2019-2020学年高一数学 集合与简易逻辑教案13 苏教版.doc
集合与简易逻辑教案jiaoan
集合与简易逻辑教案一、教学目标1. 了解集合的概念,能够正确表示集合,并掌握集合的基本运算。
2. 学习简易逻辑的基本概念,能够运用简易逻辑解决问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 集合的概念和表示方法集合的定义集合的表示方法(列举法、描述法)集合的基本运算(并集、交集、补集)2. 简易逻辑的概念和应用简易逻辑的定义简易逻辑的规则(矛盾律、排中律、同一律)简易逻辑在解决问题中的应用三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握集合和简易逻辑的概念。
2. 使用案例分析和练习题,让学生通过实际应用来加深对集合和简易逻辑的理解。
3. 鼓励学生进行小组讨论和合作,培养学生的团队合作能力和交流表达能力。
四、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况,评估学生对集合和简易逻辑的理解程度。
2. 练习题完成情况:检查学生完成练习题的正确率和解题思路,评估学生对集合和简易逻辑的掌握程度。
3. 小组讨论报告:评估学生在小组讨论中的表现和合作能力,以及对集合和简易逻辑的理解和应用能力。
五、教学资源1. 教学PPT:提供集合和简易逻辑的概念、例题和练习题,方便学生理解和巩固知识点。
2. 练习题:提供相关的练习题,帮助学生巩固集合和简易逻辑的知识点。
3. 案例分析:提供相关的案例分析,让学生能够将集合和简易逻辑应用到实际问题中。
六、教学步骤1. 引入集合概念:通过现实生活中的实例,如班级学生、家庭成员等,引导学生理解集合的概念。
2. 表示集合:讲解列举法和描述法的区别和运用,让学生通过具体例子学会表示集合。
3. 集合运算:介绍并集、交集、补集的定义和运算方法,通过例题展示运算过程,让学生分组练习。
七、教学步骤(续)4. 简易逻辑概念:引入简易逻辑的概念,解释矛盾律、排中律、同一律的含义。
5. 逻辑推理:通过逻辑推理题目,让学生运用简易逻辑规则解决问题,增强逻辑思维能力。
高一数学《集合与简易逻辑》教案
高一数学《集合与简易逻辑》教案教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。
过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:12 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。
正确的叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题反例:3是12的约数吗?5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。
这种含有变量的语句叫开语句(条件命题)。
三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤ 对角线互相平分(3)0.5非整数⑥ 非“0.5是整数”观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。
3.其实,有些概念前面已遇到过如:或:不等式 x2x60的解集 { x | x2或x3 }且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }四、复合命题的构成形式如果用p, q, r, s……表示命题,则复合命题的形式接触过的有以下三种:即: p或q (如④) 记作 pqp且q (如⑤) 记作 pq非p (命题的否定) (如⑥) 记作 p其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
高一数学集合教案 高一数学教案优秀13篇
高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
2019-2020年高一数学 复习讲义 集合教案 苏教版
2019-2020年高一数学 复习讲义 集合教案 苏教版一、 集合性质的应用1. 设,若,求实数.二、 集合的表示2. 用适当的方法表示下列的集合:(1);(2){}26,,B y y x x N y N ==-+∈∈; (3){}2(,)6,,C x y y x x N y N ==-+∈∈; (4) 的解集;(5)直角坐标系中所有第二象限的点。
三、 集合关系的判断3. 判断下列集合的关系:四、 元素与集合关系的讨论4. 已知数集P 满足条件:若 ,已知,试求集合P 中的其他元素。
5. 设集合S 满足下列条件:① ②若,则问题:(1)若,则S 中必有另外两个数,求出这两个数;(2)求证:若,则;(3)在集合S 中元素能否只有一个?若能,把它求出来;若不能,说明理由。
五、 集合相等的应用6. 设{}{}2,,,2,2,,,,M a b N a b M N a b ===且求。
六、 求子集、真子集7. 已知集合M 满足,求满足条件的集合M 。
七、 求交集、并集、补集8. 已知全集{}30,U x x A B U =取不大于的质数,是的两个子集,且,,,求集合A 、B 。
9. 已知全集5,{42},{13},{0}2U R A x x B x x P x x x ==-≤<=-<≤=≤≥或,求:,(),()(U U A B C B P A B C P 。
