两个重要极限练习题(供参考)
1-6两个重要极限
x
lim
3
x
9
x
1 x
1 x lim 9 x x 1 x 3
x
1 3
x
1
1 9 lim 1 x x 3
3 x
x
9e 9
0
一、填空题:
1、 lim
2 、 lim
第六节 两个重要极限
一、夹逼准则
二、 lim
x 0
sin x x
1及其运用
三、 (1 lim
x
1 x
) e及其运用
x
四、课堂练习 五、课堂小结 六、课后习题
一. 函数极限存在的夹逼准则
准则. 当 x ( x0 , ) 时, g ( x) f (x) h( x) , 且
) e
x
这里将直接使用该结论,其中
e 2 . 7182818284 59
还有 lim 1 x x e
x0 1
与这个极限相关的结论 1 lim 1 n n
n
e
和
记忆方法:
1 lim 1 x x
x
e
和
lim 1 x x e
t
5
e .
5
计算时可省略 lim (1
x
t x / 5的步骤,直接写成 5 x )
x/5
5 x
) lim [( 1
x x
] e
5
5
例5 解
求 lim ( 1
x
1 x
) .
1 x
1
x 1
两个重要的极限
例7 求 解 令 arcsin x t ,则 且 x 0时,t 0
arcsin x lim x 0 x
x sin t
arcsin x t lim lim 1 x 0 t 0 sin t x
(2)
定义
1 x lim (1 ) e x x 1 n lim (1 ) e n n
arccot x 3、 lim __________. x 0 x
4、 lim x cot 3 x __________.
x 0
sin x 5、 lim __________. x 2 x
6、 lim (1 x ) _________.
x 0
1 x
1 x 2x 7、 lim ( ) _________. x x 1 x 8、 lim (1 ) _________. x x
xn 是单调递增的 ;
1 1 1 1 xn 1 1 1 1 n 1 2! n! 2 2 1 3 n 1 3, xn 是有界的; 2 1 n lim x n 存在. 记为 lim (1 ) e (e 2.71828) n n n2例5 求 解Fra biblioteklim
x 0
tan x sin x lim x 0 x3
tan x sin x tan x(1 cos x) 1 sin x 1 cos x lim lim ( ) 3 3 2 x 0 x 0 x x cos x x x
1 sin x 1 cos x 1 (lim )( lim )( lim ) 2 x 0 cos x x 0 x 0 x 2 x
sin口 lim (口代表同样的变量 1 口0 口
两个重要极限练习题(供参考)
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(limsin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim x xx -→.解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0.所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.8....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得二.x x x)11(lim +∞→=e .xx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x)21(lim -∞→.解 令-x 2=t ,则x =-t2.当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0,于是 x x x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
(完整版)1-7两个重要极限练习题
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(lim sin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim xxx -→. 解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0. 所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.718281828....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得二.x x x)11(lim +∞→=e .xx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x )21(lim -∞→.解 令-x 2=t ,则x =-t2.当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0, 于是 xx x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
1.7 极限存在准则 两个重要极限-习题
1.计算下列极限: ⑴0tan 3limx xx→;【解】这是“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 为将tan3x 化出sin3x ,利用sin 3tan 3cos3xx x=,得:0tan 3lim x x x →0sin 33lim 3cos3x x x x →=⋅313cos0=⨯=。
⑵1lim sin x x x→∞; 【解】由于1lim sin x x→∞sin 00==,这是“0⨯∞”型极限,应化为商式极限求解:1lim sin x x x →∞101sinlim1xx x→=, 这又成为了“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 101sinlim 11xx x→=,亦即1lim sin 1x x x →∞=。
⑶0lim cot x x x →;【解】由于0limcot x x →=∞,这是“0⨯∞”型极限,应化为商式极限求解:0lim cot x x x →0limtan x xx→=,这又成为了“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 同样利用sin tan cos xx x=,得: 00lim lim cos tan sin x x x x x x x→→=⋅1cos01=⨯=, 亦即0lim cot 1x x x →=。
⑷01cos 2limsin x xx x→-;【解】这是“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 为将1cos2x -化出正弦函数,利用2cos 212sin x x =-,得:01cos 2lim sin x x x x →-202sin lim sin x x x x →=0sin 2lim x xx→=212=⨯=。
第四次课 两个重要极限 无穷小与无穷大
思考题
若 f ( x ) 0 , 且 lim
x
f (x) A,
问:能否保证有 A 0的结论?试举例说明.
