因子分析- PPT课件

合集下载

效度分析与因子分析ppt课件

效度分析与因子分析ppt课件

5
.162
-.333 -.450 .207 .402
.235 -.157 -.221 .577
因子分析 ——输出—— 转轴后因子矩阵
您 的孩 子 喜 欢与 同 学 、 好 友一 起 参 加旅 游
您 的孩 子 喜 欢将 同 学 们 、 好 友曾 去 过 的景 点 作为 旅 游 目的 地
您 的孩 子 喜 欢把 教 科 书 上曾 提 到 过的 地 方 作 为旅 游 目 的地
% of Cumulative
% of Cumulative
Component Total Variance
%
Total Variance
%
Total Variance
%
1
3.579 25.563
25.563 3.579 25.563
25.563 2.461 17.577
17.577
2
2.289 16.348
您的 孩子喜欢 参与性 、娱乐 性强的旅 游项 目
您的 孩子喜欢 购买新 奇物 品或纪念 品
您孩 子的情绪 会被食 宿的 好坏影响
您与 孩子一起 出游时 的最 终花费会 比预期 花费 高
您的 孩子在您 家庭出 游决 策中的影 响作用 总体 很大
Extraction Method: Principal Component A nalysis.
显示
非旋转因子解
碎石图
特征值
因子分析——转轴
方差最大正交旋转法
旋转解
因子分析——分数
Score 分数项默认
因子分析——选项
删除含有缺失值的个案
系数显示格式
系统按数值大小排列 不显示绝对值小于0.1的载荷系数,以突出因子载荷较大的变量

因子分析ppt课件

因子分析ppt课件
(2)因子提取 研究如何在样本数据的基础上提取综合因子。
(3)因子旋转
通过正交旋转或斜交旋转使提取出的因子具有可解 释性。
(4)计算因子得分
通过各种方法求解各样本在各因子上的得分,为进 一步分析奠定基础。
❖ 2、因子分析前提条件——相关性分析:
分析方法主要有:
(1)计算相关系数矩阵(correlation coefficients matrix)
1 2 为p的特0 征根,
标准化特征向量,则
为u对1 , 应u2 的,, up
1
Σ = U
2
U AA + D
p
u1 u2
up
1
0
1u1u1 2u2u2
0
u1 u2
p
up
mumum m1um1um1
1u1
2u2
pu p
1u1
2
u2
p
因子分析的基本理论 ❖ 3、因子分析的目的:
因子分析的目的之一,简化变量维数。即要使因素结 构简单化,希望以最少的共同因素(公共因子),能 对总变异量作最大的解释,因而抽取得因子愈少愈好, 但抽取因子的累积解释的变异量愈大愈好。
在因子分析的公共因子抽取中,应最先抽取特征值最 大的公共因子,其次是次大者,最后抽取公共因子的 特征值最小,通常会接近0。
(3)因子分析中因子载荷的不唯一性有利于对公因子进行有效解释; 而主成分分析对提取的主成分的解释能力有限。
因子分析的基本理论
❖ 5、因子分析模型: 设 Xi (i 1,2,个,变p)量p,如果表示为
X i i ai1F1 aimFm i (m p)
X1 1 11 12

X
2

因子分析 ppt课件

因子分析  ppt课件

PPT课件
14
(1)计算相关系数矩阵
计算原有变量的简单相关系数矩阵。观察相关系数矩阵,如果相关系数 矩阵中的大部分相关系数值小于 0.3,则各个变量之间大多为弱相关,这就 不适合做因子分析。如果一个变量与其他变量间相关度很低,则在下一分析 步骤中可考虑剔除此变量。
PPT课件
15
(2)进行统计检验
因子分析
—SPSS操作及其原理
PPT课件
陶鑫 2008-4-23
1
在科学研究中,往往希望尽可能多地收集反映研究对象的 多个变量,以期能对问题有比较全面、完整的把握与认识。多 变量的大样本虽然能为科学研究提供大量的信息,但是在一定 程度上增加了数据采集的工作量,更重要的是在大多数情况下, 许多变量之间可能存在相关性,这意味着表面上看来彼此不同 的变量并不能从各个侧面反映事物的不同属性,而恰恰是事物 同一种属性的不同表现。
PPT课件
11
Байду номын сангаас
主成分分析的数学模型
PPT课件
12
主成分分析与因子分析的公式上的区别
因子分析(m<p)
y1 a11x1 a12 x2 a1p xp y2 a21x1 a22 x2 a2 p xp
主成分分析 因子得分
y p ap1x1 ap2 x2
app xp
PPT课件
27
5.计算因子得分
计算因子得分是因子分析的最后一步。因子变量确定后,便可计 算各因子在每个样本上的具体数值,这些数值就是因子的得分,形成 的新变量称为因子变量,它和原变量的得分相对应。有了因子得分, 在以后的分析中就可以因子变量代替原有变量进行数据建模,或利用 因子变量对样本进行分类或评价等研究,进而实现降维和简化的目标。

