数学分析答案第四版

合集下载

应用数值分析(第四版)课后习题答案第1章

应用数值分析(第四版)课后习题答案第1章

应用数值分析(第四版)课后习题答案第1章第一章习题解答1.在下列各对数中,某是精确值a的近似值(1)a=π,某=3.1(2)a=1/7,某=0.143(3)a=π/1000,某=0.0031(4)a=100/7,某=14.3试估计某的绝对误差和相对误差。

解:(1)e=∣3.1-π∣≈0.0416,δr=e/∣某∣≈0.0143(2)e=∣0.143-1/7∣≈0.0143δr=e/∣某∣≈0.1(3)e=∣0.0031-π/1000∣≈0.0279δr=e/∣某∣≈0.9(4)e=∣14.3-100/7∣≈0.0143δr=e/∣某∣≈0.0012.已知四个数:某1=26.3,某2=0.0250,某3=134.25,某4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1=某1某2某3和μ1=某3某4/某1的相对误差限。

-2解:某1=26.3n=3δ某1=0.05δr某1=δ某1/∣某1∣=0.19011某10-2某2=0.0250n=3δ某2=0.00005δr某2=δ某2/∣某2∣=0.2某10-4某3=134.25n=5δ某3=0.005δr某3=δ某3/∣某3∣=0.372某10某4=0.001n=1δ某4=0.0005δr某4=δ某4/∣某4∣=0.5n由公式:er(μ)=e(μ)/∣μ∣≦1/∣μ∣Σi=1∣f/某i∣δ某ier(μ1)≦1/∣μ1∣[某2某3δ某1+某1某3δ某2+某1某2δ某3]=0.34468/88.269275=0.00390492er(μ2)≦1/∣μ2∣[-某3某4/某1δ某1+某4/某1δ某3+某3/某1δ某4]=0.497073.设精确数a>0,某是a的近似值,某的相对误差限是0.2,求㏑某的相对误差限。

n解:δr≦Σi=1∣f/某i∣δ某i=1/㏑某·1/某·δ某=δr某/㏑某=0.2/㏑某即δr≦0.2/㏑某4.长方体的长宽高分别为50cm,20cm和10cm,试求测量误差满足什么条件时其表面积的2误差不超过1cm。

应用数值分析(第四版)课后习题答案第2章

应用数值分析(第四版)课后习题答案第2章

第二章习题解答1.(1) R n×n中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。

(2)R n×n中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

设A 是n×n的正交矩阵。

证明A -1也是n×n的正交矩阵。

证明:(1),n nA B A B R⨯∈证明:为上三角阵,为上三角阵,10(),0(),0(),,()(()),()()ij ij nij ik kj ij k n n T T T T T T T T T T a i j b i j C AB c a b c i j A B A B R AA A A E BB B B EAB AB ABB A E AB AB B A AB E AB =⨯∴=>=>==∴=>∴∈========∴∑则上三角阵对矩阵乘法封闭。

以下证明:为正交矩阵,为正交矩阵,为正交矩阵,故正交矩阵对矩阵乘法封闭。

(2)A 是n×n的正交矩阵∴A A -1 =A -1A=E 故(A -1)-1=A∴A -1(A -1)-1=(A -1)-1A -1 =E 故A -1也是n×n的正交矩阵。

设A 是非奇异的对称阵,证A -1也是非奇异的对称阵。

A 非奇异 ∴A 可逆且A -1非奇异 又A T =A ∴(A -1)T =(A T )-1=A-1故A -1也是非奇异的对称阵设A 是单位上(下)三角阵。

证A -1也是单位上(下)三角阵。

证明:A 是单位上三角阵,故|A|=1,∴A 可逆,即A -1存在,记为(b ij )n×n由A A -1=E ,则∑==nj ik jkij ba 1δ (其中0=ij a j >i 时,1=ii a )故b nn =1, b ni =0 (n≠j)类似可得,b ii =1 (j=1…n) b jk =0 (k >j)即A -1是单位上三角阵综上所述可得。

