对应分析方法与对应图解读方法 (2)
对应分析ppt课件
精选课件ppt
35
§7.2 对应分析的基本理论
7.2.4 需要注意的问题
需要注意的是,同对应分析生成的二维 图上的各状态点,实际上是两个多维空间上 的点的二维投影,在某些特殊的情况下,在 多维空间中相隔较远的点,在二维平面上的 投影却很接近。此时,我们需要对二维图上 的各点做更深的了解,即哪些状态对公因子 的贡献较大,这与在因子分析中判断原始变 量对公因子贡献的方法类似 。
精选课件ppt
26
§7.2 对应分析的基本理论
精选课件ppt
27
§7.2 对应分析的基本理论
精选课件ppt
28
§7.2 对应分析的基本理论
精选课件ppt
29
§7.2 对应分析的基本理论
精选课件ppt
30
§7.2 对应分析的基本理论
精选课件ppt
31
§7.2 对应分析的基本理论
精选课件ppt
§7.2 对应分析的基本理论
7.2.1 有关概念 1. 行剖面与列剖面
精选课件ppt
16
§7.2 对应分析的基本理基本理论
精选课件ppt
18
§7.2 对应分析的基本理论
精选课件ppt
19
§7.2 对应分析的基本理论
2. 距离与总惯量
精选课件ppt
20
精选课件ppt
4
§7.1列联表及列联表分析
在研究经济问题的时候,研究者也往往用列联表的形式把 数据呈现出来。比如说横栏是不同规模的企业,纵栏是不同 水平的获利能力,通过这样的形式,可以研究企业规模与获 利能力之间的关系。更为一般的,可以对企业进行更广泛的 分类,如按上市与非上市分类,按企业所属的行业分类,按 不同所有制关系分类等。同时用列联表的格式来研究企业的 各种指标,如企业的盈利能力、企业的偿债能力、企业的发 展能力等。这些指标即可以是简单的,也可以是综合的,甚 至可以是用因子分析或主成分分析提取的公因子;把这些指 标按一定的取值范围进行分类,就可以很方便地用列联表来
对应分析 课件讲解
对应分析
但是如何用象因子分析的载荷图那样 的直观方法来展示这两个变量各个水 平之间的关系呢?这就是对应分析 (correspondence analysis)方 法。
对应分析方法被普遍认为是探索性数 据分析的内容,因此,读者只要能够 会用数据画出描述性的点图,并能够 理解图中包含的信息即可。
两表中的概念不必记;其中Mass为行与 列的边缘概率;Score in Dimension是 各维度的分值 (二维图中的坐标); Inertia:就是前面所提到的惯量,为每一 行/列到其重心的加权距离的平方。
SPSS的实现
打开ChMath.sav数据,其形式和本章开始的 列联表有些不同。其中ch列代表汉字使用的三 个水平;而math列代表数学成绩的四个水平; 第一列count实际上是ch和math两个变量各 个水平组合的出现数目,也就是列联表中间的数 目。
在SPSS的输出中还有另外两个表分 别给出了画图中两套散点图所需要 的两套坐标。
解释
该表给出了图中三个汉字使用点的坐标: 纯汉字(-.897,-.240),半汉字 (.102,.491),纯英文(.970,-.338),以及 四个数学成绩点的坐标:数学A(-.693,.345),数学B(-.340,.438),数学 C(.928,.203),数学D(1.140,-.479)。
行记分(row score) xi和列记分yj的加权均值成 比例, 而列记分yj和行记分xi的加权均值成比 例. 数值r为行列记分的相关(在典型相关的意 义上).
