衡图或状态图。
❖ 共晶转变:一个液相在冷却过程中 同时结晶出两个结构不同的固相的转变。 即:L+
❖共晶体:共晶转变所得的两相机械混合物。
❖共晶相图:具有共晶转变的相图。 如Pb-Sn、Pb-Sb、Al-Si、Ag-Cu和Mg-Al等。
1、Pb-Sn合金相图分析
• ⑴ 相:L、、
——Sn在 Pb中的固溶体, ——Pb 在Sn中的固溶体。
AS 727℃
( AE + Fe3C ) Ld ( FP + Fe3C ) P
A T°
G
Fe - FEeCF3线C:共相晶转图变
匀晶相图
L L→L共d(晶A+相F图e3C)
D
G时S不线同(成AL3分+)的A:A开冷始却
A
析出铁素体F的温度线
铁碳合金:铁和碳两种元素组成的合金。 铁碳相图:研究钢铁成分、组织和性能
之间关系的理论基础,制定 热加工工艺的依据。
单相区:液相线以上为液体L 固相线以下为固溶体α
双相区:固液相线之间L、α两相 同时共存,以L+α表示
二、匀晶相图 2 、合金的结晶过程 匀晶转变的结晶过程:L→L+α →α
性能: 一般较硬、脆
三、机械混合物
液态金属在平衡凝固时形成的两种固溶体或 固溶体加金属化合物的混合物(机械混合物)
单一固溶体:强度、硬度较低 单一化合物:硬而脆 机械混合物——不是一种单一相
3.2 二元合金相图
概念: 合金相图是用图解的方法表示不同 温度及成分下合金系中各相的平衡 关系,又称平衡图或状态图。
❖ 共晶转变:一个液相在冷却过程中 同时结晶出两个结构不同的固相的转变。 即:L+
❖共晶体:共晶转变所得的两相机械混合物。
❖共晶相图:具有共晶转变的相图。 如Pb-Sn、Pb-Sb、Al-Si、Ag-Cu和Mg-Al等。
1、Pb-Sn合金相图分析
• ⑴ 相:L、、
——Sn在 Pb中的固溶体, ——Pb 在Sn中的固溶体。
AS 727℃
( AE + Fe3C ) Ld ( FP + Fe3C ) P
A T°
G
Fe - FEeCF3线C:共相晶转图变
匀晶相图
L L→L共d(晶A+相F图e3C)
D
G时S不线同(成AL3分+)的A:A开冷始却
A
析出铁素体F的温度线
铁碳合金:铁和碳两种元素组成的合金。 铁碳相图:研究钢铁成分、组织和性能
之间关系的理论基础,制定 热加工工艺的依据。
第三章合金的结构与相图
硬性和耐磨性,是高合金钢和 结
硬质合金中的重要组成相。
构
如:W2C, VC, TiC, MoC, TiN, VN 等。
35
② 间隙化合物
当(d非 /d过)>0.59时,形成
的间隙化合物一般具有复杂的 晶格结构。 如:Fe3C, dC/dFe =0.61, 正交 晶格 特点: 熔点、硬度更高
作用: 在钢中也起强化相作用。
27
1. 根据溶质原子在溶剂晶格中分布情况的不同, 可将固溶体分为( )和( )。 2. 相是指合金中( )与( )均匀一致的组成部分。 3. 固溶体与金属间化合物在晶体结构和力学性能 方有何不同?
28
特点与变化
晶粒的大小与形状无 明显的变化; 位错密度变化不大; 电阻明显降低; 强度硬度略有降低,
可能形成无限固溶体;
对于间隙固溶体,则只能形成有限固溶体。
18
3 按溶质原子在固溶体中分布是否有规律分
➢ 无序固溶体:溶质原子呈无序分布的固溶体; ➢ 有序固溶体:溶质原子呈有序分布的固溶体; ➢间隙固溶体都 是无序固溶体。
19
(三)、影响固溶体结构形式和溶解度的因素
1. 原子大小
溶剂与溶质的原子直径差别:
铁原子 碳原子
通常固溶体不能用一个化学式表示
12
(一). 溶质元素在固溶体中的溶解度
固溶体的浓度: 溶质原子溶于固溶体中的量,称为固溶体的浓度。
质量百分比: C=(溶质元素的质量/固溶体的质量)100% 原子百分比: C=(溶质元素的原子数/固溶体的总原子数)100%
固溶体的溶解度: 在一定条件下,溶质元素在固溶体中的极限浓度称 为溶质元素在固溶体中的溶解度。
31
1、金属间化合物的种类
硬质合金中的重要组成相。
构
如:W2C, VC, TiC, MoC, TiN, VN 等。
35
② 间隙化合物
当(d非 /d过)>0.59时,形成
的间隙化合物一般具有复杂的 晶格结构。 如:Fe3C, dC/dFe =0.61, 正交 晶格 特点: 熔点、硬度更高
作用: 在钢中也起强化相作用。
27
1. 根据溶质原子在溶剂晶格中分布情况的不同, 可将固溶体分为( )和( )。 2. 相是指合金中( )与( )均匀一致的组成部分。 3. 固溶体与金属间化合物在晶体结构和力学性能 方有何不同?