八、 子集、交集、补集的应用10. 设集合{}{}2320,20,A x x x B x ax B =-+==-=若A ,求实数组成的集合。
11. 已知集合{}{},12A x x a B x x =<=<<,(1) 若,R A C B a ⊆求实数的取值范围;(2) ,R R B A C A C B ⊆⊆若问是否成立?12. 已知集合{}{}24,21,,5,1,9,{9}A a a B a a A B =--=--=若,求的值。
高一数学《集合与简易逻辑》教案
高一数学《会合与简略逻辑》教学设计教材:逻辑联络词(1)目的:要修业生认识复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联络词,并能由简单命题组成含有逻辑联络词的复合命题。
过程:一、提出课题:简单逻辑、逻辑联络词二、命题的观点:例: 12 ① 3是12的约数② 0.5是整数③定义:能够判断真假的语句叫命题。
正确的叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题反例: 3 是 12 的约数吗? 5 都不是命题不波及真假 ( 问题 ) 没法判断真假上述①②③是简单命题。
这类含有变量的语句叫开语句(条件命题)。
三、复合命题:1.定义:由简单命题再加上一些逻辑联络词组成的命题叫复合命题。
2.例: (1)10 能够被 2 或 5 整除④ 10 能够被 2 整除或 10能够被 5 整除(2) 菱形的对角线相互菱形的对角线相互垂直且菱形的第 1页垂直且均分⑤角相互均分(3)0.5非整数⑥非“ 0.5是整数”察:形成观点:命在加上“或”“且”“非” 些成复合命。
3.其,有些观点前方已碰到如:或:不等式x2x60 的解集 { x | x2或x3 }且:不等式x2x60 的解集 { x | 23 }即{ x | x2且x3 }四、复合命的组成形式假如用 p, q, r, s ⋯⋯表示命,复合命的形式接触的有以下三种:即: p 或 q ( 如④) 作 pqp 且 q ( 如⑤) 作 pq非 p ( 命的否认 ) ( 如⑥) 作 p小: 1.命 2 .复合命 3 .复合命的组成形式第 2页。
苏教版高中数学集合的教案
苏教版高中数学集合的教案
教学目标:
1. 理解集合的概念,能够正确地表示和描述集合;
2. 掌握集合的运算规则,能够进行交集、并集、补集等集合运算;
3. 能够解决实际问题,运用集合理论解决实际问题。
教学重点与难点:
重点:集合的概念和运算规则的理解与运用;
难点:集合运算的实际问题的应用。
教学准备:
1. 教材:苏教版高中数学教材;
2. 教具:黑板、彩色粉笔、教案、练习册;
3. 知识储备:集合的概念、集合的表示、集合的运算。
教学过程:
一、导入(5分钟)
教师引导学生回顾集合的概念以及集合的表示方法,引发学生对集合的兴趣。
二、讲授(15分钟)
1. 介绍集合的概念和表示方法;
2. 讲解集合的运算规则,包括交集、并集、补集等;
3. 演示例题,让学生掌握集合运算的具体方法。
三、练习(20分钟)
1. 学生进行练习册上的相关练习,巩固集合的概念和运算规则;
2. 老师检查学生的回答,并对错题进行讲解。
四、应用(10分钟)
教师出示实际问题,让学生运用集合理论解决问题,培养学生的数学思维和应用能力。
五、总结(5分钟)
教师对本节课的内容进行总结,强调集合的重要性和运用。
六、作业布置(5分钟)
布置相关作业,帮助学生进一步巩固和加深对集合的理解和运用。
教学反思:
通过本节课的教学,学生对集合的概念和运算规则有了更深入的理解,提高了解决实际问题的能力。
在接下来的教学中,可以引导学生运用更多的实例,拓展他们的数学思维。
高中数学高三教案学案江苏省南师大附中2020精品学案集合与逻辑(含教师版13个)一集合基础教师版
高中数学高三教案学案江苏省南师大附中2020精品学案集合与逻辑(含教师版13个)一集合基础教师版一、明白得集合中的有关概念〔1〕集合中元素的特点:确定性,互异性,无序性 。
〔2〕集合与元素的关系用符号⊆∈, 表示。
〔3〕常用数集的符号表示:自然数集 N ;正整数集 N * 、 N + ;整数集 Z ;有理数集 Q 、实数集 R 。
〔4〕集合的表示法:列举法,描述法,符号法〔数轴法,韦恩图法〕注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C }12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F ;},12|{2xy z x x y z G =++== 〔5〕空集是指不含任何元素的集合。
〔}0{、φ和}{φ的区不;0与三者间的关系〕 空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情形。
如:}012|{2=--=x ax x A ,假如φ=+R A ,求a 的取值。
二、集合间的关系及其运算〔1〕符号〝∉∈,〞是表示元素与集合之间关系的,立体几何中的表达 点与直线〔面〕的关系 ;符号〝⊄⊂,〞是表示集合与集合之间关系的,立体几何中的表达 面与直线(面)的关系 。