思考题解答
不能保证.
例 f (x)
lim
1 x
x 0,
1 x A 0.
有 f (x)
1 x
0
x
f ( x ) lim
x
但 y ( x k ) 2 k sin 2 k 0 M .
不是无穷大.
例
证明 lim
1 x 1
x1
.
y 1 x 1
定义 : 如果 lim
x x0
f ( x ) , 则直线 x x 0 是函数 y f ( x ) .
的图形的铅直渐近线
性质:
x
x 0
1 2x
1.6 无穷小量与无穷大量
一、无穷小量
1.无穷小量定义
定义1。 若
定义2。 若
n
(极限为零的变量)
lim x n 0 , 则 称 { x n } 为 无 穷 小 量
lim f ( x ) 0 , 则 称 f ( x ) 在 x a 的 过 程 中 为 无 穷 小 量
(3)lim x
2
x 0
0 , 故 当 x 0时 , 3 x 2 是 比 x高 阶 的 无 穷 小 量 ,
2
x 2
x2
1, 故 当 x 2 时 , x 2 与 x 2 是 等 价 无 穷 小 .
即 x x 2, ( x 2 ).
性质(等价无穷小代换定理)
设 ~ , ~ 且 lim 存在, 则 lim lim .
两个重要极限练习题
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(limsin lim 00x x x x x x --=+-→-→. 综上所述,得 一.1sin lim 0=→xxx .1sin lim0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim x xx -→.解 20cos 1limxxx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim 0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0. 所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim x xx x -→.解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.718281828....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得 二.x x x )11(lim +∞→=e .x x x)11(lim +∞→=e 的特点: (1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x)21(lim -∞→.解 令-x 2=t ,则x =-t2. 当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0, 于是 xx x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
高等数学 两个重要极限
1 n
)n
e
lim(1
n
1 n1
)n1
?e
目录 上页 下页 返回 结束
用x代替n,可得 (1) 当x 取实数 对任意正数 x,总有
时情形 n为非负整数,则有
lim (1 1 )x e.
x
x
目录 上页 下页 返回 结束
(2) 当x 取实数
时情形
lim(1 1 )x e
x
x
令
则
1
此极限也可写为 lim(1 z) z e
lim sin (x) 1 (x)0 (x)
目录 上页 下页 返回 结束
练习. 求下列极限:
目录 上页 下页 返回 结束
例2. 求
解:
lim tan x x0 x
lim x0
sin x
x
1 cos
x
lim sin x x0 x
lim 1 x0 cos x
1
练习.
lim tan(x) 1 (x)0 (x)
2. lim xsin 1 _1___ ;
x
x
4. lim (1 1)n _e__1_; n n
作业
P34 1 (1) (3) (5) (8) (9) (12) ; 2
第七节 目录 上页 下页 返回 结束
练习题
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
思考题
1
求极限 lim 3x 9x x x
目录 上页 下页 返回 结束
例3. 求
解: 令 t arcsin x, 则 x sin t , 因此
原式 lim t t0 sin t
练习.