应用数值分析(第四版)课后习题答案第3章

应用数值分析(第四版)课后习题答案第3章

第三章习题解答1.试讨论a 取什么值时,下列线性方程组有解,并求出解 。

123123123123212312311(1)1(2)1ax x x ax x x x ax x x ax x a x x ax x x ax a⎧++=++=⎧⎪⎪++=++=⎨⎨⎪⎪++=++=⎩⎩ 解:(1)111111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为1001/(2)0101/(2)0011/(2)a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦ 当2a ≠-时,方程组有解,解为111(,,).222Tx a a a =+++ (2)21111111a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为2100(1)/(2)0101/(2)001(21)/(2)a a a a a a -++⎡⎤⎢⎥+⎢⎥⎢⎥+++⎣⎦当2a ≠-时,方程组有解,解为21121(,,).222Ta a a x a a a +++=-+++2.证明下列方程组Ax=b12341123421233234432432385x x x x b x x x x b x x x b x x x b+--=⎧⎪-+-=⎪⎨+-=⎪⎪-+-=⎩ 当(1)(10,4,16,3).T b =-时无解;(2)(2,3,1,3).T b =时有无穷多组解。

解:(1) r(A)=3≠r(A,b)=4 当(10,4,16,3).T b =-时无解;(2) r(A)=3,r(A,b)=3 当(2,3,1,3).T b =时有无穷多组解。

3.用列主元高斯消元法求解Ax=b2233(1)477,12457A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 1231(2)234,13462A b ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)x=(2,-2,1)T (2)x=(0,-7,5)T4.证明上(下)三角方阵的逆矩阵任是上(下)三角方阵。

数学分析上册第四版教材精选题汇总(含答案解析)

数学分析上册第四版教材精选题汇总(含答案解析)

p2.例1 设x ,y 为实数,x y <.证明:存在有理数r 满足 x r y <<.证 由于x y <,故存在非负整数n ,使得n n x y <.令 ()12n n r x y =+ , 则r 为有理数,且有n n x x r y y ≤<<≤ ,即得x r y <<. p3.1.实数具有阿基米德性,即对任何,a b R ∈, 若0b a >>,则存在正整数n ,使得na b >. 证明:+,a b R ∀∈,n N +∃∈, 使得nb a >, 设012.n a a a a a = ,0a k N =∈ ,则1+110k a k +≤<,设012n b b b b b =,p b 为第一个不为0的正整数,令+110p k n +=,则+110k nb a >>,即nb a >.2.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数。

证 若a b <,则存在n N +∈,使)(112b a n <- ,)(2b a n<- , 设k 是满足k a n ≤ 的最大正整数,即+1k a n >,0ka n -≤ , 于是122k k k k ab a b n n n n n ++<<=+<+-≤ ,则1k n + ,2k n+ 是a 与b 之间的有理数,14k n nπ++ 是a 与b 之间的无理数。