28
特点与变化
晶粒的大小与形状无 明显的变化; 位错密度变化不大; 电阻明显降低; 强度硬度略有降低,
可能形成无限固溶体;
对于间隙固溶体,则只能形成有限固溶体。
18
3 按溶质原子在固溶体中分布是否有规律分
➢ 无序固溶体:溶质原子呈无序分布的固溶体; ➢ 有序固溶体:溶质原子呈有序分布的固溶体; ➢间隙固溶体都 是无序固溶体。
19
(三)、影响固溶体结构形式和溶解度的因素
1. 原子大小
溶剂与溶质的原子直径差别:
铁原子 碳原子
通常固溶体不能用一个化学式表示
12
(一). 溶质元素在固溶体中的溶解度
固溶体的浓度: 溶质原子溶于固溶体中的量,称为固溶体的浓度。
质量百分比: C=(溶质元素的质量/固溶体的质量)100% 原子百分比: C=(溶质元素的原子数/固溶体的总原子数)100%
固溶体的溶解度: 在一定条件下,溶质元素在固溶体中的极限浓度称 为溶质元素在固溶体中的溶解度。
31
1、金属间化合物的种类
第三章 合金的相结构和结晶
3.2 合金的相结构
固态合金中的相结构可分为固溶体和金属化 合物两大类。
3.2.1固溶体
合金的组元之间以不同比例相互混合后形 成的固相,其晶体结构与组成合金的某一组元 的相同,这种相称为固溶体。与固溶体结构相 同的组元为溶剂,另一组元为溶质。碳钢和合 金钢,均以固溶体为基体相。
一、固溶体的分类
1、按溶质原子在溶剂晶格中所占位置分类 置换固溶体和间隙固溶体
相图是表示在平衡条件下合金系中合金的状态与温 度、成分间关系的图解,也称为平衡图或状态图。 平衡是指在一定条件下合金系中参与相变过程的各 相的成分和质量分数不再变化所达到的一种状态。
一、二元相图的表示方法
合金存在的状态通常 由合金的成分、温度 和压力三个因素确定。 常压 表象点
二、二元合金相图的测定方法
第三章 二元合金的相结构与结晶
合金:指两种或两种以上的金属,或金属与非金属,经熔 炼或烧结,或用其他方法组合而成的具有金属特性的物质。 纯金属和合金的比较: 纯金属强度一般较低,不适合做结构材料 因此目前应用的金属材料绝大多数是合金,如应用最广泛的 碳钢和铸铁就是铁和碳的合金,黄铜就是铜和锌的合金。 合金性能优良的原因: 合金的相结构 合金的组织状态:合金相图
2、固溶体合金的结晶需要一定的温 度范围
固溶体合金的结晶需要在一定的温度范围内进行, 在此温度范围内的每一温度下,只能结晶出一定数 量的固相。随着温度的降低,固相的数量增加,同 时固相和液相的成分分别沿着固相线和液相线而连 续地改变,直至固相的成分与原合金的成分相同时, 才结晶完毕。这就意味着,固溶体合金在结晶时, 始终进行着溶质和溶剂原子的扩散过程,其中不但 包括液相和固相内部原子的扩散,而且包括固相与 液相通过界面进行原子的互扩散,这就需要足够长 的时间,才得以保证平衡结晶过程的进行。
第三章合金的结构与相图本章重点1`固溶体与化合物及其特性
⑤ 温度
固溶体的溶解度受温度的影响较大, 一般温度越高,固溶体的溶解度越大。 如,奥氏体在727℃能溶解0.77%的碳, 而在1148℃则能溶解2.11%的碳。
3、固溶体的性能
当溶质元素的含量极少时,固溶体的性 能与溶剂金属基本相同。随着溶质元素含量 的升高,固溶体的性能发生明显变化,表现 在强度、硬度升高,塑性、韧性有所下降, →固溶强化。
金属间化合物
FeS, MnS 等
一般化合物
金属间化合物可以作为合金的组 成相(强化相),而非金属化合物在 合金中大多属于有害杂质。如FeS 在 钢中引起热脆。
1、金属间化合物的组织与性能特点
金属间化合物具有复杂的晶格结构, 熔点高,硬而脆,其在合金中的分布形 态对合金的性能影响很大,当金属间化 和物以大块状或成片状形态分布时,合 金的强度、塑性均很差;当金属间化合 物呈弥散状质点分布时,合金的强度高, 塑性、韧性较好。
范围内变化,电子化合物可以溶解一定量的组
元,形成以电子化合物为基的固溶体。
C、间隙化合物
由原子直径较大的过渡族元素与原子直径 很小的C、N、B等元素组成,过渡族元素的原 子占据晶格的正常位置,尺寸较小的非金属元 素原子有规则地嵌入晶格空隙中,形成间隙化 合物。
① 间隙相
当非金属元素原子与过渡族金属元素原 子直径的比值(d非/d过)<0.59时,形成的间 隙化合物具有比较简单的晶格结构,成为间 隙相。 如:W2C, VC, TiC, MoC, TiN, VN 等。
偏析的存在,会使金属强度下降,塑 性较差,耐腐蚀性降低,应采用均匀化退 火(扩散退火)予以消除。
第四节 二元共晶相图 当合金的二组元在液态时无限互溶, 在固态时有限互溶,且发生共晶反应, 此合金系的相图为二元共晶相图。
第3章 铁碳合金相图
ωc>0.9% →σ↓
硬度:ωc↑→Fe3C ↑→HB↑
塑性、韧性: ωc↑→Fe3C ↑ →塑性↓、韧性↓
3.3 对工艺性能的影响
主要表现在对切削加工性、可锻性、 22/24 铸造性和焊接性能的影响。
2020/5/12
2020/5/12
切削加工性:指金属经切削加工形成工件的难易程度。低碳钢切削加 工性差。高碳钢中Fe3C多,刀具磨损严重,切削加工性也差。中碳 钢中F和Fe3C的比例适当,切削加工性好。
(Acm) GS A F(A3)
PQ F Fe3CⅢ
ACM A3
A1
600
15/24
2020/5/12
共晶转变: ECF 共晶线
1148°C
C 共晶点
ωC =4.3%
LC Ld(A+Fe3C) 室温下: Ld Ld´ 低温莱氏体Ld´ (P+ Fe3CⅡ+Fe3C)
共析转变: PSK 共析线 S 共析点
莱氏体:奥氏体和渗碳体组成的机械混合物,常用Ld表示,它是碳的质 量分数为4.3%的铁碳合金液体在1148℃发生共晶转变的产物。在 727℃以下,莱氏体中的奥氏体将转变为珠光体,由珠光体与渗碳体组 成的机械混合物,称为低温莱氏体,用符号Ld′表示。 8/24 莱氏体的硬度很高,塑性、韧性极差。
2020/5/12
晶界上(如Fe3CⅢ),变为分布在 F的基体内(如P),进而分布在
原A的晶界上(如Fe3CⅡ),最后 形成Ld′时,Fe3C已作为基体出 现。碳的质量分数不同,铁碳合
金的组织和性能也不同。
21/24
3.2 对力学性能的影响
强度:ωc<0.77% ωc↑→P↑ F↓
σ↑
0.77 % <ωc<0.9% 强度增加缓慢
硬度:ωc↑→Fe3C ↑→HB↑
塑性、韧性: ωc↑→Fe3C ↑ →塑性↓、韧性↓
3.3 对工艺性能的影响
主要表现在对切削加工性、可锻性、 22/24 铸造性和焊接性能的影响。
2020/5/12
2020/5/12
切削加工性:指金属经切削加工形成工件的难易程度。低碳钢切削加 工性差。高碳钢中Fe3C多,刀具磨损严重,切削加工性也差。中碳 钢中F和Fe3C的比例适当,切削加工性好。
(Acm) GS A F(A3)
PQ F Fe3CⅢ