记R=diag(ai.), C=diag(a.i), R1/2= diag(a.i1/2), 则上面式子为
rx=R-1Ay; ry=C-1A’x 或
多元统计分析-对应分析
03
列联表检验的零假设是两变量 X和Y 相互独立,计算一个卡方统计量,与列联表中频数取值 和零假设下期望取值之差有关,当卡方 很大时否定零假设。
BA
患慢性支 未患慢性 气管炎 支气管炎
吸烟
43
162
不吸烟
13
121
为了探讨吸烟与慢性支气管炎有无关系, 调查了339人,情况如表所示:
设想有两个随机变量A,B:A:1表示吸 烟,
对应分析
对应分析基本步骤: 建立列联表
利用对应图解释结 果。
1
2
3
一.获取对应分析 数据 确定研究目的, 选择对应分析 所需数据,应 该包括的背景 资料。
对应分析
4
5
二、对应分析 的原理
01
由于R型因子分析和 02
设原始数据矩阵为:
Q型因子分析是反映
一个整体的不同侧面,
R型因子分析是从列
来讨论(对变量),
k
特征根。
Zu k
设 1 2…
三、对应图u 1u 11u 21 A和l(0Bu <的p 1 i<非m零in特(n征,p根)),为其矩相阵应 u 2u 12u 22 的特征u p 向2量为
v 1 v 1 1v 2 1 v n 1 v 2 v 1 2 v 2 2 v n 2
我们知道因子载荷矩阵的含义是原始变量与公共因子之间的 相关系数,所以如果我们构造一个平面直角坐标系,将第一 公共因子的载荷与第二个公共因子的载荷看成平面上的点, 在坐标系中绘制散点图,则构成对应图。
Q型因子分析是从行
来讨论(对样品),
因此 在的
他们之
联 x系1。1
间
存在
x12
内
对应分析方法与对应图解读方法
对应分析方法与对应图解读方法——七种分析角度对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:概念发展(Concept Development)新产品开发 (New Product Development)市场细分 (Market Segmentation)竞争分析 (Competitive Analysis)广告研究 (Advertisement Research)主要回答以下问题:谁是我的用户?还有谁是我的用户?谁是我竞争对手的用户?相对于我的竞争对手的产品,我的产品的定位如何?与竞争对手有何差异?我还应该开发哪些新产品?对于我的新产品,我应该将目标指向哪些消费者?数据的格式要求对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
对应分析
首先选取了数据如下:欲分析该省这么多年各种产业生产总值的特征以及该省每一年的人口数与每一年各产业生产总值之间的关系。
一、对应分析对应分析又称为相应分析,是一种多元相依变量统计分析技术。
通过分析由属性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种技术,还可以揭示同一变量的各个类别之间的差异及不同变量各个类别之间的对应关系。
而且变量划分的类别越多,这种方法就越明显。
对应分析的过程由两部分组成:表格和关联图。
对应分析中的表格是一个二维表格,由行和列构成。
每一行代表事物的一个属性,依次排开。
列则代表不同的事物本身,它由样本集合构成,排列顺序没有特别要求。
在关联图上,各个样品都浓缩为一个点集合,而样品的属性变量在图上同样也是以点集合的形式显示出来。
对应分析的基本思想就是利用降维的思想,通过分析原始数据结构,对一个列联表中的行与列同时进行处理。
它的最大特点就是可以在同一张图上同时表示出两类属性变量的各种状态,以直观、明了的方式揭示属性变量之间及属性变量各种状态之间的相互关系。
另外,对应分析还省去了公因子的选取和因子旋转等复杂的数学运算及中间过程,可以从因子载荷图上对事物进行分类,而且能够揭示分类的主要参数及依据。
具体实验步骤:(1)数据录入:打开SPSS文件,按顺序:文件——新建——数据打开一个空白数据文件,首先进行变量的编辑,点击在SPSS变量视图中建立变量“人口数”、“产业”、“数值”分别表示“全省户籍人口”、“生产总值情况”和“数据的权重”。
“人口数”为数值变量,分别将每年该省的户籍人口数赋值为“1”、“2”、“3”、“4”.....“24”。