〔2〕A ⋂B={ x| x ∈A且x ∈B} A ⋃B={ x| x ∈A 或x ∈B}; C I A={ x| x ∈ I 且x ∉A }〔3〕关于任意集合B A ,,那么:①A B B A =;A B B A =;B A B A ⊆;②⇔=A B A A ⊆B ;⇔=A B A B ⊆A ;⇔=U B A C U A ⋃B=;⇔=φB A C U A ⋂B=U ;③=B C A C U U )(B A C U ⋃; B C A C U U ⋃)(B A C U =;〔4〕①假设n 为偶数,那么=n 2K,(k Z ∈);假设n 为奇数,那么=n 2k+1, (k Z ∈);②假设n 被3除余0,那么=n 3k, (k Z ∈);假设n 被3除余1,那么=n 3k+1(k Z ∈);假设n 被3除余2,那么=n 3k+2(k Z ∈);三、集合中元素的个数的运算:〔1〕假设集合A 中有n 个元素,那么集合A 的所有不同的子集个数为2n ,所有真子集的个数是2n -1,所有非空真子集的个数是2n -2。
苏教版高中数学集合教案
苏教版高中数学集合教案教学目标:1. 理解集合的概念,并能正确表示集合。
2. 能够进行集合的运算,并解决相关问题。
3. 掌握集合的常用性质和定理,能够灵活运用。
教学重点:1. 集合的概念和表示。
2. 集合的运算。
3. 集合的性质和定理。
教学难点:1. 集合的概念和运算的灵活运用。
2. 集合的性质和定理的推导和应用。
教学内容和步骤:一、导入通过一个生活中的例子引入集合的概念,让学生感受集合的存在及作用,并引出今天的学习内容。
二、讲解1. 集合的概念与表示:介绍集合的定义及表示方法,如用花括号表示、集合的元素等。
2. 集合的运算:介绍集合的并、交、差、补等运算,以及运算的性质和规律。
三、展示通过一些实际的例题展示集合的运算和性质,引导学生灵活运用集合的相关知识,解决问题。
四、练习布置一些练习题,让学生在课堂上或课后进行练习,巩固集合的知识和技能。
五、总结总结今天的学习内容,强调集合的重要性及应用,鼓励学生多加练习,提高自己的集合运算能力。
六、作业布置作业,巩固和拓展集合的知识,让学生在课后进一步提高自己的水平。
七、评价评价学生的学习情况,对学生的表现给予肯定和指导,激励学生继续努力学习数学集合的知识。
教学反思:本节课主要介绍了数学集合的概念和运算,通过生活中的例子和实际的问题引导学生理解和掌握集合的相关知识。
在教学中,要注意启发学生思考,引导学生发现规律,培养学生的逻辑思维能力和解决问题的能力。
同时,要根据学生的实际情况,灵活运用教学方法和手段,确保学生的学习效果和提高教学质量。
苏教版高中数学必修一学教案集集合与简易逻辑第三教时子集,
第三教时教材: 子集目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1. 实例: A={1, 2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A⊆B (或B⊇A)也说: 集合A是集合B的子集.2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B (或B⊄A)注意: ⊆也可写成⊂;⊇也可写成⊃;⊆也可写成⊂;⊇也可写成⊃。
3. 规定: 空集是任何集合的子集 . φ⊆A三“相等”关系1.实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即: A=B2.①任何一个集合是它本身的子集。
A⊆A⊂≠3.②真子集:如果A⊆B ,且A≠ B那就说集合A是集合B的真子集,记作A B③空集是任何非空集合的真子集。
④如果 A⊆B, B⊆C ,那么 A⊆C证明:设x是A的任一元素,则 x∈AΘ A⊆B,∴x∈B 又ΘB⊆C ∴x∈C 从而 A⊆C同样;如果 A⊆B, B⊆C ,那么 A⊆C⑤如果A⊆B 同时 B⊆A 那么A=B四例题: P8 例一,例二(略)练习 P9补充例题《课课练》课时2 P3五小结:子集、真子集的概念,等集的概念及其符号几个性质: A⊆AA⊆B, B⊆C ⇒A⊆CA⊆B B⊆A⇒ A=B作业:P10 习题1.2 1,2,3 《课课练》课时中选择。
2019_2020学年新教材高中数学第1章集合与常用逻辑术语1.1集合的概念教学案新人教A版必修第一册
1.1 集合的概念(教师独具内容)课程标准:1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.教学重点:1.集合概念的正确理解.2.元素的三性(确定性、互异性、无序性).3.元素与集合关系的判定.4.集合常用的两种表示方法(列举法、描述法).教学难点:1.对元素的确定性的理解.2.描述法表示集合.【知识导学】知识点一集合与元素的定义元素:一般地,我们把研究对象统称为元素(element).集合:把一些元素组成的□01总体叫做集合(set)(简称为集).表示:通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.知识点二集合中元素的三个特性(1)确定性;(2)互异性;(3)无序性.知识点三元素与集合的关系(1)“属于”:如果a是集合A的元素,就说a属于集合A,记作□01a∈A.(2)“不属于”:如果a不是集合A中的元素,就说a不属于集合A,记作□02a∉A.知识点四几个常用数集的固定字母表示知识点五集合的表示方法03描述法.集合常见的表示方法有:□01自然语言、□02列举法、□(1)自然语言:用文字叙述的形式描述集合的方法.使用此方法时,只要叙述清楚即可,如由所有正方形构成的集合,就是用自然语言表示的,不能叙述成“正方形”.再如全体实数组成的集合,或实数集等.04一一列举出来,并用花括号“{}”括起来表示集合的(2)列举法:把集合的所有元素□方法叫做列举法.(3)描述法:一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x 所组成的集合表示为□05{x∈A|P(x)},这种表示集合的方法称为描述法.