因子分析方法ppt课件

因子分析方法ppt课件

2、变量共同度(共同性)
总之,变量的共同度刻画了因子全体对变量信息解释的 程度,是评价变量信息丢失程度的重要指标。
如果大多数原有变量的变量共同度均较高(如高于0.8), 则说明提取的因子能够反映原有变量的大部分信息(80 %以上)信息,仅有较少的信息丢失,因子分析的效果 较好。因子,变量共同度是衡量因子分析效果的重要依 据。
Page 10
10
因子分析数学模型中几个相关概念
举例说明:
Page 11
11
Page 12
12
因子分析的五大基本步骤
第一步:因子分析的前提条件
由于因子分析的主要任务之一是对原有变量进行浓缩,即将
原有变量中的信息重叠部分提取和综合成因子,进而最终实
现减少变量个数的目的。因此它要求原有变量之间应存在较
Page 4
4
用矩阵的形式表示为Z=AF+U
F称为因子,由于它们出现在每个原始变量的线性表达式 (原始变量可以用Xj表示,这里模型中实际上是以F线性表 示各个原始变量的标准化分数Zj),因此又称为公共因子.
A称为因子载荷矩阵, aji称为因子载荷,是第j个原始变 量在第i个因子上的负荷。
U称为特殊因子,表示了原有变量不能被因子解释的部分, 其均值为0,相当于多元线性回归模型中的残差。
当要判断一个因子的意义时,需要查看哪些变量的负荷达
到了0.3或0.3以上
Page 7
7
因子分析数学模型中几个相关概念
2、变量共同度(共同性) 一个因子解释的是相关矩阵的方差,变量的方差由共同因 子和唯一因子组成,可以表示成h+u2=1(h表示共同度,u2 表示特殊因子的平方)。 变量共同度就是指每个原始变量在每个共同因子的负荷量 的平方和,是全部因子对变量方差解释说明的比例。变量共 同度h越接近1,说明因子全体解释说明了变量Zj的较大部分 方差,如果用因子全体刻画变量,则变量的信息丢失较少; 共同性的意义在于说明如果用共同因子替代原始变量后,原 始变量的信息被保留的程度。 特殊因子U的平方,反应了变Pag量e 8方差中不能由因8 子全体解

因子分析PPT课件

因子分析PPT课件

3. 公共因子的方差贡献:是某公共因子对所有原变量载荷的平方和, 它
反映该公共因子对所有原始总变异的解释能力,等于因子载荷矩阵中某 一列载荷的平方和。一个因子的方差贡献越大,说明该因子就越重要。
2024/6/2
15
★ 确定公因子数目的准则
1)因素的特征值(Eigenvalues)大于或等于1;
2)因素必须符合陡阶检验(Screen Test),陡阶检
仅仅是为了化简、浓缩数据,则采用正交旋转(保持
直角90度,不允许公因子相关)。如果研究的目的是
为了得到理论上有意义的研究结果,则采用斜交旋转。
(不呈90度,允许公因子相关;有证据表明公因子之
间是相关的才用)
旋转之后,特征值发生变化,但共同度不变
2024/6/2
18
第六步:单击Scores按纽,弹出对话框
输出旋转后的 因子载荷矩阵
2024/6/2
输出载荷散点图17
★ 因子旋转
为了更好地解释因子分析解的结果,常常需要将
因子载荷转换为比较容易解释的形式(相当于相机的
调焦,使看得更清楚;一般会使各因子对应的载荷尽
可能地向0和1两极分化)。
常用的方法有正交旋转(varimax procedure)
和斜交旋转(oblique rotation),如果研究的目的
2024/6/2
1
二、因子分析思想与方法的由来
● 英国统计学家Scott 1961年对英国157个 城镇发展水平进行调查时,原始测量的变量有57 个,而通过因子分析发现,只需要用5个新的综 合变量(它们是原始变量的线性组合),就可以 解释95%的原始信息。
● 美国统计学家Stone在1947年研究国民经

因子分析ppt课件

因子分析ppt课件

因子分析的类型:
1、探索性因子分析 (exploratory)
2、验证性因子分析 (confirmatory)
EFA:事先对观测数 据背后的因子个数一 无所知,用于探索因 子的维度;
CFA:研究者根据某 种理论或先验知识对 因子个数或结构提出Hale Waihona Puke 假设,研究是作为检 验假设的工具;
一、因子分析原理
1、因子分析模型
因子抽取方法的选择一般考虑因子分 析的目的和对变量方差的了解程度:
如果因子分析的目的是用最少的因子 最大程度地解释原始数据中的方差,或特 殊因子、误差带来的方差很小,则用主 成分分析法。
如果目的是确定数据结构,但不了解 变量方差的情况,则用公因子分析法。
五、解释因子(rotation)
初始因子很难解释,大多数因子都和很多变 量有关,因子的实际意义难以理解和把握。 因子旋转使因子结构更简单、更易于理解。
了变量之间的相关分。析中最重要的统计量,相当于回归系
数,是连接观测变量与公因子的纽带,
如果公因子间不相关(常作为假设),
它反映了因子与变量间线性相关程度。
公因子方差(communality)也称共同度,指 观测变量方差中由公因子决定的比例,它说明 了如果以公因子替代观测变量,原来每个变量 的信息被保留的程度。
因子分析的应用:主要目的是浓缩数据
1、寻求基本结构(summarization) 2、数据化简(data reduction)
观测变量很多且 相互存在高相关时, 描述和分析问题存 在困难,进一步统 计分析受到限制;
将大量的观测变量 化为少数的几个因 子,建立简洁的概 念系统,并可用因 子值进行进一步的 统计分析;
当公因子间不相关时,某变量 xi 的公因子方差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档