“生产总值情况”为名义变量,分别将“农业生产总值”、“工业生产总值”、“建筑业生产总值”、“第三产业生产总值”赋值为“1”、“2”、“3”、“4”。
如图所示:在SPSS活动数据文件的数据视图中,把相关数据输入到各个变量中。
(2)打开数据文件,进入SPSS Statistics 数据编辑器窗口,在菜单栏中选择“数据——加权个案”命令,将变量“数值”选入加权个案,单击“确定”按钮。
对应分析
, u
2
,L
, u
k
• 根据累计方差贡献率确定最终提取特征根的个数,并 计算出相应的因子载荷矩阵R,即: #
λ1 1 R = Uθ 2 = (u1 , u2 ,..., ul )
λ2
O
λl
其中, 其中,因子载荷是列变量的某分类在某个因子上的 载荷,反映了他们之间的相关关系。 载荷,反映了他们之间的相关关系。与因子分析类 可通过变量(列变量某分类) 似,可通过变量(列变量某分类)的共同度测度其 方差的解释程度和信息的丢失程度; 方差的解释程度和信息的丢失程度;可通过因子的 方差贡献测度因子的重要程度。 方差贡献测度因子的重要程度。
1.2 对应分析法的基本原理
第一步:编制交叉列联表并计算概率矩阵P 第一步:编制交叉列联表并计算概率矩阵P 设原始数据矩阵为: 设原始数据矩阵为:
x11 x 21 X= M x n1 x12 x 22 M xn 2 L L L x1 p x2 p M x np n× p
第一节 对应分析法
1.1 对应分析法的内涵 1.2 对应分析法的基本原理 1.3 实例分析
#
1.1对应分析法的内涵
1.1.1 对应分析的概念
• 对应分析(Correspondence Analysis)又称相应 分析,是一种多元相依变量统计分析技术,通过 分析由定性变量构成的交互汇总数据来解释变量 之间的内在联系。它可以揭示同一变量的各个类 别之间的差异以及不同变量各个类别之间的对应 关系。 • 也被称为R-Q型因子分析 R型因子分析适用的研究对象是变量; Q型因子分析适用的研究对象是样品。 #
#
Thank you
#
对应分析数据
对应分析数据一、概述对应分析数据是一种数据分析方法,用于研究两个或多个变量之间的关系。
通过对数据进行对应分析,可以揭示变量之间的相关性,并帮助我们理解数据背后的模式和趋势。
本文将介绍对应分析数据的基本概念、步骤和应用场景。
二、基本概念1. 对应分析对应分析是一种多元数据分析方法,它通过将多个变量映射到一个低维空间中,从而揭示变量之间的关系。
对应分析可以帮助我们发现数据中的结构和模式,进而进行更深入的分析。
2. 对应图对应图是对应分析结果的可视化表示。
对应图通常是一个二维平面图,其中每个数据点表示一个观测值,不同的颜色或符号表示不同的组别或类别。
通过观察对应图,我们可以看到数据点之间的关系和趋势。
三、步骤对应分析数据的步骤如下:1. 数据准备首先,需要准备要进行对应分析的数据。
数据可以是任何类型的,可以是定量数据(如数值)或定性数据(如类别)。
确保数据的质量和完整性非常重要。
2. 数据标准化对应分析需要对数据进行标准化,以消除不同变量之间的量纲差异。
常用的标准化方法包括Z-score标准化和归一化等。
3. 计算对应分析利用对应分析的算法,对标准化后的数据进行计算,得到对应分析的结果。
对应分析的算法有多种,常用的包括主成分分析(PCA)和多维尺度分析(MDS)等。
4. 绘制对应图将对应分析的结果绘制成对应图,以便更直观地观察数据之间的关系和趋势。
对应图可以通过各种数据可视化工具来实现,如散点图、气泡图等。
5. 解读对应图通过观察对应图,我们可以解读数据之间的关系和趋势。
可以观察数据点的分布情况、类别之间的距离和相对位置等。
根据对应图的结果,可以进一步进行数据分析和决策。
四、应用场景对应分析数据在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 市场调研对应分析数据可以帮助市场调研人员了解不同产品或品牌之间的关系和竞争状况。
通过对应分析,可以发现市场中的潜在细分市场和目标客户群体。
2. 用户行为分析对应分析数据可以帮助企业了解用户的行为模式和偏好。
对应分析图解读的七种方法
/xiaowenzi22
锐角
余弦定理:连接其中两点到原点(如城市4与城市5),各做一条射线, 两条线之间的夹角越小,说明他们越相关(余弦定理:夹角的余弦用来 表示相关性的大小),如果从产品角度上说具有竞争关系.