sin t 1
两个重要极限练习题(供参考)
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→薂问题1:观察当x 0时函数的变化趋势:蒁x (弧度)芈0.50薃0.10芄0.05芀0.04莇0.03 羄0.02螂...聿xx sin蒇0.9585莅0.9983蒄0.9996肂0.9997薇0.9998螆0.9999袂...袁当x 取正值趋近于0时,x x sin →1,即+→0lim x xxsin =1;薇当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是膇)()sin(lim sin lim00x x x x x x --=+-→-→.蚄综上所述,得一.1sin lim0=→xxx .1sin lim0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim ()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 例2 求xtan .所以x x x arcsin lim0→=1sin lim 0=→t tt .例9例10 求30sin tan lim xxx x -→.解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→=21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x .考察极限e xx x =+∞→)11(limxx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0,于是 xx x x )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [20110u u u uu +⋅+→-→=e -1.例15例16 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x .§2-1 导数的概念教学过程:引入:上表看出,平均速度t s ∆∆随着∆t 变化而变化,当∆t 越小时,ts ∆∆越接近于一个定值—9.8m/s .考察下列各式:∆s =21g ⋅(1+∆t )2-21g ⋅12=21g [2⋅∆t +(∆t )2],t s ∆∆=21g ⋅t t t ∆∆+∆2)(2=21g (2+∆t ),思考: 当∆t 越来越接近于0时,ts∆∆越来越接近于1秒时的“速度”.现在取∆t →0的极限,得实例2 曲线的切线设方程为y =f (x )曲线为L .其上一点A 的坐标为(x 0,f (x 0)).在曲线上点A 附近另取一点B ,它的坐标是(x 0+∆x , f (x 0+∆x )).直线AB 是曲线的割线,它的倾斜角记作β.由图中的R t ∆ACB ,可知割线AB 的斜率tan β=()()xx f x x f x y AC CB ∆∆∆∆00-+==.在数量上,它表示当自变量从x 变到x +∆x 时函数f (x )关于变量x 的平均变化率(增长率或减小率).是要求函数y 关于自变量x 在某一点x 处的变化率.1.自变量x 作微小变化∆x ,求出函数在自变量这个段内的平均变化率y =xy ∆∆,作为点x 处变化率的近似;2. 对y 求∆x →0的极限xy x ∆∆∆0lim→,若它存在,这个极限即为点x 处变化率的的精确值.x二、导数的定义1. 函数在一点处可导的概念定义 设函数y =f (x )在x 0的某个邻域内有定义.对应于自变量x 在x 0处有改变量∆x ,函数y =f (x )相应的改变量为∆y =f (x 0+∆x )-f (x 0),若这两个改变量的比x x x x -→根据导数的定义,求函数y =f (x )在点x 0处的导数的步骤如下:第一步 求函数的改变量∆y =f (x 0+∆x )-f (x 0);第二步 求比值xx f x x f x y ∆∆∆∆)()(00-+=;第三步 求极限f '(x 0)=xy x ∆∆∆0lim→.例1 求y =f (x )=x 2在点x =2处的导数.222导.这时,对开区间(a ,b )内每一个确定的值x 0都有对应着一个确定的导数f '(x 0),这样就在开区间(a ,b )内,构成一个新的函数,我们把这一新的函数称为f (x )的导函数,记作等f '(x )或y '等.根据导数定义,就可得出导函数f '(x )=y '=()()xx f x x f x y x x ∆∆∆∆∆∆-+=→→00lim lim (2-3)导函数也简称为导数.注意 (1)f '(x )是x 的函数,而f '(x 0)是一个数值(2)f (x )在点处的导数f '(x 0)就是导函数f '(x )在点x 0处的函数值.可以证明,一般的幂函数y =x α, (α∈R, x >0)的导数为(x α)'=α x α-1.例如 (x )'=(21x )'=xx 212121=-;(x 1)'=(x -1)'=-x -2=-21x .例4 求y =sin x , (x ∈R )的导数.解x y ∆∆=xx x x ∆∆sin )sin(-+,在§1-7中已经求得lim→x ∆xy ∆∆=cos x ,方程为y =f (x )的曲线,在点A (x 0,f (x 0))处存在非垂直切线AT 的充分必要条件是f (x )在x 0存在导数f '(x 0),且AT 的斜率k =f '(x 0).导数的几何意义——函数y =f (x )在x 0处的导数f '(x 0),是函数图象在点(x 0,f (x 0))处切线的斜率,另一方面也可立即得到切线的方程为y -f (x 0)=f '(x 0)(x -x 0) (2-4)过切点A (x 0,f (x 0))且垂直于切线的直线,称为曲线y =f (x )在点A (x 0,f (x 0))处的法线,则当切线非水平(即f '(x 0)≠0)时的法线方程为y -f (x 0)=-)(10x f '(x -x 0) (2-5)故所求的切线方程为y +ln2=2(x -21),即y =2x -1-ln2.四、可导和连续的关系如果函数y =f (x )在点x 0处可导,则存在极限lim→x ∆x y ∆∆=f '(x 0),则xy ∆∆=f '(x 0)+α (0lim →x ∆α=0),或∆y = f '(x 0) ∆x +α⋅∆x (0lim →x ∆α=0),所以 0lim →x ∆∆y =0lim →x ∆[f '(x 0) ∆x +α⋅∆x ]=0.这表明函数y =f (x )在点x 0处连续.学生思考:设函数f (x )=⎨⎧≥0,2x x ,讨论函数f (x )在x =0处的连续性和可导性.§4-2 换元积分法教学过程复习引入 1.2. 不定积分的概念; 3.4. 不定积分的基本公式和性质。
高数第一章极限存在准则 两个重要极限
x0
x
2. lim xsin 1 __1__ ;
x
x
4. lim (1 1)n _e___1;
n n
27
作业
P56 1 写在书上 ; 2; 3;4 .