ACM A3
A1
600
15/24
2020/5/12
共晶转变: ECF 共晶线
1148°C
C 共晶点
ωC =4.3%
LC Ld(A+Fe3C) 室温下: Ld Ld´ 低温莱氏体Ld´ (P+ Fe3CⅡ+Fe3C)
共析转变: PSK 共析线 S 共析点
莱氏体:奥氏体和渗碳体组成的机械混合物,常用Ld表示,它是碳的质 量分数为4.3%的铁碳合金液体在1148℃发生共晶转变的产物。在 727℃以下,莱氏体中的奥氏体将转变为珠光体,由珠光体与渗碳体组 成的机械混合物,称为低温莱氏体,用符号Ld′表示。 8/24 莱氏体的硬度很高,塑性、韧性极差。
2020/5/12
晶界上(如Fe3CⅢ),变为分布在 F的基体内(如P),进而分布在
原A的晶界上(如Fe3CⅡ),最后 形成Ld′时,Fe3C已作为基体出 现。碳的质量分数不同,铁碳合
金的组织和性能也不同。
21/24
3.2 对力学性能的影响
强度:ωc<0.77% ωc↑→P↑ F↓
σ↑
0.77 % <ωc<0.9% 强度增加缓慢
第三章 二元合金的相结构与结晶(包晶相图)4(16)-10-2剖析
α
包晶偏析:因包晶转变 不能充分进行而导致的 成分不均匀现象。
四、包晶转变的实际应用
包晶转变特点:
包晶转变的形成相依附在初生相上形成; 包晶转变的不完全性。(不彻底性)
组织设计:如轴承合金需要的软基体上分布硬质点的组织。 首先形成硬质点,包晶反应形成软固溶体包于其外层
晶粒细化。 包晶反应生成细小化合物,异质形核。
包晶反应的推广
包晶反应(Peritectic) L + 包析反应(Peritectoid) + 合晶反应(Syntectic) L1 + L2
第三章 二元合金的相结构与结晶
§3-1 合金中的相 §3-2 合金的相结构 §3-3 二元合金相图的建立 §3-4 匀晶相图及固溶体的结晶 §3-5 共晶相图及其合金的结晶 §3-6 包晶相图及其合金的结晶 §3-7 其它类型的合金相图 §3-8 二元相图的分析及使用
§3-6 包晶相图及其合金的结晶
室温组织组成:β+αⅡ
室温相组成: α+β
三、不平衡结晶及其组织
原因 新生β相依附于α相生核长大, β相将α相包围
液体和α相反应形成β相,须 通过β相层进行扩散
原子在固体中的扩散低于液体, 包晶转变缓慢
冷却速度快.包晶转变被抑制 不能完全进行
剩余的液体在低于包晶转变温 度直接转变为β
保留下来的α,以及形成的β 相成分都不均匀。
(2) 线:
液相线: ACB,固相线:APDB。 固溶线:PE、DF线分别为中的固溶线(溶解度曲线)。
包晶线:水平线PDC
一、相图分析
(3)相区:
三个单相区: L、、; 三个两相区:L+、L+、+; 一个三相区:即水平线PDC; L + + 。
合金的结构与相图(材料第三章)
组成合金的元素可以全部是 黄铜 金属,也可是金属与非金属。
组成合金的元素相互作用可 形成不同的相。
Al-Cu两相合金
2
相:是指金属或合金中凡成
单相
合金
分相同、结构相同,并与其
它部分有界面分开的均匀组
成部分。
显微组织:是指在显微镜下 观察到的金属中各相或各晶 粒的形态、数量、大小和分 布的组合。
界点标在温度-成分坐标中的成分垂线上。 4. 将垂线上相同意义的点连接起来,并标上相应的数字和字母。
相图中,结晶开始点的连线叫液相线。结晶终了点的连线叫固相16 线。
第三节 匀晶相图
两组元在液态和固 态下均无限互溶时 所构成的相图称二 元匀晶相图。
以Cu-Ni合金为例 进行分析。
Cu-Ni合金相图
17
一、相图分析
相图由两条线构成,上 面是液相线,下面是固 相线。
相图被两条线分为三个 相区,液相线以上为液 相区L ,固相线以下为 固溶体区,两条线之间 为两相共存的两相区 (L+ )。
L
液相线 L
+
固相线
Cu
成分(wt%Ni)
Ni
18
二、合金的结晶过程
除纯组元外,其它成分合金结晶过程相似,以Ⅰ合
图解。又称状态图或平衡图。 相图表示了在缓冷条件下不同成分合金的组织随温度变化的规律,
是制订熔炼、铸造、热加工及热处理工艺的重要依据。
13
1、组元是指组成合金的最简单、最基本、能够独立存
在的物质。
2、合金系是指由两个或两个以 上元素按不同比例配制的一系
列不同成分的合金。多数情况 下组元是指组成合金的元素。 但对于既不发生分解、又不发 生任何反应的化合物也可看作 组元,
组成合金的元素相互作用可 形成不同的相。
Al-Cu两相合金
2
相:是指金属或合金中凡成
单相
合金
分相同、结构相同,并与其
它部分有界面分开的均匀组
成部分。
显微组织:是指在显微镜下 观察到的金属中各相或各晶 粒的形态、数量、大小和分 布的组合。
界点标在温度-成分坐标中的成分垂线上。 4. 将垂线上相同意义的点连接起来,并标上相应的数字和字母。
相图中,结晶开始点的连线叫液相线。结晶终了点的连线叫固相16 线。
第三节 匀晶相图
两组元在液态和固 态下均无限互溶时 所构成的相图称二 元匀晶相图。
以Cu-Ni合金为例 进行分析。
Cu-Ni合金相图
17
一、相图分析
相图由两条线构成,上 面是液相线,下面是固 相线。
相图被两条线分为三个 相区,液相线以上为液 相区L ,固相线以下为 固溶体区,两条线之间 为两相共存的两相区 (L+ )。
L
液相线 L
+
固相线
Cu
成分(wt%Ni)
Ni
18
二、合金的结晶过程
除纯组元外,其它成分合金结晶过程相似,以Ⅰ合
图解。又称状态图或平衡图。 相图表示了在缓冷条件下不同成分合金的组织随温度变化的规律,
是制订熔炼、铸造、热加工及热处理工艺的重要依据。
13
1、组元是指组成合金的最简单、最基本、能够独立存
在的物质。
2、合金系是指由两个或两个以 上元素按不同比例配制的一系
列不同成分的合金。多数情况 下组元是指组成合金的元素。 但对于既不发生分解、又不发 生任何反应的化合物也可看作 组元,
二元合金相图
21
四 平衡结晶分析及其组织1源自金的结晶过程固溶体合金的结晶过程 22
结晶过程
1.当温度到达1点或稍下时,由L→α固溶体随着温度 的降低α% ↑ ,L%↓。并呈树枝状形态……
2.当温度到达2点时液相完全消失,得到100%α。
液相的成分1→α1→α2→…以致消失。 固相成分由c1→c2→2→… α(ob成分) 最后得到成分均匀的ob成分等轴状的α固溶体。
16
第二节 匀晶相图
一.相图的基本概念
● 相图:研究合金在平衡的条件下(无限缓慢冷却,比如 0.5~1.50C/min) ,合金的状态与温度、 成分间的关系的图解称 为相图或平衡图。
● 合金系:指研究的对象。如:Fe-C系,Pb-Sn系等。
● 状态:指合金在一定条件下有哪几相组成, 称为合金在该条 件下的状态。 如纯铁在1538℃以上的状态为液相;在1538℃时为液相和固 相两相共存; 1538℃以下为固相.