知识点六集合的分类(1)有限集;(2)无限集.【新知拓展】1.元素和集合关系的判断(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可.此时应先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.此时应先明确已知集合的元素具有什么特征,即该集合中元素要满足哪些条件.2.集合的三个特性(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”“线”“面”等概念一样都只是描述性的说明.(2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物,甚至一个集合也可以是某集合的一个元素.3.使用列举法表示集合时需注意的几点(1)元素之间用“,”隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.( )(2)已知A 是一个确定的集合,a 是任一元素,要么a ∈A ,要么a ∉A ,二者必居其一且只具其一.( )(3)对于数集A ={1,2,x 2},若x ∈A ,则x =0.( )(4)集合{y |y =x 2,x ∈R }与集合{s |s =t 2,t ∈R }的元素完全相同.( ) 答案 (1)√ (2)√ (3)× (4)√ 2.做一做(1)下列所给的对象能组成集合的是( ) A .“金砖国家”成员国 B .接近1的数 C .著名的科学家D .漂亮的鲜花(2)用适当的符号(∈,∉)填空:0________∅,0________{0},0________N , -2________N *,13________Z ,2________Q ,π________R .答案 (1)A (2)∉ ∈ ∈ ∉ ∉ ∉ ∈题型一 正确理解描述法中元素的“代表符号” 例1 分析下列集合中的元素是什么?A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2}.[解] 三个集合都是用描述法表示的.对于集合A ,其中的元素是x ,根据“y =x 2”,这里的x 并没有什么限制,即x 可以是任意实数,即集合A 是由所有实数组成的集合,即实数集.对于集合B ,其中的元素是y ,这里的x 没有任何限制,即x 可以是任意实数,但是通过“y =x 2”,元素y 有了限制:实数的平方,从而B 中的元素是非负实数.对于集合C ,从元素的代表符号“(x ,y )”可以看出,其中的元素是有序实数对,这些数对的第一个数x 没有限制,第二个数y 受条件“y =x 2”的限制,因此C 中的元素是有序实数对,且数对的第一个数取任意实数,第二个数是第一个数的平方(从几何角度讲,(x ,y )就是坐标平面内的一个点,从而C 中的元素就是抛物线y =x 2上的点).金版点睛使用描述法表示集合时要注意:①写清该集合中元素的代表符号,如{x ∈R |x >1}不能写成{x >1};②用简明、准确的语言进行描述,如方程、不等式、几何图形等;③不能出现未被说明的字母,如{x ∈Z |x =2m }中m 未被说明,故此集合中的元素是不确定的;④所有描述的内容都要写在花括号内,如“{x ∈Z |x =2m },m ∈N *”不符合要求,应将“m ∈N *”写进“{ }”中,即{x ∈Z |x =2m ,m ∈N *};⑤元素的取值(或变化)范围,从上下文的关系来看,若x ∈R 是明确的,则x ∈R 可省略不写,如集合D ={x ∈R |x <10}也可表示为D ={x |x <10};⑥多层描述时,应当准确使用“且”“或”等表示元素之间关系的词语,如“{x |x <-1或x >1}”等.[跟踪训练1] 试分析集合{(x ,y )|y =x +1}的元素,并能从几何角度解释这个集合. 解 集合中的元素是有序实数对,且第二个实数等于第一个实数加1. 从几何角度:该集合就是一次函数y =x +1的图象,即直线y =x +1.题型二 判断元素与集合的关系例2 已知集合A ={x |x =m +n ·2,m ,n ∈Z }. (1)判断0,(1+2)2,13-2与A 的关系;(2)若x 1,x 2∈A ,试探究x 1x 2,x 1+x 2与A 的关系. [解] (1)易知0=0+0×2,且0∈Z , 所以0∈A .因为(1+2)2=3+22,且3,2∈Z , 所以(1+2)2∈A .因为13-2=3+2(3-2)(3+2)=37+27,且37,17∉Z ,所以13-2∉A . (2)因为x 1,x 2∈A ,所以可设x 1=m 1+2n 1,x 2=m 2+2n 2,且m 1,n 1,m 2,n 2∈Z , 所以x 1x 2=(m 1+2n 1)(m 2+2n 2)=m 1m 2+2(m 2n 1+m 1n 2)+2n 1n 2=(m 1m 2+2n 1n 2)+2(m 2n 1+m 1n 2).因为m 1m 2+2n 1n 2∈Z ,m 2n 1+m 1n 2∈Z ,所以x 1x 2∈A .因为x 1+x 2=(m 1+m 2)+2(n 1+n 2),m 1+m 2∈Z ,n 1+n 2∈Z ,所以x 1+x 2∈A .金版点睛该问题是判断所给的元素是否具有集合A 中元素的特征,用自然语言理解为:所给元素是否能写成“整数+整数的2倍”的形式.可以看出,问题的实质是正确解读集合的表示方法(描述法).