.4P1.设a 为有理数,x 为无理数,证明:(1)a x +是无理数;(2)当a 0≠时,ax 是无理数.分析:根据有理数集对加、减、乘、除(除数不为0)四则运算的封闭性,用反证法证. 证明:(1)假设a x +是有理数,则()a x a x +-=是有理数,这与题设x 是无理数相矛盾,故a x +是无理数.(2)假设ax 是有理数,则当0a ≠时,axx a=是有理数,这与题设x 为无理数相矛盾,故ax 是无理数.8.设p 为正整数.证明:若p .分析:本题采用反证法,联想到互质、最大公约数以及辗转相除法的有关知识点,可得结论.证明:用反证法.为有理数,则存在正整数m 、n mn=,且m 与n 互质.于是2m 22,(),pn m n pn ==⋅可见n 能整除2m ,由于m 与n 互质,从而它们的最大公约数为1,由辗转相除法知:存在整数u 、v 使1mu mv +=,则2m u mnv m +=.因n 既能整除2m u 又能整除mnv ,故能整除其和,于是n 能整除m ,这样1n =,所以2p m =.这与p 不是完全平方数相矛盾.小结:本题证明过程比较独特,先假设有理数为互质的两个数的商,利用这两个数与p 之间的关系,运用辗转相除法得出结论,注意知识点之间的内在联系.P7定理1.1(确界原理) 设s 为非空数集.若s 有上界,则s 必有上确界;若s 有下界,则s 必有下确界.证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设s 含有非负数.由于s 有上界,故可找到非负整数n ,使得 1) 对于任何x S ∈有1x n <+; 2) 存在0a S ∈,使0a n ≥.再对半开区间[),1n n +作10等分,分点为.1,.2,.9n n n ,则存在0,1,2,…,9中的一个数1n ,使得1) 对于任何x S ∈有1110.n x n <+; 2) 存在1a S ∈,使11.a n n ≥. 再对半开区间111.10,.n n n n ⎡⎫⎪⎢⎣⎭+作10 等分,则存在0,1,2,…,9中的一个数2n ,使得 1) 对于任何x S ∈有1221.10n n n x +<; 2) 存在2a S ∈,使212.a n n n ≥.继续不断地10等分在前一步骤所得到的半开区间,可知对任何1,2,k =,存在0,1,2,…,9中的一个数k n ,使得1) 对于任何x S ∈有121.10k kx n n n n <+; (1) 2) 存在k a S ∈,使12.k k a n n n n ≥.将上述步骤无限地进行下去,得到实数12.kn n n n η=.以下证明sup S η=.为此只需证明:(i )对一切x S ∈有x η≤;(ii )对任何αη<,存在a S '∈使a α<'.倘若结论(i )不成立,即存在x S ∈使x η>,则可找到x 的k 位不足近似k x ,使121.10k k k kx n n n n η>=+,从而得121.10k kx n n n n >+, 但这与不等式(1)相矛盾.于是(i )得证.现设αη<,则存在k 使η的k 位不足近似k k ηα>,即12.k k n n n n α>.根据数η的构造,存在a S '∈使k a η'≥,从而有k k >a ηαα≥≥'即得到<a α'. 这说明(ii )成立 P.130例3 用数列的柯西收敛准则证明确界原理.证 设S 为非空有上界数集,由实数的阿基米德性,对任何正数α,存在整数k α,使得k ααλα=为S 的上界,而(1)k ααλαα-=-不是S 的上界,即存在'αS ∈,使得'(1).k ααα>-分别取1,1,2,,n nα==则对每一个正整数n ,存在相应的,n λ使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在',S α∈使得 1'n nαλ>- (6)又对正整数,m m λ是S 的上界,故有'm λα≥.结合(6)式得1n m nλλ-<;同理有1m n mλλ-<.从而得 11||max{,}.m n m nλλ-<于是,对任给的0,ε>存在0N >,使得当,m n N >时有||m n λλε-<由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=. (7)现在证明λ就是S 的上确界,首先,对任何S α∈和正整数n 有n αλ≤,由(7)式得,αλ≤即λ是S 的一个上界.其次,对任何0,δ>由1n→∞()n →∞及(7)式,对充分大的n 的同时有 1,.22n n δδλλ<>- 又因1n n λ-不是S 的上界。

数学分析第四版答案 (3)

数学分析第四版答案 (3)

数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。

本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。

第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。

所以函数a(a)是一个常函数。

2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。

根据题意,我们需要证明a(aa)=a(a)a(a)。

证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。

根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。

数值分析第四版课后答案答案第八章

数值分析第四版课后答案答案第八章

第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。

3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。

数值分析第四版课后习题答案

数值分析第四版课后习题答案

第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。

3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。

解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。

试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。

解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

(完整版)数值分析第四版习题和答案解析

(完整版)数值分析第四版习题和答案解析

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x=在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()nn x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.2y a bx =+.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第七单元