匀晶转变:在一定温度范围内,不断由液相中凝固出 固溶体,液相、固相成分都不断随温度的下降而沿液 相线和固相线变化的过程,叫做匀晶转变。
23
五 匀晶结晶的特点
1)树枝状长大:a固溶体在从液相中结晶出来的过程中, 包括有生核和长大两个过程,但固溶体更趋于呈树枝状 长大。
2)变温结晶过程:在一个温度区间进行。
14
B.复杂结构的间隙化合物
当非金属原子半径(rB)与金属原子半径(rA)之比rB /rA大于0.59时,形成具有复杂结构的间隙化合物。
(1)形成条件:两类元素的负电性相差较大且满足rB /rA > 0.59
(2)特性
(a) 复杂结构如:Fe3C 、Cr7C3 Cr23C6 (b) 高熔点、高硬度,但比间隙相的略低,在钢中也起强化作用; 塑性为零,加热容易分解 © 常形成Cr、Mn、Co、Fe的碳化物或它们的合金碳化物,常见 的类型有:M3C、M7C3、M23C6、M6C。
3.1 合金中的相及相结构
当电子浓度为21/14时,电子化合物(一般称为β相)多
数是体心立方结构。
当电子浓度为21/13时的电子化合物具有复杂立方结构。 当电子浓度为21/12时,形成具有密排六方结构的电子
化合物,称为ε相。
30
某 些 铜 合 金 银 合 金 的 相 区
β
31
间隙相与间隙化合物
过渡族金属能与原子半径比较小的非金属元素C、
38
金属间化合物的性质和应用
பைடு நூலகம்
具有超导性质的金属间化合物,如Nb3Ge,Nb3Al,Nh3Sn, V3Si,NbN等;
具有特殊电学性质的金属间化合物,如InTe-PbSe, GaAs-ZnSe等在半导体材料用;
具有强磁性的金属间化合物,如稀土元素(Ce,La,Sm, Y等)和Co的化合物,具有特别优异的永磁性能;
金属特性的物质。
4
工业纯Fe、Al、Cu合金化前后σ b的变化
5
两种或两种以上金属元素,或金属元素与
合金
非金属元素,经熔炼、烧结或其它方法组
合而成并具有金属特性的物质。
组成合金最基本的独立的物质,通常组元 就是组成合金的元素。 是合金中具有同一聚集状态、相同晶体结
组元
相
构,成分和性能均一,并以界面相互分开
具有奇特吸释氢本领的金属间化合物(常称为贮氢材料), 如 LaNi5,FeTi,R2Mg17和R2Ni2Mg15。(R等仅代表稀土 La,Ce,Pr,Nd或混合稀土)是一种很有前途的储能和 换能材料;
39
金属间化合物的性质和应用
具有耐热特性的金属间化合物,如Ni3Al,NiAl, TiAl,Ti3Al,FeAl,Fe3Al,MoSi2,NbBe12,ZrBe12 等不仅具有很好的高温强度,并且,在高温下具有比 较好的塑性;
第三章金属的结构与相图
衡状态下使用。
(5)固溶体结晶时成分是变化的,缓慢冷却时由于原子
的扩散能充分进行,形成的是成分均匀的固体。 晶内偏析(或枝晶偏析):晶体内化学成分不均匀的现象。 晶内偏析的弊端:严重影响合金的机械性能和抗蚀性,对
加工工艺性也有损害。 措施:采用扩散退火或均匀化退火处理. 即将铸件加热到低于固相线100~200℃的温度,进行较 长时间的保温,使偏析元素进行充分扩散,以达到成分均
分数)是确定的。 (4)在两相区内,温度一定时,两相的质量比是一定的。
根据杠杆定律:在1200 ℃温度时, 两相的质量比为 QL/Qα=bc/ab
பைடு நூலகம்
合金中液相和固相在合金中所占的相对质量(即质量分数) 分别为: QL/Q合金=bc/ac Qα/ Q合金=ab/ac
注意:杠杆定律只适用于相图中的两相区,并且只能在平
合金系主要有Cu-Ni 、Cu-Au 、Au-Ag 、Fe-Ni 、W-Mo
温度
α α
L
α
α
杠杆定律的力学比喻
(一) Cu-Ni合金相图分析: AB上弧线为液相线,代表各种成分的合金在冷却过程中 开始结晶或在加热过程中熔化终了的温度; AB下弧线为固相线,代表各种成分的合金在冷却过程中
结晶终了或在加热过程中开始熔化的温度。 L—液相区; α—固相区; L+α—液、固两相并存区;
100 %
合金的组织组成物为:初生相(或一次相)α、βⅡ(次
生相或二次相)和共晶体(α+β)
它们(组织组成物)的相对质量为:Q(α+β)= Qα=
2e ce c g fg 100 %
c2 ce
100 %
QβⅡ=
2e ce
(5)固溶体结晶时成分是变化的,缓慢冷却时由于原子
的扩散能充分进行,形成的是成分均匀的固体。 晶内偏析(或枝晶偏析):晶体内化学成分不均匀的现象。 晶内偏析的弊端:严重影响合金的机械性能和抗蚀性,对
加工工艺性也有损害。 措施:采用扩散退火或均匀化退火处理. 即将铸件加热到低于固相线100~200℃的温度,进行较 长时间的保温,使偏析元素进行充分扩散,以达到成分均
分数)是确定的。 (4)在两相区内,温度一定时,两相的质量比是一定的。
根据杠杆定律:在1200 ℃温度时, 两相的质量比为 QL/Qα=bc/ab
பைடு நூலகம்
合金中液相和固相在合金中所占的相对质量(即质量分数) 分别为: QL/Q合金=bc/ac Qα/ Q合金=ab/ac
注意:杠杆定律只适用于相图中的两相区,并且只能在平
合金系主要有Cu-Ni 、Cu-Au 、Au-Ag 、Fe-Ni 、W-Mo