28
x
1 x
)
x
e
说明:
此极限也可写为
1
lim (1 z) z
e
z0
18
例7 已知 解: 原式 =
c ln 4
求 C。
ec 4
19
例8 求下列极限
解: 令 t x , 则
lim (1
t
1t )t
lim
t
1
解 原式=
说明
:若利用
lim (1
( x)
1n)]
e
lim (1
x
1x) x
e
17
当
时, 令 x (t 1), 则
从而有
lim (1
t
t
11)(t
1)
tlim(tt 1)(t1)
t
lim (1
1t )t
1
t
lim [(1
1t )t
(1
1t )]
e
故
lim (1
k
lim
x0
sin k
k x
x
k
2.
lim tan x x0 x
lim x0
sin x
x
1 cos
x
2.4 等价无穷小量,两个重要极限答案
e
3
3 kn 2 8. 设 lim 1 e3 ,则 k 2 n n
三.计算题 1. lim
sin x tan x x sin x 2.. lim 3 x 0 x 0 x sin x sin x 1 1 sin x x lim 1 cos x 1 1 lim cos 2 2 x 1 1 0 x 0 sin x x 0 cos x sin x lim x 0 sin x 1 1 1 x x 2sin 2 2 ( ) 2 x 1 1 2 lim 2 lim x 0 cos x x 0 cos x sin 2 x x2 1 2
2. 下 ( D ) 列 极 限
sin x 1 (C) lim x 0 2 x
中 , 正
1 x
sin
(D) lim
x 0
1 x
1 x(1 ) e x x
1
(B) lim(1 x) e
x
1
(C) lim(1 3 x ) x e
x 0
(D) lim(1 x) x
x 0
2
e
( (D) x sin x ( (D) 3 C ) C )
3. 当 x 0 时, 下列变量与 x 为等价无穷小量的是 (A) sin 2 x (B) 1 cos x (C) 1 x 1 x
2 4. 当 n 时, 为了使 sin
x
2 x -1 x 4. lim x 0 3 x -1
)( 2 a )
1
2
1 2 x 1 2 x lim x 0 lim 1 x 0 1 3 x lim 1 3 x ( 3 x )( 3)
两个重要极限试题
两个重要极限试题————————————————————————————————作者:————————————————————————————————日期:1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→问题1:观察当x →0时函数的变化趋势:x (弧度)0.50 0.10 0.05 0.04 0.03 0.02 ...xxsin 0.95850.99830.99960.99970.99980.9999 ...当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(lim sin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim xxx -→. 解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0. 所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim问题2:观察当x →+∞时函数的变化趋势:x1 2 10 1000 10000 100000 100000 ... x x)11(+22.252.5942.7172.71812.71822.71828...当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.718281828....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得 二.x x x )11(lim +∞→=e .x x x)11(lim +∞→=e 的特点: (1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x )21(lim -∞→.解 令-x 2=t ,则x =-t2.当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0, 于是 xx x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
26两个重要的极限共21页文档
1
3、lim (1 2n 3n )n
n
三、 利用极限存在准则证明数列
2, 2 2, 2 2 2 ,......的极限存在,并求 出该极限 .