[跟踪训练2] 已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪63-x ∈Z,试判断-2,2与A 的关系.解 解法一:易知A ={-3,0,1,2,4,5,6,9}, 所以-2∉A,2∈A .解法二:当x =-2时,63-x =65∉Z ,所以-2∉A ;当x =2时,x ∈Z 且63-x =6∈Z ,所以2∈A .题型三 含参问题探究例3 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .[解] ①当k =0时,原方程为16-8x =0, ∴x =2,此时A ={2}.②当k ≠0时,若集合A 中只有一个元素, 则方程kx 2-8x +16=0有两个相等实根. 即Δ=64-64k =0,即k =1, 从而x 1=x 2=4, ∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2}; 当k =1时,A ={4}. 金版点睛对于含参问题,随着参数值的变化,问题的解发生变化,所以这类问题往往需要分类讨论.通过分类,把复杂的问题简单化,从而蕴含着转化的数学思想.[跟踪训练3] 把本例条件“只有一个元素”改为“有两个元素”,求实数k 的取值范围的集合.解 由题意可知方程kx 2-8x +16=0有两个不等的实根.∴⎩⎪⎨⎪⎧k ≠0,Δ=64-64k >0,解得k <1且k ≠0.∴实数k 的取值范围的集合为{k |k <1且k ≠0}. 题型四 集合中的新定义问题例4 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3 B .6 C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B中的元素有9个,故选D.[答案] D金版点睛本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表(含树形图)使用.[跟踪训练4]定义A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 中的所有元素之和为( )A.0 B.2C.3 D.6答案 D解析根据已知条件,列表如下:根据集合中元素的互异性,可由上表知A*B={0,2,4},故其中所有元素之和为0+2+4=6,故选D.1.下列所给的对象不能组成集合的是( )A.我国古代的四大发明B.二元一次方程x+y=1的解C.某班年龄较小的同学D.平面内到定点距离等于定长的点答案 C解析C项中“年龄较小的同学”的标准不明确,不符合确定性,故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为( )A.2 B.2或4C.4 D.0答案 B解析集合A中含有三个元素2,4,6,且当a∈A,有6-a∈A.当a=2∈A时,6-a=4∈A,∴a=2;当a=4∈A时,6-a=2∈A,∴a=4;当a=6∈A时,6-a=0∉A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是( )A.1 B.2C.3 D.4答案 B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,∉)填空:(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.解A={x|(x-1)(x-a)=0};当a=1时,A={1};当a≠1时,A={1,a}.。
【高中数学】高一数学《集合与简易逻辑》教案
【高中数学】高一数学《集合与简易逻辑》教案教材:逻辑联结词(1)目的:理解复合命题的含义,指出复合命题具有哪些简单命题和逻辑连接词,并从简单命题中形成包含逻辑连接词的复合命题。
过程:一、主题:简单逻辑,逻辑连接词二、命题的概念:例:12>5①3是12的约数②0.5是整数③定义:能够判断真假的陈述称为命题。
正确的命题称为真命题,错误的命题称为假命题。
如:①②是真命题,③是假命题反例:3是12的除数吗?x> 5.不是命题不涉及真假(问题)无法判断真假以上① ② ③ 这些都是简单的命题。
这种包含变量的语句称为开放语句(条件命题)。
三、复合命题:1.定义:一个由简单命题和一些逻辑连接词组成的命题称为复合命题。
2.例:(1)10可以被2或5整除④10可以被2整除或10可以被5整除(2)钻石的对角线相互垂直,呈菱形垂直且平分⑤对角线互相平分(3)0高二⑥ 不是整数0.5观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。
3.事实上,以前也遇到过一些概念如:或:不等式x2x6>0的解集{xx<2或x>3}和:不等式x2x6<0的解集{x2<x<3},即{XX>2和x<3}四、复合命题的构成形式如果P,Q,R,s。
用于表示一个命题,复合命题有三种形式:即:p或q(如④)记作pqP和Q(例如。
⑤) 记录为PQ非p(命题的否定)(如⑥)记作p总结:1。
提议2。
复合命题3。
复合命题的构成形式。
2019-2020年高中数学 第一章集合与简易逻辑教案3