温度
α α
L
α
α
杠杆定律的力学比喻
(一) Cu-Ni合金相图分析: AB上弧线为液相线,代表各种成分的合金在冷却过程中 开始结晶或在加热过程中熔化终了的温度; AB下弧线为固相线,代表各种成分的合金在冷却过程中
结晶终了或在加热过程中开始熔化的温度。 L—液相区; α—固相区; L+α—液、固两相并存区;
100 %
合金的组织组成物为:初生相(或一次相)α、βⅡ(次
生相或二次相)和共晶体(α+β)
它们(组织组成物)的相对质量为:Q(α+β)= Qα=
2e ce c g fg 100 %
c2 ce
100 %
QβⅡ=
2e ce
第三章 铁碳合金相图
A金属 bcc 高 100% 90% 80% …….. 20% 10% 0%
B金属 bcc 低 0% 10% 20% ……. 80% 90% 100%
不同成分以及经过不同加工处理的合金具有不同的性能。 这种现象就是由其不同的相结构和组织引起的。
合金中相的晶体结构称为相结构 在显微镜下观察到的具有某种形态或形 貌特征的组成部分总称为组织。
Fe3( C、N)或 Fe3( C、B)
Fe3C→3Fe+G(石墨)
机电学院 NWPU
4、珠光体(P)
定义:F与 Fe3C 所形成的机械混合物(平均含碳量:
0.77%)。其显微组织珠光体强度较高,塑性、韧性和硬 度介于渗碳体和铁素体之间。
性能:Rm≈750MPa HBS=180 A≈20%~25%
室温组织:P+Fe3C(网状)
过共析钢的结晶过程
过共析钢组织金相图
过共析钢应用举例
T12 钢 碳含量 1.2%
返回
5.共晶白口铁 ( Wc = 4.3% )
室温组织:
(P + Fe3CII + (低温)莱氏体 Le′ ),
莱氏体 Le′的性能:硬而脆
共晶白口铁组织金相图
(6)亚共晶白口铁 (2.11%<Wc % <4.3 % )结晶过程
合金中的各种相是组成合金的基本单元; 合金组织是合金中各种相的综合体。
不同含碳量的显微组织
二.合金的相结构
根据构成合金的各组元之间相互作用的不同,固态
合金的相可分为固溶体和金属化合物两大类。
1)固溶体
固溶体是指合金在固态下,组元间仍能互相溶解而形
成的均匀相。
固溶体
置换固溶体
第三章合金的晶体结构与相图
第一节 固态金属中的相结构
一﹑基本概念
3﹑合金系:有若干给定组元按不同比例配出一系列成分不 同的合金,这一系列合金构成的一个合金系统。如黄铜是铜 与锌组成的二元合金系。
组成合金的元素相互作用可形成不同的相。 4﹑相:是指金属或合金中凡化学成分相同、晶体结构相 同,并与其它部分有界面分开的均匀组成部分。液态物 质为液相,固态物质为固相。
➢1.固溶体的分类:
(1)根据溶质原子在溶剂晶格中所占位置不同,可将固溶体 分为置换固溶体与间隙固溶体两种。
➢置换固溶体:溶剂晶格结点上的部分原子被溶质原子所取 代的固溶体。
➢间隙固溶体:溶质原子进入溶剂晶格的间隙而形成的固溶体。
一般规律是溶质元素的 原子直径与溶剂原子直 径之比小于0.59时,易于 形成间隙固溶体,而在 直径大小差不多的元素 之间易于形成置换固溶 体。
置换固溶体
间隙固溶体
固溶体类型
间
置
隙
换
固
固
溶
溶
Z体
体
Z
置换原子
间隙原子
Y Y
X X
固溶体按分布的有序度分:
分无序固溶体 有序固溶体
溶质原子有规则分布的为有序固溶体,无规则分布 的为无序固溶体。 有序固溶体( 加热到某一临界温度 ) 无序固溶体 有 序化温度
溶质原子在间隙固溶体中只能呈系统分部,形成 无序固溶体。
根据组元相互作用不同,固态合金的相结构可分为两大类: 1.固溶体
2.金属化合物
二﹑固溶体
①固溶体:合金的组元间以不同的比例相互混合,混合后 形成的晶体结构与某一组元的晶体结构相同,这种相就是 固溶体,这种组元叫溶剂,其他的组元叫溶质。 ②溶剂:与固溶体晶格相同的组元,一般在合金中含量较 多。 ③溶质:以原子状态分布在溶剂晶格中,一般含量较少。
相结构与相图
对间隙固溶体 : 溶质原子直径越小,溶解度越大。
(3)电负性因素:
电负性因素: 是指元素的原子从其它原子夺取电子而转 变为负离子的能力。
溶质、溶剂的电负性越接近溶解度越大。越有利于形成
无限固溶体。当元素间的电负性的差别大到一定程度后,就难于 形成固溶体,而倾向于形成化合物。
(四)、 固溶强化
通过向溶剂金属中溶入溶质元素形成固溶体,而使固溶体 合金强度、硬度升高的现象,固溶强化。
②、应用条件(在二元相图中)
A、只能在两相区对“相”的相对含量计算 B、必须是两相处于平衡状态 4、枝晶偏析 先后结晶的树枝状晶体内成分不均 匀的现象。
可以采用扩散退火或均匀化退火 工艺予以消除。 即加热到固相线-100~200℃, 长时间保温,使偏析充分扩散,达到 成份均匀。
(二) 二元共晶相图: 二组元在液态无限互溶,在固态仅 有限互溶并能发生共晶转变的二元相图。 (如:Pb-Sn 1、相图分析 a、b :纯组元A、B的熔点。 液相线:acb 固相线:adceb 固溶线:df、eg 两种固溶体:α、β 三个单相区: L、α、β 三个两相区:(L+ α) 、 (L+ β)、(α+β) 一个三相区:L+ α+β 三相线平衡水平线:dce Pb-Sb Al-Si Ag-Cu等)