练习题答案
一、1、 ;
5、0;
❖ 定理2.12(准则Ⅱ)如果数列yn=f(n)是单调有 界的,则 l i m f(n)一定存在.
n
❖ 例如:yn=1-1/n,显然,yn是单调增加的, 且yn<1,所有由定理2.12知,yn→1(n→∞).
C
(二)两个重要极限
B
(1) lis m ixn 1 x 0 x
o
x
D
A
设O , 单 圆 A 位 心 x O ,( 0 圆 x 角 B ) 2
limx=A.
例1 求 li (m 11 1). n n 2 1n 2 2 n 2 n
解
n1 1n , n 2 nn 2 1 n 2 nn 2 1
又 ln i mn2 nnln i m1111,
n
n
1
ln i mn21ln i m1n 121,
由夹逼定理得
l( im 11 1) 1 .
n n 2 1n 2 2 n 2 n
❖ 下面给出一个判定数列极限存在的准则。 ❖ 设有数列yn=f(n),如果对任意正整数n,恒有
f(n)<f(n+1), 则f(n)为单调增加数列;
❖ 如果对任意正整数n,恒有 f(n)>f(n+1),
则f(n)为单调减少数列。
❖ 如果存在两个常数m和M(m<M),使对任意整数n, 恒有m≤f(n) ≤ M,则f(n)为有界数列。
x X
x X
则 li[m f(x)g](x)A B x X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(limsin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim x xx -→.解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0.所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.8....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得二.x x x)11(lim +∞→=e .xx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x)21(lim -∞→.解 令-x 2=t ,则x =-t2.当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0,于是 x x x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
作业:见首页§2-1 导数的概念教学过程: 引入:一、两个实例实例1 瞬时速度考察质点的自由落体运动.真空中,质点在时刻t =0到时刻t 这一时间段内下落的路程s 由公式s =21g t 2来确定.现在来求t =1秒这一时刻质点的速度. 当∆t 很小时,从1秒到1+∆t 秒这段时间内,质点运动的速度变化不大,可以这段时间内的平均速度作为质点在t =1时速度的近似.上表看出,平均速度t s ∆∆随着∆t 变化而变化,当∆t 越小时,ts ∆∆越接近于一个定值—9.8m/s .考察下列各式: ∆s =21g ⋅(1+∆t )2-21g ⋅12=21g [2⋅∆t +(∆t )2], t s ∆∆=21g ⋅t t t ∆∆+∆2)(2=21g (2+∆t ),思考: 当∆t 越来越接近于0时,ts∆∆越来越接近于1秒时的“速度”.现在取∆t →0的极限,得=→t s ∆∆∆0lim()=+→t g ∆∆221lim 0g =9.8(m/s ). 为质点在t =1秒时速度为瞬时速度.一般地,设质点的位移规律是s =f (t ),在时刻t 时时间有改变量∆t ,s 相应的改变量为∆s =f(t +∆t )-f (t ),在时间段t 到t +∆t 内的平均速度为v =()()tt f t t f t s ∆∆∆∆-+=, 对平均速度取∆t →0的极限,得v (t )=()()tt f t t f t s t t ∆-∆+=∆∆→∆→∆00lim lim, 称v (t )为时刻t 的瞬时速。