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第七单元

cos xdex ex d cos x = ex cos x − ex sin xdx sin xdex ex d sin x
=ex cos x − =ex cos x +
=ex cos x + ex sin x − =ex (cos x + sin x) − I 2I = ex (cos x + sin x), I = 2. (1) e dx. e5x dx = (3) 1 5 1 e5x d(5x) = e5x + C. 5
xd arcsin x
1 − x2 + C.
ln(x + =x ln(x + =x ln(x +
1 + x2 )dx = x ln(x + 1 + x2 ) −
1 + x2 ) −
xd ln(x +
1 + x2 )
x x √ 1+ √ dx x + 1 + x2 1 + x2 √ 1 d( 1 + x2 ) √ 1 + x2 ) − 2 1 + x2 1 + x2 + C.
5x
=ex (cos x + sin x) − ex cos xdx
1 ex cos xdx = ex (cos x + sin x) + C 2
:
(5)
dx . 4 − 3x 1 d(4 − 3x) 1 dx =− = − ln |4 − 3x| + C. 4 − 3x 3 4 − 3x 3 dx . cos2 7x dx 1 d7x 1 = = tg7x + C. 2 2 cos 7x 7 cos 7x 7 cos3 x sin xdx. cos3 x sin xdx = − 1 cos3 d cos x = − cos4 x + C. 4

应用数值分析第四版(张明文世鹏)第一第二章答案

应用数值分析第四版(张明文世鹏)第一第二章答案

第一章习题解答3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

解:设=()u f x ,()()()()()()||||||||||()||()||||()||()||||r r rx e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ=≈==≤()||10.2(())||()||ln ln ln r r r r df x x x x f x x x dx u x x x xδδδδ==⋅⋅==4、长方体的长宽高分别为50cm ,20cm 和10cm ,试求测量误差满足什么条件时其表面积的误差不超过1cm 2。

解:设2()S xy yz zx =++{}[]{}(,,)(,,)(,,)()||()||()||()(,,)(,,)(,,)||||||max (),(),()2()2()2()max (),(),()1S x y z S x y z S x y z e S e x e y e z x y zS x y z S x y z S x y z e x e y e z x y z y z z x x y e x e y e z ∂∂∂≤++∂∂∂⎛⎫∂∂∂≤++ ⎪∂∂∂⎝⎭=+++++<{}[]11max (),(),()2()2()2()4()110.0031254(502010)320e x e y e z y z z x x y x y z <=+++++++===++测量误差小于0.00625时其表面积的误差不超过1cm 2。

7、计算61)1.414≈。

利用以下四种计算格式,试问哪一种算法误差最小。

(1(2)3(3- (3(4)99- 解:计算各项的条件数'()(())||()xf x cond f x f x =111.41461(),(())| 3.5147(1)x f x c o n d f x x ===+ 3221.414()(32),(())|49.3256x f x x c o n d f x ==-=331.41431(),(())| 1.4557(32)xf x c o n d f x x ===+ 441.414()9970,(())|4949x f x x c o n d f x ==-= 由计算知,第三种算法误差最小。

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第十二单元

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第十二单元

−∞
−∞
0
+∞
=2
e−axdx
0
= − 2e−ax +∞ = 2 .
a
0
a
(6)
+∞
e−ax sin bxdx . (a > 0) .
0
1
e−ax
sin bxdx
=
e−ax a2 + b2(−a sin bx

b cos bx)
+
C(
§7.2 6),
+∞ 0
e−ax
sin bxdx
=
e−ax − a2 + b2(a sin bx
.
f (x) f (xn) ,
|f (xn)| > ε0, .
f (xn) > 0,
f (x) > 0,
(1)
,
f (x) > ε0. 2
xn+δ f (x)dx > ε0 xn+δ dx = ε0δ(
xn
2 xn
2
|f (x) − f (xn)| = |f (x)| + );
f (xn) < 0,
=
1
d = 1, λ = n − m > 1,
; λ = n − m 1,
.
(6)
+∞ arg tan x
dx
0
x
arg tan x
1
.
lim
x→0+
x
=
lim
x→0+
1
+
x2
=
1.
arg tan x
,
0