/xiaowenzi22
圆心定理:以某点(城市6)为圆点做半径不同的圆数个,其他点落入的 圆上的半径越短,则说明购买该产品的可能性越大,或者是具有相似行 为但属性(年龄等)不同的消费者.
/xiaowenzi22
/xiaowenzi22
原点定理:如果某点离圆心越远,则说明该点具有的个性越鲜明,与其 他点(产品)差异大,从统计学的角度说明越有意义.
/xiaowenzi22
象限二
象限一
象限三
象限四
象限分析:根据原点把整个图划分成四象限,每个象限代表着不同属性 的点(产品),具体原理可参见SWOT分析.
/xiaowenzi22
有待商榷
方向一
方向二Байду номын сангаас
方向三
发展方向分析:根据某点(城市6)所在位置向图内各方向做射线(发展 方向,以确定将遇到的竞争对手或困难,来确定企业发展方向.
/xiaowenzi22
市场细分:对密集点进行分割确定细分市场,这种方法是最经常用到的.
LOGO
/xiaowenzi22
�
以某点城市以某点城市6为圆点做半径不同的圆数个其他点落入的为圆点做半径不同的圆数个其他点落入的圆上的半径越短则说明购买该产品的可能性越大或者是具有相似行圆上的半径越短则说明购买该产品的可能性越大或者是具有相似行为但属性年龄等不同的消费者
对应分析
对应分析是1970年法国巴黎科学院统计研究室的
Bezecri教授首先提出的,1977年引入国内。对应分析是在
因子分析的基础上发展起来的一种新的因子分析方法。
找出代表性指标,进 行地质成因解释 R—型 研究指标 因子分析 Q—型 研究样品 方法 找出代表性样品,进 行地质作用解释 特征值
因子分析的优点
1、降维,即化多为少,以少代多; 2、浓缩,即把多个指标的分散信息集中到少数几个主因子上;
3、分割,即把具有复杂相关关系的指标分割成各个不同特征的独立类型。
因子分析的缺点
1、割裂 即把R—型与Q—型截然分开,割断了指标与样品间的联系,损
失了一些指标的信息; 2、局限 即对Q—型因子分析,当N很大时,求逆、求特征值都很困难,
1 1
k
p
确定主因子数 K(K=2,3)一般取 K= 2 或 3 即可。
(3)计算因子载荷矩阵; F1 F2 FK x1 u11 1 , u12 2 , , u1k k
x2 u21 1 , u22 2 , , u2 k k F x p u p1 1 , u p 2 2 , , u pk k
p
.l
i.
p l .