研究类似的例子 实例2 曲线的切线设方程为y =f (x )曲线为L .其上一点A 的坐标为(x 0,f (x 0)).在曲线上点A 附近另取一点B ,它的坐标是(x 0+∆x , f (x 0+∆x )).直线AB 是曲线的割线,它的倾斜角记作β.由图中的R t ∆ACB ,可知割线AB 的斜率tan β=()()xx f x x f x y AC CB ∆∆∆∆00-+==. 在数量上,它表示当自变量从x 变到x +∆x 时函数f (x )关于变量x 的平均变化率(增长率或减小率). 现在让点B 沿着曲线L 趋向于点A ,此时∆x →0, 过点A 的割线AB 如果也能趋向于一个极限位置—— 直线AT ,我们就称L 在点A 处存在切线AT .记AT 的倾斜角为α,则α为β的极限,若α≠90︒,得切线AT 的斜率为 tan α=0lim →x ∆ tan β=xx f x x f x yx x ∆∆∆∆∆∆)()(limlim 0000-+=→→. 在数量上,它表示函数f (x )在x 处的变化率.上述两个实例,虽然表达问题的函数形式y =f (x )和自变量x 具体内容不同,但本质都是要求函数y 关于自变量x 在某一点x 处的变化率.1. 自变量x 作微小变化∆x ,求出函数在自变量这个段内的平均变化率y =xy ∆∆,作为点x 处变化率的近似;f (x 0+∆f (x2. 对y 求∆x →0的极限xy x ∆∆∆0lim→,若它存在,这个极限即为点x 处变化率的的精确值. 二、导数的定义1. 函数在一点处可导的概念定义 设函数y =f (x )在x 0的某个邻域内有定义.对应于自变量x 在x 0处有改变量∆x ,函数y =f (x )相应的改变量为∆y =f (x 0+∆x )-f (x 0),若这两个改变量的比当∆x →0时存在极限,我们就称函数y =f (x )在点x 0处可导,并把这一极限称为函数y =f (x )在点x 0处的导数(或变化率),记作0|x x y ='或f '(x 0)或0x x dxdy=或0)(x x dx x df =.即 0|x x y ='=f '(x 0)=xx f x x f x yx x ∆∆∆∆∆∆)()(limlim 0000-+=→→ (2-1) 比值xy ∆∆表示函数y =f (x )在x 0到x 0+∆x 之间的平均变化率,导数0|x x y ='则表示了函数在点x 0处的变化率,它反映了函数y =f (x )在点x 0处的变化的快慢. 如果当∆x →0时xy ∆∆的极限不存在,我们就称函数y =f (x )在点x 0处不可导或导数不存在.在定义中,若设x =x 0+∆x ,则(2-1)可写成f '(x 0)=()()000limx x x f x f x x --→ (2-2) 根据导数的定义,求函数y =f (x )在点x 0处的导数的步骤如下: 第一步 求函数的改变量∆y =f (x 0+∆x )-f (x 0);第二步 求比值xx f x x f x y ∆∆∆∆)()(00-+=;第三步 求极限f '(x 0)=xy x ∆∆∆0lim→.例1 求y =f (x )=x 2在点x =2处的导数.解 ∆y =f (2+∆x )-f (2)=(2+∆x )2-22=4∆x +(∆x )2;()x x x x y ∆∆∆∆∆24+==4+∆x ; x y x ∆∆∆0lim →=lim →x ∆(4+∆x )=4.所以y '|x =2=4. 当()()xx f x x f x ∆∆∆000lim -+-→存在时,称其极限值为函数y =f (x )在点x 0处的左导数,记作)(0x f -';当()()xx f x x f x ∆∆∆000lim -++→存在时,称其极限值为函数y =f (x )在点x 0处的右导数,记作)(0x f +'. 据极限与左、右极限之间的关系f '(x 0) ⇔ 存在)(0x f -',)(0x f +',且)(0x f -'=)(0x f +'= f '(x 0). 2. 导函数的概念如果函数y =f (x )在开区间(a ,b )内每一点处都可导,就称函数y =f (x )在开区间(a ,b )内可导.这时,对开区间(a ,b )内每一个确定的值x 0都有对应着一个确定的导数f '(x 0),这样就在开区间(a ,b )内,构成一个新的函数,我们把这一新的函数称为f (x )的导函数,记作等f '(x )或y '等.根据导数定义,就可得出导函数 f '(x )=y '=()()xx f x x f x y x x ∆∆∆∆∆∆-+=→→00lim lim(2-3) 导函数也简称为导数.