2019-2020年高中数学第一章集合与简易逻辑教案3本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.本章共编排了8小节,教学时间约需22课时:11 集合约2课时12 子集、全集、补集约2课时13 交集、并集约2课时14 绝对值不等式的解法约2课时15 一元二次不等式的解法约4课时16 逻辑联结词约2课时17 四种命题约2课时18 充分条件与必要条件约2课时小结与复习约4课时说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.一内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.根据《全日制普通高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.二本章的特点⒈注意初中与高中的衔接近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.⒉重视集合与逻辑在中学数学学习中的应用本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的三教学中应注意的问题⒈教学要求的把握要适时、适度本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.⒉提高集合与逻辑的教学效益目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.⒊使用数学符号要规范本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.2019-2020年高中数学第一章集合与简易逻辑教案4教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时罗华的手稿1831年1月伽罗华在教具:多媒体个结论,他写成论文提交给法国科、实物投影仪内容分析:当时的数学家S.K.泊松为了理1.集合是中学数已证明的一个结果可以表明伽罗华学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初议科学院否定它1832年5月30日中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解忙写成后,委托他的朋友薛伐里叶集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对造福人类1832年5月31日离开了逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识,他死后14年,法国数学家刘维问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是于刘维尔主编的《数学杂志》上本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R{}=R数轴上所有点所对应的数注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含( A )(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z, b∈Z)的数,求证:(1) 当x∈N时, x∈G;(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0*= a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)∴x+y=( a+b)+( c+d)=(a+c)+(b+d)∵a∈Z, b∈Z,c∈Z, d∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d) ∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)罗华的手稿1831年1月伽罗华在2.集合元素的性质:确定性,互异性,无序性个结论,他写成论文提交给法国科3.常用数集的定义及记法当时的数学家S.K.泊松为了理五、课后作业:已证明的一个结果可以表明伽罗华六、板书设计(略)罗华的手稿1831年1月伽罗华在议科学院否定它1832年5月30日七、课后记:个结论,他写成论文提交给法国科忙写成后,委托他的朋友薛伐里叶八、附录:康托尔简当时的数学家S.K.泊松为了理介造福人类1832年5月31日离开了发疯了的数学家康已证明的一个结果可以,他死后14年,法国数学家刘维表明伽罗华托尔(GeorgCantor,1845-1918)是德于刘维尔主编的《数学杂志》上国数学家,议科学院否定它1832年5月30日集合论的创始者1845年3月3日生于圣彼得堡,忙写成后,委托他的朋友薛伐里叶1918年1月6日病逝于哈雷造福人类1832年5月31日离开了康托尔11岁时移居,他死后14年,法国数学家刘维德国,在德国读中学1862年17岁时入瑞士苏黎世大于刘维尔主编的《数学杂志》上学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上。
高一数学上册第一章集合与简易逻辑精品教案
课 题:1.1集合-集合的概念(1)教学过程:一、复习引入:1.集合论的创始人——康托尔(德国数学家)(见附录);2.“物以类聚”,“人以群分”;二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)。
(2)元素:集合中每个对象叫做这个集合的元素。
2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。
记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合。