二、 金属化合物
金属化合物: 具有相当程度的金属键并具有一定程度的金属 性质的化合物。
(一)、金属化合物晶体结构特点 金属化合物的晶格结构类型不同于任一组元(可用分子式 大致表示) (二)、金属化合物的特性 晶体结构复杂,熔点高、硬度高、脆性大。一般只用作 强化相 (三)、金属化合物的种类及其特征
常见三种类型:正常价化合物、电子化合物、间隙化合物)
(3)电负性因素:
电负性因素: 是指元素的原子从其它原子夺取电子而转 变为负离子的能力。
溶质、溶剂的电负性越接近溶解度越大。越有利于形成
无限固溶体。当元素间的电负性的差别大到一定程度后,就难于 形成固溶体,而倾向于形成化合物。
(四)、 固溶强化
通过向溶剂金属中溶入溶质元素形成固溶体,而使固溶体 合金强度、硬度升高的现象,固溶强化。
②、应用条件(在二元相图中)
A、只能在两相区对“相”的相对含量计算 B、必须是两相处于平衡状态 4、枝晶偏析 先后结晶的树枝状晶体内成分不均 匀的现象。
可以采用扩散退火或均匀化退火 工艺予以消除。 即加热到固相线-100~200℃, 长时间保温,使偏析充分扩散,达到 成份均匀。
(二) 二元共晶相图: 二组元在液态无限互溶,在固态仅 有限互溶并能发生共晶转变的二元相图。 (如:Pb-Sn 1、相图分析 a、b :纯组元A、B的熔点。 液相线:acb 固相线:adceb 固溶线:df、eg 两种固溶体:α、β 三个单相区: L、α、β 三个两相区:(L+ α) 、 (L+ β)、(α+β) 一个三相区:L+ α+β 三相线平衡水平线:dce Pb-Sb Al-Si Ag-Cu等)
二、 金属化合物
金属化合物: 具有相当程度的金属键并具有一定程度的金属 性质的化合物。
(一)、金属化合物晶体结构特点 金属化合物的晶格结构类型不同于任一组元(可用分子式 大致表示) (二)、金属化合物的特性 晶体结构复杂,熔点高、硬度高、脆性大。一般只用作 强化相 (三)、金属化合物的种类及其特征
常见三种类型:正常价化合物、电子化合物、间隙化合物)
[工学]第3章 合金的结构与相图
即得到Cu、Ni合金相图。
用热分析法测定Cu、Ni相图
a)冷却曲线
b)相图
§3匀晶相图
一、相图分析
二、合金的结晶过程
三、二元相图的杠杆定律
四、固溶体合金中的偏析
两组元在液态无限互溶,在固态也无限互溶的二元合
金系所形成的相图,称为匀晶相图。
匀晶转变:结晶时从液相中结晶出单相固溶体,这种 结晶过程称为匀晶转变。
两种化学成分和晶格结构完全不同
的新固相的转变过程,称为共析过 程。
共析转变属于固态相变的一种类型。和共晶反
应一样是由一个相分解为两个相的三相平衡等温
转变。共析转变的特点是:由特定成分的单相固
态合金,在恒定的温度下,分解成两个新的,具
有一定晶体结构的固相。
由于共析反应是在固态下进行的,其原子扩散条
二、金属间化合物
若新相的晶格结构不同于任一组成元素,则新相
是组成元素间相互作用而生成的一种新物质,属
于化合物,如碳钢中的Fe3C,黄铜中的β相
(CuZn)以及各种钢中都有的FeS、MnS等等,
都是化合物。
金属化合物的晶格类型与形成化合物各组元的晶
格类型完全不同,一般可用化学分子式表示。钢
中渗碳体(Fe3C)是由铁原子和碳原子所组成的
一、固溶体
组元通过溶解形成一种成分和性能均匀的,且 结构与组元之一相同的固相称为固溶体。
固溶体中的晶格畸变示意图 a)间隙固溶体 b)置换固溶体 (一)固溶体的结构与分类 1、置换固溶体 2、间隙固溶体
1、置换固溶体
溶质原子代替溶剂晶格结点上的一部分原子而
组成的固溶体称置换固溶体。
溶质原子在溶剂晶格结点上呈无序分布的置换
用热分析法测定Cu、Ni相图
a)冷却曲线
b)相图
§3匀晶相图
一、相图分析
二、合金的结晶过程
三、二元相图的杠杆定律
四、固溶体合金中的偏析
两组元在液态无限互溶,在固态也无限互溶的二元合
金系所形成的相图,称为匀晶相图。
匀晶转变:结晶时从液相中结晶出单相固溶体,这种 结晶过程称为匀晶转变。
两种化学成分和晶格结构完全不同
的新固相的转变过程,称为共析过 程。
共析转变属于固态相变的一种类型。和共晶反
应一样是由一个相分解为两个相的三相平衡等温
转变。共析转变的特点是:由特定成分的单相固
态合金,在恒定的温度下,分解成两个新的,具
有一定晶体结构的固相。
由于共析反应是在固态下进行的,其原子扩散条
二、金属间化合物
若新相的晶格结构不同于任一组成元素,则新相
是组成元素间相互作用而生成的一种新物质,属
于化合物,如碳钢中的Fe3C,黄铜中的β相
(CuZn)以及各种钢中都有的FeS、MnS等等,
都是化合物。
金属化合物的晶格类型与形成化合物各组元的晶
格类型完全不同,一般可用化学分子式表示。钢
中渗碳体(Fe3C)是由铁原子和碳原子所组成的
一、固溶体
组元通过溶解形成一种成分和性能均匀的,且 结构与组元之一相同的固相称为固溶体。
固溶体中的晶格畸变示意图 a)间隙固溶体 b)置换固溶体 (一)固溶体的结构与分类 1、置换固溶体 2、间隙固溶体
1、置换固溶体
溶质原子代替溶剂晶格结点上的一部分原子而
组成的固溶体称置换固溶体。
溶质原子在溶剂晶格结点上呈无序分布的置换