注意 (1)f '(x )是x 的函数,而f '(x 0)是一个数值(2)f (x )在点处的导数f '(x 0)就是导函数f '(x )在点x 0处的函数值.例2 求y =C (C 为常数)的导数.解 因为∆y =C -C =0,xx y ∆∆∆0==0,所以y '=0lim →x ∆x y ∆∆=0. 即 (C )'=0常数的导数恒等于零). 例3 求y =x n (n ∈N , x ∈R )的导数.解 因为∆y =(x +∆x )n -x n =nx n -1∆x +2n C x n -2(∆x )2+...+(∆x )n ,xy ∆∆= nx n -1 +2nC x n -2⋅∆x +...+(∆x )n -1,从而有 y '=0lim →x ∆x y ∆∆=lim →x ∆[ nx n -1 +2n C x n -2⋅∆x +...+(∆x )n-1]= nx n -1.即 (x n )'=nx n -1.可以证明,一般的幂函数y =x α, (α∈R, x >0)的导数为 (x α)'=α x α-1.例如 (x )'=(21x )'=x x 212121=-;(x 1)'=(x -1)'=-x -2=-21x .例4 求y =sin x , (x ∈R )的导数.解 x y ∆∆=xxx x ∆∆sin )sin(-+,在§1-7中已经求得0lim →x ∆xy∆∆=cos x ,即 (sin x )'=cos x .用类似的方法可以求得y =cos x , (x ∈R )的导数为 (cos x )'=-sin x .例5 求y =log a x 的导数(a >0, a ≠1, x >0).解 对a =e 、y =ln x 的情况,在§1-7中已经求得为 (ln x )'=x1. 对一般的a ,只要先用换底公式得y =log a x =axln ln ,以下与§1-7完全相同推导,可得 (log a x )'=ax ln 1. 三、导数的几何意义方程为y =f (x )的曲线,在点A (x 0,f (x 0))处存在非垂直切线AT 的充分必要条件是f (x )在x 0存在导数f '(x 0),且AT 的斜率k =f '(x 0).导数的几何意义——函数y =f (x )在x 0处的导数f '(x 0),是函数图象在点(x 0,f (x 0))处切线的斜率,另一方面也可立即得到切线的方程为y -f (x 0)=f '(x 0)(x -x 0) (2-4) 过切点A (x 0,f (x 0))且垂直于切线的直线,称为曲线y =f (x )在点A (x 0,f (x 0))处的法线,则当切线非水平(即f '(x 0)≠0)时的法线方程为y -f (x 0)=-)(10x f '(x -x 0) (2-5) 例6 求曲线y =sin x 在点(6π,21)处的切线和法线方程. 解 (sin x )'6π=x =cos x6π=x =23. 所求的切线和法线方程为 y -21=23(x -6π), 法线方程 y -21=-332(x -6π). 例7 求曲线y =ln x 平行于直线y =2x 的切线方程.解 设切点为A (x 0, y 0),则曲线在点A 处的切线的斜率为y '(x 0),y '(x 0)=(ln x )'0x x ==01x ,因为切线平行于直线y =2x ,,所以01x =2,即x 0=21;又切点位于曲线上,因而y 0=ln 21=-ln2.故所求的切线方程为y +ln2=2(x -21),即y =2x -1-ln2. 四、可导和连续的关系如果函数y =f (x )在点x 0处可导,则存在极限0lim →x ∆x y ∆∆=f '(x 0),则xy∆∆=f '(x 0)+α (0lim →x ∆α=0),或∆y = f '(x 0) ∆x +α⋅∆x (0lim →x ∆α=0),所以 0lim →x ∆∆y =0lim →x ∆[f '(x 0) ∆x +α⋅∆x ]=0.这表明函数y =f (x )在点x 0处连续.但y =f (x )在点x 0处连续,在x 0处不一定是可导的. 例如:(1)y =|x |在x =0处都连续但却不可导.(2)y =3x 在x =0处还存在切线,只是切线是垂直的.学生思考:设函数f (x )=⎩⎨⎧+ ,1,2x x作业:见首页§4-2 换元积分法教学过程 复习引入1. 不定积分的概念;2. 不定积分的基本公式和性质。