记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q(5)实数集:全体实数的集合。
记作R{}数轴上的点所对应的数=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作N *或N +Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复。
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写。
2020-2021学年高中数学苏教版(2019)必修第一册第一章集合第一节教案
1.1集合的概念与表示教学目标:1. 通过实例,了解集合的含义,理解元素与集合的属于关系.2. 针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3. 在具体情景中,了解空集的含义.教学重点:理解元素与集合的属于关系.教学难点:用符号语言刻画集合。
活动一探究集合的概念“集合”是日常生活中的一个常用词,现代汉语解释为“许多的人或物聚在一起”.在初中数学的学习中,我们曾做过以下的作业:练习把下列各数填入它所属于的集合的圈内.15,-,-5,,-,0.1,-5.32,-80,123,2.333.正数集合负数集合整数集合分数集合【解析过程】正数集合:;负数集合:;整数集合:{15,-5,-80,123};分数集合:.在这里,“正数集合”“负数集合”“整数集合”“分数集合”涉及的是数的分类,为此,我们将学习一个新的概念——集合.思考1:在初中,我们还学过哪些集合?用集合描述过什么?【解析过程】在初中代数里学习一元一次不等式时,说它的所有解为不等式的解集;在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合,几何图形都可以看成点的集合.思考2:数学中的“集合”一词与我们日常生活中的哪些词语的意义相近?【解析过程】数学中的“集合”与我们日常生活中“全体”“一类”“一群”“所有”“整体”等意义相近.思考3:通过以上讨论,如何用数学语言表示集合?【解析过程】一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素,简称元.1. 集合的概念:一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素,简称元.2. 集合的表示:(1) 我们通常用大写拉丁字母来表示集合,例如集合A,集合B等.(2) 几个特殊的数集表示:自然数集记作N;正整数集记作N*或N+;整数集记作Z;有理数集记作Q;实数集记作R.活动二探究集合中元素的特征例1请判断下列各组对象能否构成集合,并说明理由.(1) 不超过5的自然数;【解析过程】能,因为集合中元素为0,1,2,3,4,5.(2) 很小的实数;【解析过程】不能,元素不确定.(3) 高一(1)班里个子高的学生;【解析过程】不能,元素不确定.(4) 接近于0的所有数.【解析过程】不能,元素不确定.变式训练1:在“①著名的数学家;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的是()A. ②B. ③C. ②③D. ①②③【解析过程】著名的数学家的标准不确定,因而构不成集合;正三角形标准明确,能构成集合;方程x2-2=0的实数解也是确定的,能构成集合,故选C.【答案】 C例2已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.【解析过程】若1∈A,则a=1或a2=1,即a=-1 或a=1.①当a=1时,集合A的元素是1和1,不符合集合元素的互异性,故a≠1;②当a=-1时,集合A含有两个元素1和-1,符合集合元素的互异性,故a=-1.【答案】-1反思与感悟1. 集合元素特性中的互异性,指的是一个集合中不能有两个相同的元素,利用其可以解决一些实际问题,如三角形中的边长问题及元素能否组成集合的问题.2. 求解字母的取值范围:当一个集合中的元素含有字母,求解字母的取值范围时,一般可先利用集合中元素的确定性解出集合中字母的所有可能的值或范围,再根据集合元素的互异性进行检验.变式训练2:已知集合A含有两个元素a-3和2a-1,若a∈A,则实数a的值是________.【解析过程】若a∈A,则a=a-3或a=2a-1.当a=a-3时,0=-3,不成立;当a=2a -1时,a=1,此时集合A含有两个元素-2,1,符合题意.综上可知,a=1.【答案】 1判断一组对象能否组成集合的方法及其关注点:(1) 方法:判断一组对象能否组成集合,关键是看这些元素是否满足确定性、互异性、无序性,如果满足上述条件,那么就可以确定这些元素可以组成集合,否则不能组成集合.(2) 关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性、无序性.活动三探究集合与元素的关系与表达1. 列举法:将集合中的元素一一列举出来,并置于花括号“{}”内.例3请用列举法表示下列集合:(1) 小于6的所有自然数组成的集合;【解析过程】{0,1,2,3,4,5}(2) 方程x2-4x+4=0的根的集合;【解析过程】{2}(3) 方程组的解集.【解析过程】{(3,2)}变式训练3:请用列举法表示下列集合.(1) 平方后仍等于原数的数组成的集合;【解析过程】{0,1}(2) 由1~20以内的所有质数组成的集合.【解析过程】{2,3,5,7,11,13,17,19}2. 描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.