数学分析答案第四版

数学分析答案第四版

数学分析答案第四版【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1 实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。

(1)域公理:(2)全序公理:则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。

评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1 证明dedekind分割原理与确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注以上定理哪些能够推广到欧氏空间r?如何叙述? n2 闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理习题5 用致密性定理证明一致连续性定理3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第四单元

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第四单元

[a, b].
, n(
)
:
{(yi − δyi, y + δyi)|yi ∈ [a, b], i = 1, 2, · · · , n}
[a, b].∀x ∈ (yi − δyi, y + δyi) ∩ [a, b],
f (x) = f (yi), i = 1, 2, · · · , n. 2
m = min{f (yi)|i = 1, 2, · · · , n} > 0.
1 − ε < sin x0(
sup{sin x|x ∈ (0, 2π]} = 1.
arcsin(1 − ε) < x0).
,
inf{sin x|x ∈ (0, 2π]} = −1.
5. : A
,sup A = a( inf A = b).
sup A = a,
1 ∀x ∈ A x ≤ a; 2 ∀ε > 0∃x0 ∈ A, a − ε < x0. , 1 ∀(−x) ∈ −A, −x0 < −a &#, c − ε < f (x0) ≤ c.
∃δ = b − x0 > 0, ∀x : b − δ < x < b ∀x : x0 < x < b, c−ε < f (x0) ≤ f (x) ≤ c
lim f (x) = c.
x→b−
2.4 14
17
.
,
c
,
9.1( )(244) 9.1( )(266) 9.2( )(290) 9.4(309)
9.1( )(252) 9.2( )(273) 9.3(298)
1
10.1(323) 10.3(334)
11.1(366) 11.3(378)

数学分析第四版下册课后练习题含答案

数学分析第四版下册课后练习题含答案

数学分析第四版下册课后练习题含答案前言《数学分析(第四版)》是由中国地质大学出版社出版的一套教材,该教材适用于大学数学分析课程的教学。

作为研究数学的基础学科,数学分析的学习是深入理解数学各领域的前置条件。

为了帮助各位学生更好地完成课程学习,本文将给出《数学分析(第四版)下册》的课后练习题答案。

第一章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{a}{2}$, $\\frac{b}{2}$,$\\sqrt{\\frac{a^2}{4}+\\frac{b^2}{4}}$.2.$\\frac{1}{2}(x^2+y^2+z^2-xy-yz-xz)$.论述题1.略第二章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\ln a - \\ln b$.2.$\\frac{a}{\\sqrt{2}}$, $-\\frac{a}{\\sqrt{2}}$. 论述题1.略第三章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.a n=n3−n2.2.不成立.论述题1.略第四章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{1}{2}x^2+\\frac{1}{2}(y-2x)^2+1$, $\\sqrt{2}$.2.$\\frac{1}{2}\\sqrt{2}$.论述题1.略结语本文提供了《数学分析(第四版)下册》课后习题的解答,希望对各位学生完成课程学习有所帮助。

如有不懂之处,请咨询相应的教师或学长学姐。

数学分析答案第四版

数学分析答案第四版

数学分析答案第四版【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1 实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。

(1)域公理:(2)全序公理:则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。

评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1 证明dedekind分割原理与确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注以上定理哪些能够推广到欧氏空间r?如何叙述? n2 闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理习题5 用致密性定理证明一致连续性定理3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