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
素是原子半径较小的非金
属元素,如C、N、B等,
而溶剂元素一般是过渡族
元素。 形成间隙固溶体的一般规
律为r质/r剂<0.59。
间隙固溶体都是无序固溶 体。
第三章合金相结构和相图
间隙固溶体
固溶体的性能
随溶质含量增加, 固溶体的强度、硬度增加, 塑性、韧性下降——固溶 强化。
产生固溶强化的原因是溶质原子使晶格发生畸变及对位错的钉扎作用。
与合金晶体结构相同的元素称 溶剂,其它元素称溶质。
置换固溶体:溶质原子占据溶剂 晶格某些结点位置所形成的固 溶体。
溶质原子呈无序分布的称无序 固溶体,呈有序分布的称有序 固溶体。
置换固溶体
第三章合金相结构和相图
间隙固溶体:溶质原子嵌入 溶剂晶格间隙所形成的固 溶体。
形成间隙固溶体的溶质元
与纯金属相比,固溶体的强度、硬度高,塑性、韧性低。但与化合物 相比,其硬度要低得多,而塑性和韧性则要高得多。
置换固溶体的晶格畸变
间隙固溶体晶格畸变
第三章合金相结构和相图
二、金属化合物 在合金中,当溶质含量超过固溶体的溶解度时,除了形成
固溶体外,还将出现新相。若新相的晶体结构与合金中某 一组成元素相同,则新相是以该一组成元素为溶剂的固溶 体。若新相的晶体结构不同于任一组成元素,则新相将是 组成元素问相互作用而生成的一种新的物质,即为金属化 合物或称中间相。 2.电子化合物——符合电子浓度规律。如Cu3Sn。 电子浓度为价电子数与原子数的比值。 3.间隙化合物——由过渡族元素与C、N、B、H等小原子 半径的非金属元素组成。
mLar = mαrb mL = rb/ab×100% mα = ar/ab×100%
杠杆定律的力学比喻
第三章合金相结构和相图
杠杆定律
例:Bi-Sb二元合金相图,求Sb的质量分数为40%的Bi-Sb合金,在 400℃时组成相的成分及组成相的相对质量。
解:在成分轴上找出Sb的质量分数40%的合金点,并引Ⅰ-Ⅰ成分垂
第三章合金相结构和相图
第三节 二元合金相图的建立
相图又称状态图,它表明 金属的相结构或状态随温 度、压力及成分的改变而 发生变化的情况。由于它 只表示金属在平衡状态 (那是极缓慢加热或冷却 条件)下的相结构,所以 也称平衡图。
第三章合金相结构和相图
一、二元合金相图的表示方法 二、二元合金相图的建立
第三章 合金的相结构与相图
第一节 基本概念 第二节 合金的相结构 第三节 二元合金相图的建 第四节 二元匀晶相图 第五节 二元共晶相图 第六节 二元包晶相图 第七节 具有共析反应的二元合金相图 第八节 合金的性能与相图的关系 第九节 铁碳合金相图
第三章合金相结构和相图
学习要求
1.了解二元匀晶相图、二元共晶相图、二元包晶相图各个 区间的组织组成和特征;
相:金属中具有相同的化学成分、相同结构和相同物理性 能并与其它部分有界面分开的均匀组成部分,称为相。
组织:是指用金相观察方法看到的由形态、尺寸不同和分 布方式不同的一种或多种相构成的总体。
第三章合金相结构和相图
第二节 合金的相结构
一、固溶体
合金中两组元在液态和固态下 都互相溶解,共同形成均匀的 固相,这类相称为固溶体。习 惯以、、表示。
二元合金相图的坐标
Cu-Ni二元合金相图的建立
第三章合金相结构和相图
第四节 二元匀晶相图
匀晶相图:两组元在固态 时形成无限固溶体,且液 态时又能完全互溶的合金 相图称为匀晶相图。
一、相图分析 二、合金的结晶过程
Cu-Ni合金相图、冷却曲线及结晶过程分析
第三章合金相结构和相图
三、杠杆定律 1.两平衡相及其成分的确定 2.两平衡相相对质量的确定
第三章合金相结构和相图
①间隙相
r非/r金0.59时,形成具有简单 晶格结构的间隙化合物。
如M4X (Fe4N)、M2X (Fe2N、 W2C)、MX (TiC、VC、TiN)等。
简单晶格间隙化合物的共同特 点,是具有极高硬度和熔点, 是硬质合金和高温金属陶瓷材 料的重要组成部分。
部分碳化物和所有氮化物属于
VC
间隙相。
的
结
构
第三章合金相结构和相图
②具有复杂结构的间隙化合物
当r非/r金>0.59时形成复杂结构 间隙化合物。
如FeB、Fe3C、Cr23C6等。 Fe3C称渗碳体,是钢中重要组成 相,具有复杂斜方晶格。
形成复杂晶格的间隙化合物,其 熔点和硬度较间隙相低,稳定性 也较差。
化合物也可溶入其它元素原子, 形成以化合物为基的固溶体。
间隙化合物Fe3C的晶体结构
第三章合金相结构和相图
三、机械混合物 纯金属、固溶体、金属化合物是组成合金的基本相,
由这些基本相按照固定比例构成的组织称为机械混合 物。它可以是两种或多种纯金属、固溶体、金属化合 物各自组成的机械混合物,也可以是它们之间的混合 物。 机械混合物中的各个组成相仍然保持各自的晶体结构 和性能,一般情况下在金相显微镜下可以加以区别。 机械混合物的性能取决于各组成相的大小、数量、分 布及形状。 工业生产中大多数合金是由机械混合物组成,如钢、 铸铁、铜合金、铝合金等。
第一节 基本概念
合金:由两种或两种以上的金属元素或金属元素与非金属 元素熔合或烧结而成的具有金属特性的物质。一般前者为 熔合合金,后者为烧结合金 .