i 1
p
p
pi k p. i p k pi l p i.p l . . p p.k pi. p. i. l
i l
Zi kZ
i 1
即: BN N Z N P Z PN
A与B之间存在着简单的对应关系,即认为从Xij 到 Zij 的变换对指标和样品是对等的
x Pi. Pij i. T j 1
对应分析
对应分析问题1:分析列联表中属性之间的相关关系。
对应分析是列联表的一类加权主分量分析,用于寻求列联表的行于列之间的低维图形表示法。
看一个例子:我们从生物学中的一个“梯度分析”问题谈起。
设我们需要了解若干地区的干湿度和若干草类的喜湿性。
现对某n个地区是否生长p种不同草类的情况作了调查,得到一个列联表K,希望通过这一调查表对着各个地区的干湿度和各草类的喜湿性作一估计。
设列联表为其中j i j i k ij 不生长草类在地区生长草类在地区⎩⎨⎧=01经典的梯度分析方法是:先对p 种草类喜湿性作出估计p r r r ,,,21 ,然后用加权平均的方法得到关于各个地区干湿度的估计n i k r k s pj i j ij i ,,2,1,1 =∝∑=⋅反之,如果先对各个地区的干湿度作出估计n s s s ,,,21 ,然后用同样的方法得到关于各种草类喜湿性的估计p j k s k r ni j i ij j ,,2,1,1 =∝∑=⋅但是,如何先对草类的喜湿性或先对地区的干湿性进行估计就是一个难题,除非根据其他资料,否则无法仅从这个列联表出发,无论先估计那一个都会带有主观性,这就是经典梯度分析存在的一个问题。
是否有一个办法,从这张列联表出发能客观地同时把两者估计出来?应该是可能的,因为各个地区的干湿度是由各种喜湿性草类是否在该地区生长反映出来,而且草的喜湿性又是通过它在什么样的干湿度的地区生长反应出来,两者相互依赖,应从两者相互依赖中求解出各种量的估计。
为此我们来注意上述两式及它们之间的联系。
先引进一些矩阵的记号:)()(ij p n k K =⨯,{}⋅⋅=n n k k diag D ,,1 ,{}p p k k diag D ⋅⋅=,,1又记向量)',,(1n s s s =,)',,(1p r r r =,则前面的两式可表示为Kr D s n1-∝, s K D r p'1-∝其中∝表示“成比例于”。
第九讲 对应分析 PPT课件
name3
27 272 93 149 45 112 54 17 167 142 185 128 106 9 10 19
name4
21 51 36 41 302 146 64 36 53 41 105 47 166 72 78 107
name5
14 83 71 36 37 113 365 29 57 34 123 38 81 94 248 63
2 = 'Rent';
车主的性别 1 = 'Male'
2 = 'Female';
收入
1 = '1 Income' 2 = '2 Incomes';
婚姻状况 1 = 'Single with Kids' 2 = 'Married with Kids'
3 = 'Single'
4 = 'Married';
pi1 pi
,
pi 2 pi
,
,
piq pi
ni1 ni
,
ni 2 ni
,
,
niq ni
其各元素之和等于1 ,即ri1 1, i 1, 2,
第 j 列轮廓:
cj
p1 j p j
,
p2 j p j
,
,
p pj p j
n1 j n j
,
n2 j n j
,
,
npj n j
,p 。
其各元素之和等于1 ,即 1c j 1, j 1, 2, , q。
若 2 2 p 1, q 1,则拒绝独立性的原假设, 其中 2 p 1, q是1 2 p 1, q的1上 分位点。
初一地理图表绘制解读方法
初一地理图表绘制解读方法图标是一种很好的将初一地理数据直观、形象地“可视化”的手段。
下面是店铺为您带来的初一地理图表绘制解读方法,希望对大家有所帮助。
初一地理图表绘制解读方法:图表的类型及读法综观地理课本中的插图,大致可归纳下列几种重要的类型,现分析说明如下:(1)比较型。
这类插图是把两种属于同一范畴的地理现象加以比较,这类成对的相异地理现象,有时表面现象容易混淆不清,而它们的性质和成因是截然相反的,通过两张图的并列比较,一正一反,相得益彰。