数学分析第四版上册答案

数学分析第四版上册答案

数学分析第四版上册答案第一章环境建立1.1 算术基础在数学分析中,我们需要对数学中的基本运算进行复习和巩固。

这包括四则运算、乘方和开方等。

在本节中,我们将回顾这些基本算术技巧,并解答一些相关问题。

1.1.1 四则运算四则运算是我们进行数学计算的基本方法。

它包括加法、减法、乘法和除法。

在本节中,我们将通过一些例题来练习四则运算,并解答相应的问题。

例题1.1.1计算下列算式的结果:a) 2 + 3 * 4b) (5 - 2) * 7c) 10 / 5 + 3d) 8 - 6 / 2解答:a) 2 + 3 * 4 = 2 + 12 = 14b) (5 - 2) * 7 = 3 * 7 = 21c) 10 / 5 + 3 = 2 + 3 = 5d) 8 - 6 / 2 = 8 - 3 = 5计算下列算式的结果:a) 5 + 6 * 2 - 3b) 8 / 2 * (4 + 3)c) 7 - 4 / 2 + 5 * 3解答:a) 5 + 6 * 2 - 3 = 5 + 12 - 3 = 14 - 3 = 11b) 8 / 2 * (4 + 3) = 4 * 7 = 28c) 7 - 4 / 2 + 5 * 3 = 7 - 2 + 15 = 201.1.2 乘方与开方乘方和开方是我们在数学中经常用到的运算符。

乘方表示多次相乘,开方则相反,表示求一个数的平方根。

在本节中,我们将练习一些乘方和开方的计算,并解答相关问题。

例题1.1.3计算下列算式的结果: a) 2^3b) 4^0.5c) (23)2d) (32)3解答:a) 2^3 = 2 * 2 * 2 = 8 b) 4^0.5 = √4 = 2 c) (23)2 = 8^2 = 64 d) (32)3 = 9^3 = 729计算下列算式的结果:a) √9b) √(4^2)c) √(3^2 + 4^2)d) (√2 + 1)^2解答:a) √9 = 3 b) √(4^2) = √16 = 4 c) √(3^2 + 4^2) = √(9 + 16) = √25 = 5 d) (√2 + 1)^2 = (1.414 + 1)^2 = 2.414^2 = 5.8291.2 方程与不等式在数学分析中,方程和不等式是我们经常遇到和解决的问题。

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第十四单元

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第十四单元

C [x cos(n, x)
+ y cos(n, y )]ds = ,
C
[x cos(n, x) + y cos(n, y )]ds = 2
C
xdy − ydx = 2A.
C
14.
f (x, y )
,
G ∂2f ∂2f + = 0, ∂x2 ∂y 2 6
f (x, y ) G
.
f (x, y ) G ∂f ds = 0. ∂n
2+y , 1 + x2
Q(x, y ) =
x(y + 1) . 2+y
∂P 1 = , ∂y 2+y , ln
C
∂Q y+1 = . ∂x 2+y , y+1 1 − dxdy 2+y 2+y
D
.
2+y x(y + 1) dy = dx + 2 1+x 2+y y dxdy = 2+y
1 1
D
=
D
2 [x2 + (2 − x)2 ]dx + [x2 − (2 − x)2 ](−dx) = . 3 4 = . 3 (0,0,0) (1,1,1),
C2
,
= C
C1
+ .
1)
;2)
(0,0,0)
,
(1,0,0) 1)
(1,1,0) C1 ,
(1,1,1)
x = t, y = t, z = t, 0
14.1
392 1. (2)
c xyds,
c
: c : |x| + |y | = a(a > 0). , 14.a. c = c1 + c2 + c3 + c4 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析答案第四版【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1 实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。

(1)域公理:(2)全序公理:则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。

评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1 证明dedekind分割原理和确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注以上定理哪些能够推广到欧氏空间r?如何叙述? n2 闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理和零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理习题5 用致密性定理证明一致连续性定理3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

(p173)习题7 证明上面三种定义的等价性。

第二部分级数理论1 数项级数前言级数理论是极限理论的直接延伸,但又有自身独特的问题、特点和研究方法。

上(下)极限是研究级数的一个有力工具。

对于数项级数,可看作有限个数求和的推广,自然要考虑如何定义其和,两个级数的和和积,结合律、交换律是否还成立等问题。

级数的收敛性和无穷积分有着极大的相似性,学习时要注意二者的比较。

一、cauchy收敛准则?un?1?n?u1?u2??几个概念部分和?收敛?发散?绝对收敛?条件收敛?收敛的必要条件 ?un?1?n收敛?un?0评注此结论由un?sn?sn?1两边取极限即得证,也可由下面的cauchy收敛准则得到。

