专练:含绝对值的一元一次方程的解法

专练:含绝对值的一元一次方程的解法
专练:含绝对值的一元一次方程的解法

含绝对值的一元一次方程的解法

1.含绝对值的一次方程的解法

(1)形如(0)ax b c a +=≠型的绝对值方程的解法:

①当0c <时,根据绝对值的非负性,可知此时方程无解;

②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a

=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a

--=. 解方程:⑴235x += ⑵21302x --= ⑶200520052006x x -+-= ⑷1121123

x x +--+-=

(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:

①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;

②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;

④将求得的解代入0cx d +≥检验,舍去不合条件的解.

解方程⑴4329x x +=+ ⑵525x x -+=-

(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:

①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =- ⑵2131x x -=+

(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:

①根据绝对值的几何意义可知x a x b a b -+-≥-;

②当c a b <-时,此时方程无解;

当c a b =-时,此时方程的解为a x b ≤≤;

当c a b >-时,分两种情况: ①当x a <时,原方程的解为2a b c x +-=

; ②当x b >时,原方程的解为2a b c x ++=.

解方程⑴134x x -+-= ⑵154x x -+-= ⑶216x x -++=

(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:

①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =;

②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;

③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.

解方程⑴2123x x +--= ⑵2134x x --+= ⑶23143x x x +--=-

(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:

解法一:由内而外去绝对值符号:

按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.

解法二:由外而内去绝对值符号:

①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;

②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和

()()ax b ex f cx d +=-+-+;

③解②中的两个绝对值方程.

【题01】解方程93352x x x ++-=

+ 35162x x ---= 3548x -+=

【题02】解方程:2112x --= 2121x x -+=+ 314x x -+= 11110x ----=

【题03】当01x ≤≤时,求方程1110x ---=的解 【题04】

【题05】

【题06】

【题07】

【题08】

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

【题09】

【题10】

一元一次方程的解法(基础)知识讲解及巩固练习

1.(2015?广州)解方程:5x=3(x ﹣4) 【答案与解析】 解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6. 【总结升华】方法规律:解较简单的一元一次方程的一般步骤: (1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边. (2)合并:即通过合并将方程化为ax =b (a ≠0)的形式. (3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a =. 举一反三: 【变式】下列方程变形正确的是( ). A .由2x -3=-x -4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332 x -=,得x =-1 D .由3=x -2,得-x =-2-3 【答案】D 类型二、去括号解一元一次方程 2.解方程: 【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56 x =- (2)去括号得:32226x x --=- 移项合并得:47x -=- 解得:74 x = 【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三: 【变式】解方程: 5(x -5)+2x =-4. 【答案】解: 去括号得:5x -25+2x =-4. 移项合并得: 7x =21. 解得: x =3. 类型三、解含分母的一元一次方程 ()()1221107x x +=+()()() 232123x x -+=-

一元一次方程解法练习(经典)

一元一次方程解法练习 1.若ax +b=0为一元一次方程,则__________. 2.当=m 时,关于字母x 的方程0112=--m x 是一元一次方程. 3.若9a x b 7 与 – 7a 3x –4 b 7是同类项,则x= . 4.如果()01122=+++-y x x ,则2 1x y -的值是 . 5.当=x ___时,代数式24+x 与93-x 的值互为相反数. 6.已知08)1()1(2 2=++--x m x m 是关于x 的一元一次方程,则m= . 7.已知2-=x 是方程042=-+m x 的根,则m 的值是( ) A. 8 B. -8 C. 0 D. 2 8.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( ) A .1 B .-1 C .-1或1 D .任意数 9.下列方程变形中,正确的是( ) (A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2 332=t ,未知数系数化为1,得;1=x (D )方程 15.02.01=--x x 化成.63=x 10.方程6 2123x x +=-去分母后可得( ) A 3x -3 =1+2x , B 3x -9 =1+2x , C 3x -3 =2+2x , D 3x -12=2+4x ; 11.如果关于x 的方程01231=+m x 是一元一次方程,则m 的值为( ) A .3 1 B 、 3 C 、 -3 D 、不存在 12.若32,24,A x B x =-=+使A -B=8,x 的值是( ) A .6 B .2 C .14 D .18