例4请用描述法表示下列集合.(1) 大于等于3的实数构成的集合;【解析过程】{x|x≥3,x∈R}(2) 所有正偶数构成的集合;【解析过程】{x|x=2k,k∈N*}(3) 不等式3x+5>2的解集;【解析过程】{x|x>-1,x∈R}(4) 平面直角坐标系中第一象限的点组成的集合.【解析过程】{(x,y)|x>0,y>0}变式训练4:选择适当的方法表示下列集合.(1) 二次函数y=-x2+2x+4的函数值组成的集合;【解析过程】二次函数y=-x2+2x+4的函数值有无数个,用描述法表示为{y|y=-x2+2x+4}.(2) 二次函数y=-x2+2x+4图象上的点组成的集合.【解析过程】二次函数y=-x2+2x+4图象上有无数个点,用描述法表示为{(x,y)|y=-x2+2x+4}.3. 图示法:为了直观地表示集合,我们常画一条封闭的曲线,用它的内部来表示一个集合,称为Venn图.如例3中小于6的所有自然数的集合可表示为,方程x2-4x+4=0根的集合可表示为.当堂训练:1. 若集合A={(1,2),(3,4)},则集合A中元素的个数是()A. 1B. 2C. 3D. 4【解析过程】集合A={(1,2),(3,4)}中有两个元素(1,2)和(3,4).【答案】 B2. 已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A. 4B. 5C. 7D. 9【解析过程】用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.故选B.【答案】 B3. (多选)下列集合表示同一集合的是()A. M={(3,2)},N={(2,3)}B. M={(x,y)|x+y=1},N={y|x+y=1}C. M={4,5},N={5,4}D. M={1,2},N={ x|x2-3x+2=0}【解析过程】A中,集合M中的元素表示点(3,2),集合N中的元素表示点(2,3),是两个不同的点;B中,M是点集,N是数集;D中,N是方程的解集,就是M,故选CD.【答案】CD4. 若A={-1,2},B={x|x2+ax+b=0},且A=B,则a+b=________.【解析过程】由题意知-1+2=-a,(-1)×2=b,所以a=-1,b=-2,所以a+b=-3.【答案】-35. 已知集合A={x|ax2+2x+1=0,a∈R}.(1) 若1∈A,求a的值;(2) 若集合A中只有一个元素,求实数a组成的集合;(3) 若集合A中含有两个元素,求实数a组成的集合.【解析过程】(1) 因为1∈A,所以a×12+2×1+1=0,解得a=-3.(2) 当a=0时,则A={x|2x+1=0},即A=,符合题意;当a≠0时,方程ax2+2x+1=0有两个相等的实根,即Δ=22-4a=0,所以a=1.故当集合A只有一个元素时,实数a组成的集合是{0,1}.(3) 由集合A中含有两个元素知,方程ax2+2x+1=0有两个不相等的实根,即a≠0,且Δ=22-4a>0,所以a≠0,且a<1,故当集合A中含有两个元素时,实数a组成的集合是{a|a<1,且a≠0}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高一数学 集合与简易逻辑教案13 苏教版 教材:一元二次不等式解法(续)
目的:要求学生学会将一元二次不等式转化为一元二次不等式组求解的方法,进而学会简单
分式不等式的解法。
过程:
一、复习:(板演)
一元二次不等式 ax 2+bx+c>0与 ax 2+bx+c<0 的解法
(分 △>0, △=0, △<0 三种情况)
1.2x 4x 21≥0 2.1≤x 22x<3 (《课课练》 P15 第8题中) 解:1.2x 4x 21≥0 ⇒ (2x 2+1)(x 21)≥0 ⇒ x 2
≥1 ⇒ x ≤
1 或 x ≥1 2.1≤x 22x<3 ⇒ ⎪⎩⎪⎨⎧≥-<-12322x x x x ⇒ ⎪⎩⎪⎨⎧≥--<--01203222x x x x ⇒ ⎩⎨⎧+≥-≤<<-2
12131x x x 或 ⇒ 1<x ≤12或 1+2≤x<3
二、新授:
1.讨论课本中问题:(x+4)(x
1)<0 等价于(x+4)与(x 1)异号,即:⎩⎨
⎧<->+0104x x 与 ⎩⎨⎧>-<+0104x x 解之得:
4 < x < 1 与 无解 ∴原不等式的解集是:{ x |⎩⎨⎧<->+0104x x }∪{ x |⎩⎨⎧>-<+0
104x x } ={ x |
4 < x < 1 }∪φ= { x | 4 < x < 1 } 同理:(x+4)(x
1)>0 的解集是:{ x |⎩⎨⎧>->+0104x x }∪{ x |⎩⎨⎧<-<+0
104x x } 2.提出问题:形如 0>++b x a x 的简单分式不等式的解法: 同样可转化为一元二次不等式组 { x |⎩⎨⎧>+>+00b x a x }∪{ x |⎩⎨⎧<+<+00b x a x } 0<++b x a x 也可转化(略) 注意:1实际上 (x+a)(x+b)>0(<0) 可考虑两根
a 与
b ,利用法则求解:
但此时必须注意 x 的系数为正。
2简单分式不等式也同样要注意的是分母不能0(如 0≥++b
x a x 时)
3形如 0≥+++c b
x a x 的分式不等式,可先通分,然后用上述方法求解 3.例五:P21 略
4.练习 P21 口答板演
三、如若有时间多余,处理《课课练》P16--17 “例题推荐”
四、小结:突出“转化”
五、作业:P22 习题1.5 2--8 及《课课练》第9课中挑选部分。