要注意此性质和无穷积分有较大差别。

对于收敛的无穷积分能推出f(x)?0(x???)(参见反常积分) ???af(x)dx即使f(x)?0也不cauchy收敛准则 ?un?1?n收敛????0,?n,?n?n,?p,有sn?p?sn?un?1?un?2???un?p??思考正面叙述级数发散的cauchy准则。

加括号对于收敛的级数可以任意加括号,新的级数仍收敛且其和不变。

也就是说收敛的级数满足结合律。

评注只要认识到加括号后级数的部分和是原级数部分和的子列即可得到这一结论。

我们常常利用这一点证明一个级数的发散性,即先证明加括号的发散,从而推出原级数(去括号的)也发散。

二、正项级数正项级数的特点是部分和数列是单调递增的,由此得:基本结论正项级数收敛?其部分和有上界。

比较判别法:比较判别法的极限形式:评注对于比较判别法,主要考虑n充分大以后(n?n0)un和vn 的大小关系,因此极限形式更方便。

如果limun?l(0?l???),要认识到,当n充分大时,un和vn是“等价”vn的,即大小“差不多”,确切地说当n?n0时,存在正常数c1和c2使c1vn?un?c2vn,由?un?vn?c2?un。

如果l?0或??,它们的“大小”关系如何?此c1根式判别法设limun?l,当l?1时,比式判别法 lin?un收敛;当l?1时,?un发散。

un?1?q?1,则?un收敛; unlimun?1?q?1,则?un发散。

un习题1 证明上面根式判别法习题2 证明un?1u?n?limn?limn?1(un?0) ununun?1?l?limn?l un推论:lim评注由习题2知,用比式判别法能判别的,用根式判别法一定能判别,但反之不然。

也就是说根式判别法比比式判别法更有效。

换言之,凡根式法无能为力时,比式法一定也无能为力。

但是,它们在判别发散时,却没有谁比谁有优势可言,都是用一般项不趋于零来推断的。

这一点要特别注意,我们在讨论幂级数的收敛半径时就要用到此结论。

习题3 考虑级数111111??2?2?3?3??,说明根式法比比式法更有效。

232323评注无论是比式判别法还是根式判别法,其实质都和等比级数数?cqn比较的,对于p?级1(这种级数的通项比等比级数的通项收敛于零的速度要慢)。

如果和p??np必然失效。

级数比较还可以得到更细致的一些判别法,拉贝判别法就是其中之一。

积分判别法: [p17,11(1)]用拉贝法判别级数根式法都无效。

?(2n?1)!!1?的收敛性,并说明比式法和(2n)!!2n?1三、一般项级数评注对一般项级数收敛性(即别法得到?un(有无穷多个正项,且有无穷多个负项),一般首先要考虑绝对?unn是否收敛),如果是绝对收敛,当然原级也收敛,如果是用根式或比式判?u发散,则?un必发散(这在前面的评注中已经说过了)。

leibniz判别法:able引理:uk,vk,k?1,2,?,n是两数组,uk单调,?k?v1???vk,则?uvkk?1nk?a(u1?2un),其中?k?a对于形如?abnn的级数,设?an?单调,把able引理用于n?pk?n?1?ab(b)nkk?2m(an?1?2an?p) nn?p其中m满足:s??bk?m?k?1k?n?1(b)(b)b?s?s?kn?pn?2m再结合cauchy准则,附加适当的条件使2m(an?1?2an?p)能充分小,便可得到able和dirichlet判别法d判别法:(1)?an?单调;(2)an?0;(3)?bn有界,则n?abnn收敛。