一元一次方程的解法及应用.学生版

定 义 示例剖析 等式的概念:用等号来表示相等关系的式子,叫做等式. 123+=,15x +=, s ab =,a b c mxy n ++=+ 等式的类型 恒等式:无论用什么数值代替等式中的字母,等式总能成立. 条件等式:只能用某些数值代替等式中的字母,等式才能成立. 矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立. 33x x ==, 方程56x +=需要1x =才成立. 如32=,125+=,11x x +=-. 等式性质1:等式两边都加上(或减去)同一个数(或式子..),所得结果仍是等式. 等式性质2:等式两边都乘以(或除以)同一个数(除数不能是.....0. ),结果仍是等式. 若a b =,则a c b c ±=±. 若a b =,则ac bc =, 若a b =且0c ≠,则a b c c =. 在等式变形中,以下两个性质也经常用到: ①等式具有对称性,即:如果a b =,那么b a =; ②等式具有传递性,即:如果a b =,b c =,那么a c =. 【例1】 下列各式中,哪些是等式?是等式的请指出类型. 43x -、15713++=、1 722 y -=、231x x =+、64y -、5x y +=、π 3.14≈,20a b +>, 22 x x =,7171x x +=-. 夯实基础 模块一 等式的概念及性质 一元一次方程的解法 及应用

【例2】 ⑴ 根据等式的性质填空: ① 4a b =-,则a b +=______; ② 359x +=,则39x =- ; ③ 683x y =+,则x =________; ④ 1 22 x y =+,则x = . ⑵ 已知等式325a b =+,则下列等式中不一定成立的是( ) A .352a b -= B .3126a b +=+ C .325ac bc =+ D .25 33 a b =+ (北京二中期中) ⑶ 下列变形中,根据等式的性质变形正确的是( ) A .由12 33 x -=,得2x = B .由3222x x -=+,得4x = C .由233x x -=,得3x = D .由357x -=,得375x =- (海淀区期末) 定 义 示例剖析 方程:含有未知数的等式...即: ①方程中必须含有未知数; ②方程是等式,但等式不一定是方程. 例如123+=是等式不是方程. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解. 解方程:求方程的解的过程... 例如3x =是方程36x +=的解 方程中的已知数:一般是具体的数值. 方程中的未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示. 例如50x +=中, 5和0是已知数, 例如关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数. 一元一次方程:只含有一个..未知数,并且未知数的最高次数....是1,系数不等于...0.的整式..方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 235x +=,10y -=,3x = 最简形式:方程ax b =(0a ≠,a ,b 为已知数)的形式叫一元一次方程的最简形式. 例如35x =,27x =等. 标准形式:方程0ax b +=(0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 例如21040x x +=+=, 易错点1:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 易错点2:任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一 能力提升 模块二 方程的相关概念

初一数学 绝对值与一元一次方程培优专项训练(含答案)

绝对值与一元一次方程 知识纵横 绝对值是初中数学最活跃的概念之一, 能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程. 解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧. 解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则, 非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法. 例题求解 【例1】方程│5x+6│=6x-5 的解是. 思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解. 解:x=11 提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0 讨论. 【例2】适合│2a+7│+│2a-1│=8的整数a 的值的个数有( ). A.5 B.4 C.3 D.2 思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径. 解:选 B 提示:由已知即在数轴上表示 2a 的点到-7 与+1 的距离和等于 8, 所以 2a 表示-7 到1 之间的偶数. 【例 3】解方程: │x-│3x+1││=4; 思路点拨从内向外,根据绝对值定义性质简化方程. 5解:x=- 4 3 或 x= 2 提示:原方程化为 x-│3x+1=4 或x-│3x+1│=-4

【例 4】解下列方程:

(1)│x+3│-│x -1│=x+1; (2)│x -1│+│x -5│=4. 思路点拨 解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解. 解:(1)提示:当 x<-3 时,原方程化为 x+3+(x-1)=x+1,得 x=-5; 当-3≤x<1 时,原方程化为 x+3+x-1=x+1,得 x=-1; 当 x≥1 时,原方程化为 x+3-(x-1)=x+1,得 x=3. 综上知原方程的解为 x=-5,-1,3. (2)提示:方程的几何意义是,数轴上表示数 x 的点到表示数 1 及 5 的距离和等于 4,画出数轴易得满足条件的数为 1≤x≤5,此即为原方程的解. 【例 5】已知关于 x 的方程│x-2│+│x -3│=a ,研究 a 存在的条件,对这个方程的解进行讨论. 思路点拨 方程解的情况取决于 a 的情况,a 与方程中常数 2、3 有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键, 运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解. 解:提示:数轴上表示数x 的点到数轴上表示数2,3 的点的距离和的最小值为1,由此可 得方程解的情况是: (1) 当 a>1 时,原方程解为 x= 5 a ; 2 (2) 当 a=1 时,原方程解为 2≤x≤3; (3) 当 a<1 时,原方程无解.

一元一次方程及其解法

学科:数学凤阳县十校合作师生共用教学案 课题:3.1一元一次方程及其解法课型:新授课教学时间:第二课时 年级:七年级主备:黄湾中学程方林审核:武善礼、黄海雷授课人: 教学目标: 1、巩固一元一次方程概念;理解“移相”概念。 2、能够综合应用等式性质及“移相”法解一元一次方程。培养学生的观察及综合能力,提高他们分析问题和解决问题的能力。 3、在经历方程求解的过程中,使学生自己认识到学习方程知识的重要性,感受学习数学的价值,使学生初步养成正确思考问题的良好习惯。 教学重点:一元一次方程的解法。 教学难点:“移相”法解一元一次方程时,被移的相变号的依据 教学过程: 一、课前准备: 1、等式的性质有(1), (2)。 2、下列各变形分别用了等式的那一条基本性质 (1)由x + 4 = 6,得x = 6 – 4;() (2)由3 x= 2x + 5,得3 x – 2 x = 5;() 二、导入新课: 创设问题情境 活动:观察下图,你能得到什么结论?( 表示x) x + 2 = 5 x = 5 – 2

3 x = 2 x + 2 3 x – 2 x = 2 2 x = 6 x = 6 ÷ 2 交流:用天平测量物体的质量时,常将物体放在天平的左盘,在右盘内放上砝码,使天平处于平衡状态,这时两边的质量相等,就可以测得该物体的质量。 如果我只拿走天平一边的一部分物体会有什么现象呢? 如果要使天平重新达到平衡,我们可以如何操作? 讨论:请认真思考并把你的想法写出来。 三、探究导学: (—)独立思考、解决问题 首先各小组集体研讨上面提出的问题,汇总结果,之后展示各小组成果。教师总结 。 (二)师生探究、合作交流 综述:通过上面的试验得出的方法可以用来解决数学问题。本节课内容:用移相法解一元一次方程。 观察:仔细观察下面的解答过程2 x – 4 = 18 2 x = 18 + 4 你发现了什么? 讨论:各小组认真讨论,体会前后变化在关键项的位置及符号上的变化的特点。你的结论是 。 归纳: 叫做移相。移相的根据是。 应用:解方程: 3 x + 5 = 5 x –7 示范:解移相,得3 x – 5 x = – 7 –5 合并同类项,得–2 x = – 12 两边都除以-2,得x = 6 思考:本题有无其它的变形方法?如果你认为有请你把你的想法或解法写在下面 。 互动:下面的移相对不对?如果不对,错在哪里?应当怎样改正? (1)从9 + x = 7,得x = 7 + 9 (2)从5 x = 7 – 4 x,得5 x – 4 x = 7 (3)从2 y – 1 = 3 y + 6,得2 y – 3 y = 6 – 1