组元:组成合金最基本的、独立的物质叫组元。一般来说, 组元既可以是组成合金的元素,也可以是稳定的化合物。
合金系:由两种或两种以上的组元按不同的比例配制成一 系列不同成分的所有合金称为合金系。
线,再在400℃作水平线与液相线和固相线分别相交于C点及E点,且 与Ⅰ-Ⅰ成分垂线相交于D点,此时C点在成分轴上的投影即为液相的
成分。故液相中Sb的质量分数为18%,同理α固溶体中Sb的质量分数 为72%。
2.掌握共晶转变和共析转变的实质和条件; 3.掌握铁碳合金基本组织的特征和性能,并能结合晶体结
构知识进行分析、对比; 4.熟练分析铁碳合金典型7种合金的结晶过程,并能够做
到举一反三; 5.了解铁碳合金的化学成分、组织状态和性能之间的定性
关系; 6.了解合金的性能与相图的关系。
第三章合金相结构和相图
属元素,如C、N、B等,
而溶剂元素一般是过渡族
元素。 形成间隙固溶体的一般规
律为r质/r剂<0.59。
间隙固溶体都是无序固溶 体。
第三章合金相结构和相图
间隙固溶体
固溶体的性能
随溶质含量增加, 固溶体的强度、硬度增加, 塑性、韧性下降——固溶 强化。
产生固溶强化的原因是溶质原子使晶格发生畸变及对位错的钉扎作用。
与合金晶体结构相同的元素称 溶剂,其它元素称溶质。
置换固溶体:溶质原子占据溶剂 晶格某些结点位置所形成的固 溶体。
溶质原子呈无序分布的称无序 固溶体,呈有序分布的称有序 固溶体。
置换固溶体
第三章合金相结构和相图
间隙固溶体:溶质原子嵌入 溶剂晶格间隙所形成的固 溶体。
形成间隙固溶体的溶质元
与纯金属相比,固溶体的强度、硬度高,塑性、韧性低。但与化合物 相比,其硬度要低得多,而塑性和韧性则要高得多。
置换固溶体的晶格畸变
间隙固溶体晶格畸变
第三章合金相结构和相图
二、金属化合物 在合金中,当溶质含量超过固溶体的溶解度时,除了形成
固溶体外,还将出现新相。若新相的晶体结构与合金中某 一组成元素相同,则新相是以该一组成元素为溶剂的固溶 体。若新相的晶体结构不同于任一组成元素,则新相将是 组成元素问相互作用而生成的一种新的物质,即为金属化 合物或称中间相。 2.电子化合物——符合电子浓度规律。如Cu3Sn。 电子浓度为价电子数与原子数的比值。 3.间隙化合物——由过渡族元素与C、N、B、H等小原子 半径的非金属元素组成。
mLar = mαrb mL = rb/ab×100% mα = ar/ab×100%
杠杆定律的力学比喻
第三章合金相结构和相图
杠杆定律
例:Bi-Sb二元合金相图,求Sb的质量分数为40%的Bi-Sb合金,在 400℃时组成相的成分及组成相的相对质量。
解:在成分轴上找出Sb的质量分数40%的合金点,并引Ⅰ-Ⅰ成分垂
第三章合金相结构和相图
第三节 二元合金相图的建立
相图又称状态图,它表明 金属的相结构或状态随温 度、压力及成分的改变而 发生变化的情况。由于它 只表示金属在平衡状态 (那是极缓慢加热或冷却 条件)下的相结构,所以 也称平衡图。
第三章合金相结构和相图
一、二元合金相图的表示方法 二、二元合金相图的建立
第三章 合金的相结构与相图
第一节 基本概念 第二节 合金的相结构 第三节 二元合金相图的建 第四节 二元匀晶相图 第五节 二元共晶相图 第六节 二元包晶相图 第七节 具有共析反应的二元合金相图 第八节 合金的性能与相图的关系 第九节 铁碳合金相图
第三章合金相结构和相图
学习要求
1.了解二元匀晶相图、二元共晶相图、二元包晶相图各个 区间的组织组成和特征;
相:金属中具有相同的化学成分、相同结构和相同物理性 能并与其它部分有界面分开的均匀组成部分,称为相。
组织:是指用金相观察方法看到的由形态、尺寸不同和分 布方式不同的一种或多种相构成的总体。
第三章合金相结构和相图
第二节 合金的相结构
一、固溶体
合金中两组元在液态和固态下 都互相溶解,共同形成均匀的 固相,这类相称为固溶体。习 惯以、、表示。
二元合金相图的坐标
Cu-Ni二元合金相图的建立
第三章合金相结构和相图
第四节 二元匀晶相图
匀晶相图:两组元在固态 时形成无限固溶体,且液 态时又能完全互溶的合金 相图称为匀晶相图。
一、相图分析 二、合金的结晶过程
Cu-Ni合金相图、冷却曲线及结晶过程分析
第三章合金相结构和相图
三、杠杆定律 1.两平衡相及其成分的确定 2.两平衡相相对质量的确定
第三章合金相结构和相图
①间隙相
r非/r金0.59时,形成具有简单 晶格结构的间隙化合物。
如M4X (Fe4N)、M2X (Fe2N、 W2C)、MX (TiC、VC、TiN)等。
简单晶格间隙化合物的共同特 点,是具有极高硬度和熔点, 是硬质合金和高温金属陶瓷材 料的重要组成部分。
部分碳化物和所有氮化物属于
VC
间隙相。
的
结
构
第三章合金相结构和相图
②具有复杂结构的间隙化合物
当r非/r金>0.59时形成复杂结构 间隙化合物。
如FeB、Fe3C、Cr23C6等。 Fe3C称渗碳体,是钢中重要组成 相,具有复杂斜方晶格。
形成复杂晶格的间隙化合物,其 熔点和硬度较间隙相低,稳定性 也较差。
化合物也可溶入其它元素原子, 形成以化合物为基的固溶体。
间隙化合物Fe3C的晶体结构
第三章合金相结构和相图
三、机械混合物 纯金属、固溶体、金属化合物是组成合金的基本相,
由这些基本相按照固定比例构成的组织称为机械混合 物。它可以是两种或多种纯金属、固溶体、金属化合 物各自组成的机械混合物,也可以是它们之间的混合 物。 机械混合物中的各个组成相仍然保持各自的晶体结构 和性能,一般情况下在金相显微镜下可以加以区别。 机械混合物的性能取决于各组成相的大小、数量、分 布及形状。 工业生产中大多数合金是由机械混合物组成,如钢、 铸铁、铜合金、铝合金等。
第一节 基本概念
合金:由两种或两种以上的金属元素或金属元素与非金属 元素熔合或烧结而成的具有金属特性的物质。一般前者为 熔合合金,后者为烧结合金 .
组元:组成合金最基本的、独立的物质叫组元。一般来说, 组元既可以是组成合金的元素,也可以是稳定的化合物。
合金系:由两种或两种以上的组元按不同的比例配制成一 系列不同成分的所有合金称为合金系。
线,再在400℃作水平线与液相线和固相线分别相交于C点及E点,且 与Ⅰ-Ⅰ成分垂线相交于D点,此时C点在成分轴上的投影即为液相的
成分。故液相中Sb的质量分数为18%,同理α固溶体中Sb的质量分数 为72%。
2.掌握共晶转变和共析转变的实质和条件; 3.掌握铁碳合金基本组织的特征和性能,并能结合晶体结
构知识进行分析、对比; 4.熟练分析铁碳合金典型7种合金的结晶过程,并能够做
到举一反三; 5.了解铁碳合金的化学成分、组织状态和性能之间的定性
关系; 6.了解合金的性能与相图的关系。
第三章合金相结构和相图