如气旋与反气旋,冷锋与暖锋、冷锋天气与暖锋天气、亚洲的冬季风与夏季风、背斜与向斜、地垒和地堑等等。
这类插图有的本身来自对自然界直观的素描,形象生动逼真,如“地垒和地堑”通过插图解释成因,大大加强了科学效果。
对于这类比较型的一对插图要仔细对照从中找寻异同点。
比如从表面现象看,冷锋天气与暖锋天气都有降水过程,并且两图中都是暖气团在上,冷气团在下。
区别在于哪种气团“主动”,可让同学从冷气团箭头的指向,明辨冷锋和暖锋的不同含意。
(2)演变型。
这类插图反映的对象是呈动势的,有的是演变发展图,有的是运动变化图。
“地球的公转”一图是演变型插图的一例。
在观察此图时,要求同学注意下列几个问题:①地球公转的方向②地球自转的方向③地轴倾斜的方向④二分、二至的日期⑤太阳直射点的变化⑥北极圈内极昼和极夜的变化其它如大陆漂移示意图和习题中的意大利那不勒斯海岸边三根大理石柱的升降变化情况图,都是演变型的插图。
这些图类饶有兴趣,可以积极启发同学思维,引起对大自然奥秘探索的兴趣。
(3)关联型。
自然界各种地理现象,粗略一看,似乎杂乱无章,但是仔细一看,稍加分析就可发现它是有规律的,有章可循、互为关联的。
这类关联型插图很重要,它把繁杂的内容通过图表简明扼要地表述清楚。
如第三章“地球上的水”一幸中,通过阅读“水分循环示意图”,对复杂的水分循环便一目了然。
这类图在课本中占有相当的篇幅。
如第四章第二节中的地壳物质循环简略图式,对内外各种力作用的相互关系通过箭头联系起来,把物质循环规律模式和盘托出。
对应分析
对应分析(Correspondence Analysis)在进行数据分析时,经常要研究两个定性变量(品质变量)之间的相关关系。
我们曾经介绍过使用列联表和卡方检验来检验两个品质变量之间相关性的方法,但是该方法存在一定的局限性。
卡方检验只能对两个变量之间是否存在相关性进行检验,而无法衡量两个品质型变量各水平之间的内在联系。
例如,汽车按产品类型可以分豪华型、商务型、节能型、耐用型,按销售区域可分为华北区、华南区、华中区、华东区、西南区、西北区、东北区。
利用卡方检验,只能检验销售地区与对型的偏好之间是否相关,但无法知道不同地区的消费者到底比较偏好哪种车型。
对应分析方法(Correspondence Analysis)又称相应分析、关联分析,是一种多元相依变量统计分析技术,是对两个定性变量(因素)的多种水平之间的对应性进行研究,通过分析由定性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种分析技术还可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
特别是当分类变量的层级数比较大时,对应分析可以将列联表中众多的行和列的关系在低维的空间中表示出来。
而且,变量划分的类别越多,这种方法的优势就越明显。
对应分析以两变量的交叉列联表为研究对象,利用“降维”的方法,通过图形的方式,直观揭示变量不同类别之间的联系,特别适合于多分类定性变量的研究。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
该统计研究技术在市场细分、产品定位、品牌形象以及满意度研究等领域得到了广泛的运用。
对应分析图解读的七种方法
原点定理:如果某点离圆心越远,则说明该点具有的个性越鲜明,与其 他点(产品)差异大,从统计学的角度说明越有意义.
/xiaowenzi22
象限二
象限一
象限三
象限四
象限分析:根据原点把整个图划分成四象限,每个象限代表着不同属性 的点(产品),具体原理可参见SWOT分析.
LOGO
/xiaowenzi22
�
LOGO
由沈浩教授讲授,小蚊子总结
距离定理(自己瞎叫的):连接原点到其中某点(如城市6)做一条射线, 并反向延长做虚线,做Xn(n个X点)到这条直线的垂直线,交叉的点 (垂点)离城市6越近,说明越相关,反之越不相关.
注:本资料只是提供一种分析思路具体做法自行研究,另外由于暂无找到合适的对应分析图,所以本资料所采用的 对应分析图与所进行的解释说明可能不符,请读者自行想象相关图形.
/xiaowenzi2分析:根据某点(城市6)所在位置向图内各方向做射线(发展 方向,以确定将遇到的竞争对手或困难,来确定企业发展方向.
/xiaowenzi22
市场细分:对密集点进行分割确定细分市场,这种方法是最经常用到的.