一元一次方程的解法

一元一次方程的解法 【知识回顾】 1.下列等式的变形是否正确?正确的打“ √ ”,错误的打“ⅹ ” (1)由2=x+3得x=3+2 ( ) (2)由3 2x=-8得x=-12 ( ) (3)由 5y+2=7y+8得7y-5y=8-2 ( ) 2.回答下列问题: (1)由等式a=b ,能不能得到等式a+2=b+2?为什么? (2)由等式2 2b a ,能不能得到等式a=b ?为什么? 【学习目标】 1.了解等式的基本性质在解方程中的作用. 2.会解一元一次方程,并经历和体会解方程中的“转化”的过程和思想. 3.了解一元一次方程解法的一般步骤,并能正确灵活应用. 【学习重点与难点】 重点:会利用等式的性质解方程 难点:正确灵活解方程 学习过程: 一、导入新课: 上节课我们学习了“等式的性质”,这一节课我们来学习如何利用等式的性质来解一元一次方程. 二、新知学习: (一)移项 1.自学要求:请认真看课本本节的内容,并明确两个问题: ①什么是方程的移项? ②方程的移项与等式的基本性质有什么关系? 2.自学检测: (1)把方程中的某一项_________后,从方程的一边________另一边,这种变形叫做 移项.

(2)对比下列的变形,并体会其不同之处 对方程3x-4=1求解 运用等式的基本性质: 3x –4+4=1+4 ( ) 3x = 5 ( ) x =35 ( ) 运用移项: 3x=1+4 ( ) 3x=5 ( ) x=3 5 ( ) 3.练习 把下列的方程中的含有未知数的项移到方程的一边,常数项移到另一边: (1)2=x+3 (2)5y+2=3y+8 (3)4x –3=0 你得到了什么结论:___________________________________________. (二)一元一次方程的解法 1.自学要求:请认真阅读课本每道解答过程,注意每一种方程的解题步骤和方法. 2.对应训练 (1)解方程的最根本目的是____________,也就是把未知数的___________化为1. (2)请说出下列方程的第一步的解题步骤和依据 ① x –3=12 ② -3y=-15 ③ 11x+3=5(2x+1) ④ 13223-=-- x x (3)纵观所有的例题可以看出,本节主要体现了___________的数学思想和方法. (4)解一元一次方程的基本步骤为_______、_______、_______、______、________. 小结:____________________________________________________. 【精练反馈】 基础部分 1. 解方程中,移项的依据是( )

含绝对值的一元一次方程解 法

含绝对值的一元一次方程解法 一、绝对值的代数和几何意义。 值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。 用字母表示为 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数 的绝对值是非负 数。 1、求下列方程的解: (1)| x | = 7;(2)5 | x | = 10;(3)| x | = 0;(4)| x | = – 3; (5)| 3x | = 9. 解: 二、根据绝对值的意义,我们可以得到: 当 > 0时 x =± | x | =当 = 0时 x = 0 当 < 0时方程无解. (三) 例1:解方程: (1) 19 – | x | = 100 – 10 | x | (2) 解:(1) 例2、思考:如何解 | x – 1 | = 2 分析:用换元(整体思想)法去解决,把 x – 1 看成一个字母y,则原方 程变为: | y | = 2,这个方程的解为 y = ±2,即 x – 1 = ±2,解得 x = 3或x = –

1. 解: 例3:解方程:| 2x – 1 | – 3 = 0 解方程: 解: 三:形如的绝对值的一元一次方程可变形为:且才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1:解方程: 练习:(1)解方程: (2)解方程:

四:“零点分段法”解含多个绝对值的代数问题 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:化简下列各式 1、 2、 练习:化简: 例2:解下列方程 1、 2、 练习: 1、 2、

一元一次方程的定义及解法

《第4章 一元一次方程》4.1—4.2期末复习学案(1) 一、基础训练 1、 y 比它的4 3小7,列出方程为______________________;若代数式6x 2-的值与0.5互为倒数,则列出方程为________ . 2、判断下列哪些是一元一次方程。 (1) 4365=x ( ) (2)7x -5 ( ) (3)x x 367 1=-( ) (4)3x 2-7x+1=0( )(5)2x -y=1( ) (6)312=-x ( ) 3、 已知4x ax 2=-是关于x 的一元一次方程,则a=________. 其中2、3两题用到的知识点是:一元一次方程的定义:含有 未知数,未知数的次数是 的方程叫一元一次方程。(其中表示未知数的式子还必须是整式。) 4、 写出一个满足下列条件的一元一次方程:①某个未知数的系数是1;②方程的解是3;这样的方程是 。 5、 若x=3是方程x 68a 4x 2+=-的解,则=a ________ 。 知识点:什么叫方程的解? 。 6. 若-9+x =63则x =______;若-2(x+1)=13,则x =______ ; 2 1323 x 的解为 ;若30%x =5则x =__ ;。 解方程的基本步骤是 、 、 、 、 : 去分母时应该注意 ;去括号时应注意 ;移项时应该注意 ;将系数化为1时应注意 。 7. 若1x 2y 1 x y 21+=-=,,且0y 3y 21=-,则x=________,=+21y y ________. 8.若41m 2y x 3-与3n 23y x 2--是同类项,且0)n b 5.0(|m 2a |2=-+-,则b a n m +++的值为________。 二、例题推荐