收敛。

a判别法:(1)?an?单调;(2)?an?有界;(3)?b收敛,则?abnn评注记住a和d判别法的关键是记住able引理。

这两个判别法在函数项级数以及反常积分中还有不同的表现。

习题5 用d判别法直接证明leibniz判别法和able判别法。

习题6 讨论级数1?11111????????(??r)的收敛性。

?34562提示:分??0,0???1,??1,??1情况讨论。

答案:??1时,收敛,其它发散。

习题7 利用级数收敛性,证明数列xn?1?为euler常数?0.577216?) 11????lnn的极限存在。

(注:此极限称2n【篇二:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微分的方法算出每只球需要用铜多少克?(铜的密度为8.9g/cm3。

)解球体积v?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。

?0⒉用定义证明,函数y点之外都是可微的。

证当x?0时,?y?微。

当x?0时,?y???3x2在它的整个定义域中,除了x这一?x2是?x的低阶无穷小,所以y?x2在x?0不可?x?x?o(?x),所以y?x2在x?0是可微的。

习题 4.2 导数的意义和性质1.设f?(x0)存在,求下列各式的值:⑴⑵⑶ lim?x?0f(x0??x)?f(x0)?x;limx?x0f(x)?f(x0)x?x0;。

f(x0?(??x))?f(x0)(??x)??f(x0)。

limf(x0?h)?f(x0?h) h解 (1)lim⑵⑶f(x0??x)?f(x0) ?xf(x)?f(x0)x?x0?x?0??lim?x?0x?x0lim?limf(x0?(x?x0))?f(x0) x?x0x?x0?0?f(x0)。

limf(x0?h)?f(x0?h) hf(x0?h)?f(x0)hf(x0?h)?f(x0)hh?0?limh?0?lim?2f(x0)。

2.⑴用定义求抛物线y?2x2?3x?1的导函数;⑵求该抛物线上过点(?1,?2)处的切线方程;⑶求该抛物线上过点(?2,1)处的法线方程;⑷问该抛物线上是否有(a,b),过该点的切线和抛物线顶点和焦点的连线平行?解 (1)因为?y?x?2(x??x)?3(x??x)?1?(2x?3x?1)?xf(x)?lim?y?x?4x?3。

22?4x?3?2?x,所以?x?0(2)由于(3)由于f(?1)??1,切线方程为y??1?[x?(?1)]?(?2)??x?3。

f(?2)??5,法线方程为y??1?5[x?(?2)]?1?x?75。

(4) 抛物线顶点和焦点的连线平行于y轴,即斜率为无穷大,由(1)可知不存在x,使得f(x)??,所以这样的点(a,b)不存在。

3.设f(x)为(??,??)上的可导函数,且在x?0的某个邻域上成立f(1?sinx)?3f(1?sinx)?8x??(x),其中?(x)是当x?0时比x高阶的无穷小。

求曲线y?处的切线方程。

解记f(x)?由limlimf(x)xx?0在(1,f(1))可得limf(x)??2f(1)?0,即f(1)?0f(1?sinx)?3f(1?sinx),x?0。

?lim8x??(x)xx?0?8和,f(x)xx?0?f(1?sinx)?f(1)sinx??f(1?sinx)?f(1)sinx??lim???3lim??4f(1)???x?0x?0sinxx?sinxx???得到f(1)?2。

于是曲线y?f(x)在(1,f(1))处的切线方程为y?2(x?1)。

4.证明:从椭圆的一个焦点发出的任一束光线,经椭圆反射后,反射光必定经过它的另一个焦点。

(见图4.2.5)证设椭圆方程为xa22?yb22?1,a?b?0,焦点坐标为a?b22(?c,0),c?。

假设(x0,y0)为椭圆上任意一点,当y0斜率为tan???bx0ay022?0时结论显然成立。

现设y0?0,则过此点的切线 y0x0?c22,(x0,y0)和焦点(?c,0)连线的斜率为tan?1?,和此连线和切线夹角的正切为kx0a22?tan?1?tan?1?tan?1tan?。

利用c2?a?b?y0b22?1代入计算,得到y0k?x0?c1?y0?bx0ay0?bx02222?ay0?bx0?cx0b22222222(a?b)x0y0?acy0 ?ab?cx0b22222cx0y0?acy0?2cy0。

相关文档
最新文档