/xiaowenzi22
圆心定理:以某点(城市6)为圆点做半径不同的圆数个,其他点落入的 圆上的半径越短,则说明购买该产品的可能性越大,或者是具有相似行 为但属性(年龄等)不同的消费者.
/xiaowenzi22
/xiaowenzi22
锐角
余弦定理:连接其中两点到原点(如城市4与城市5),各做一条射线, 两条线之间的夹角越小,说明他们越相关(余弦定理:夹角的余弦用来 表示相关性的大小),如果从产品角度上说具有竞争关系.
/xiaowenzi22
对应分析方法与对应图解读方法
对应分析方法与对应图解读方法——七种分析角度对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:概念发展(Concept Development)新产品开发(New Product Development)市场细分(Market Segmentation)竞争分析(Competitive Analysis)广告研究(Advertisement Research)主要回答以下问题:谁是我的用户还有谁是我的用户谁是我竞争对手的用户相对于我的竞争对手的产品,我的产品的定位如何与竞争对手有何差异我还应该开发哪些新产品对于我的新产品,我应该将目标指向哪些消费者数据的格式要求对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN (开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对应分析方法与对应图解读方法——七种分析角度
对应分析就是一种多元统计分析技术,主要分析定性数据Category Data方法,也就是强有力的数据图示化技术,当然也就是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表与卡方的独立性检验,如何解释对应图,当然大家也可以瞧到如何用SPSS操作对应分析与对数据格式的要求!
对应分析就是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:
概念发展(Concept Development)
新产品开发(New Product Development)
市场细分(Market Segmentation)
竞争分析(Competitive Analysis)
广告研究(Advertisement Research)
主要回答以下问题:
谁就是我的用户?
还有谁就是我的用户?
谁就是我竞争对手的用户?
相对于我的竞争对手的产品,我的产品的定位如何?
与竞争对手有何差异?
我还应该开发哪些新产品?
对于我的新产品,我应该将目标指向哪些消费者?
数据的格式要求
对应分析数据的典型格式就是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析
上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别与年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)
当然,我们拿到的最初原始数据可能就是SPSS数据格式记录表,
其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
要回答的问题就是:
1-不同性别的人在选择自杀方式上有什么差别?
2-不同年龄的人在选择自杀方式上有什么差别?
3-不同性别年龄的人在选择自杀方式上有什么差别?
我们首先,把性别字段乘上10加上年龄字段生成新字段sexage,取值就是11-15,21-25,然后分别用M/F与年龄组中值代表Sexage字段的变量值标,这样我们就可以进行简单对应分析了!
现在问大家,如果您瞧到上面的6×10的矩阵-列联表,您能瞧出什么差异?
现在我们采用SPSS软件进行对应分析!
(我现在用的就是SPSS17、0多语言版本,前两天听博易智讯的人说,现在SPSS已经有18、0版本了,不过从对应分析方法角度我还就是希望用11、5版本,因为可以自己拆分重新组合修改图形,现在的版本就是图片了,不能随心所欲的修改,不爽!)
分别定义好行列变量以及它们的取值范围!
对应分析中,6×10的列联表(交互表)可以得到行列维度最小值减1的维度,我们瞧到第一维度Dim1解释了列联表的60、4%,第二维度Dim2解释了列联表的33、0%,说明在两个维度上已经能够说明数据的93、4%,这就是比较理想的,当然我们也可以瞧卡方检验等!
下面我们主要解释如何解读对应图(小蚊子的博客中也有非常相似的解释,我非常欣赏她的博客)
首先对SPSS分析得到的对应图进行修饰与编辑,在零点增加两条中线!
解读方法:
1-总体观察:
我们从图上左右可以瞧出,左边全部就是M*,男性,右边F*全部就是女性,说明男女有显著差异;同时瞧横轴中线上方都就是年龄大的,下面都就是年龄小的,说明年龄有差异;这样就一目了然瞧出与回答了前两个问题;
2-观察邻近区域
我们从图上可以瞧出,老的男性比较喜欢HANG,GAS与GUN就是年轻男性的偏好;老的女性比较喜欢DAWN,年轻的女性比较偏好POISON;
3-向量分析——偏好排序
我们可以从中心向任意点连线-向量,例如从中心向GUN做向量,然后让所有的人往这条向量及延长线上作垂线,垂点越靠近向量正向的表示越偏好这种方法。
记住:就是垂点到GUN正向排名,从图中我们可以瞧出,希望GUN方法的人依次就是M15、M30、M45、M60、M80、F15等等;依次类推,我们还可以从中心向任意一种方法作垂线,都可以排出每种方法选择人群的偏好次序;当然,您也可以从中心往所有的人作向量,得到每一类人在选择六种方法上的偏好排名!
您就是否可以瞧出,F15年轻的女性对六个“品牌”的偏好不?
4-向量的夹角——余弦定理
接着,我们可以从向量夹角的角度瞧不同方法或不同人之间的相似情况,从余弦定理的角度瞧相似性!
从图上我们可以瞧出,当我们从中心向任意两个点(相同类别)做向量的时候,夹角就是锐角的话表示两个方法具有相似性,锐角越小越相似;也就就是说,GUN与GAS就是相似品牌,当如也就是竞争品牌,也具有替代性,如果这次开枪没有自杀成功,下次她一定选择毒气啦;我们也瞧出F15与F30的人比较相似,但F15与M80就有非常大的差异了,因为如果作向量她们就是钝角,几乎就是平角了!
5-从距离中的位置瞧:
越靠近中心,越没有特征,越远离中心,说明特征越明显
从这张对应图中我们瞧到,有些点远离中心,有些点靠近中心,这说明什么呢?从几何空间的角度,如果我对每一人都一样的好,在规范图上我就应该站在大家的重心,也就就是中心;这说明越靠近中心的点,越没有差异,(记住:没有差异并不代表不重要,只就是没有差异,因为统计的技术就是研究差异的技术,差异越大往往重要性就大!),越远离中心特征越明显,也就就是说,如果听到一个M80的人自杀了,估计您就会想到就是不就是HANG啦!
从品牌角度思考,说明越远离中的的品牌,消费者很容易识别,说明品牌特征(特色、特点)明显,越靠近中心的品牌,消费者不易识别,也说明您的品牌定位没有显著可识别的特征,没有差异认知!
6-坐标轴定义与象限分析
我们还没有定义坐标轴呢?从第一点的分析,其实我们很快就可以定义坐标轴的含义了!(当然有时候对应图的座位就是非常难定义的)
因此,落在第四象限的就是年轻的女性所喜欢的品牌!
7-产品定位:理想点与反理想点模型
我们可以在图上以POISON为定位点,以POISON为圆心,以它的利益为半径画圆,那么我们可以得出这样的结论:越先圈进来的人就就是最喜欢这个品牌的消费群,越先圈进来的品牌越可能就是竞争品牌;当然,您也可以以某类人作为圆心,同意解读;如果POISON就是市场不存在的,在调查中可以设定为理想点,这样我们就可以得到理想点模型,同理也可以得到反理想点模型分析!
8-市场细分与定位
最后,研究人员可以根据前面的分析与自身市场状况,进行市场细分,找到目标消费群,然后定位进行分析!最终选择不同的目标市场制定有针对性的营销策略与市场投放!
我们也可以尝试采用多元对应分析,但不如简单对应分析有意义!
对应分析方法与对应图解读方法
简单对应分析的优点:
定性变量划分的类别越多,这种方法的优势越明显,揭示行变量类别间与列变量类别间的联系,将类别联系直观地表现在二维图形中(对应图),可以将名义变量或次序变量转变为间距变量。
简单对应分析的缺点:不能用于相关关系的假设检验,维度要由研究者决定,有时候对应图解释比较困难,对极端值比较敏感。