初一数学一元一次方程的概念与解法教案

一元一次方程的概念与解法 【知识要点】 1.一元一次方程的有关概念 (1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. (2)一元一次方程的标准形式是: 2.等式的基本性质 (1)等式的两边都加上或减去或,所得的结果仍是等式. (2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:

【典型例题】 例1.下列方程是一元一次方程的有哪些? x+2y=9 x 2 -3x=1 11=x x x 312 1 =- 2x=1 3x –5 3+7=10 x 2 +x=1 例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的. (1)如果________;-8x 3,853==+那么x (2)如果-1_x _________3,123=--=那么x x ; (3)如果;__________x ,52 1 ==那么x (4)如果________.3x ,3 2==那么y x 例3.解下列简易方程 1.5223-=+x x 2.4.7-3x=11 3.x x +-=-32.0 4.)3(4)12(3-=+x x

1. 32243332=+--x x 2.142 3(1)(64)5(3)25 x x x --++=+ 3.21101211364x x x -++-=- 4.223 14615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.8316 1.20.20.55 x x x +-+-=-

完整版七年级培优专题解含绝对值的一元一次方程

greatout 绝对值邂逅一次方程 模型①c?axb x-3?3?3 1、解方程:4x=2- 2、1=+12732x-4x=24-2 +12=2-2x-2-1+1=7-3x 32x-3+4=a有两个解,求a的取值范围。 3、已知关于x的方程 ax?b?cx?d模型②x?1?2x2x-1?x?1 1、 x-53?2x?x?6x?63x3x4-??x5??71 2、 - 1 - greatout 多重绝对值方程怕不怕 1.解方程:3=x-2-4

解方程:2.32=2-x- 已知满足的x有2个,求a3.的取值范围。a?-1x-2 多个绝对值方程怕不怕 已知x-2+x+4=6,则x的取值范围是____ 1. 已知x-2+x+4=8,则x=____ 2. 已知x?3-x-4?5,则x?____ 3. 已知x?3-x-4??7,则x的取值范围为____ 4. - 2 - greatout 。5.____则x的取值范围是+3+2x-4=7,已知2x

6.个。的整数解共有_____+-52x+7=122x 个。_____的整数-1=8x的值的个数有7符合2x+-2x 7. 含绝对值的方程组6x+y=,x+y=12y=_____ ,则1.已知x=___, ____x+=y,-10,xx++y=x+yy=12则 2. 已知|x|+|y|=7,2|x|-3|y|=-1,则。x+y=______3. - 3 - greatout 4.已知|x-1|+|y-2|=6,|x-1|=2y-4,则x+y=________.

5.已知x-y=4,|x|+|y|=7,求x,y的值。 22=______ a+b6.已知3a-2|b|=5,4|a|-6a=3b,则 数形结合突破绝对值 y=x-1+x-2,求y的取值范围。1.已知 x-1+x-2=a分别有2.满足什么条件时,方程2a个解?无解?无数解?当 - 4 - greatout 的取值范围。3.已知,求y2x-1-x-y=

一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解 【学习目标】 1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据; 2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】 要点诠释: (1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程 1.含绝对值的一元一次方程 解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义. 要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论: (1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程 此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a = ;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】 类型一、解较简单的一元一次方程

1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8 【答案】B. 【解析】 解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2 由题意知=m﹣2 解之得:m=﹣8. 【总结升华】根据题目给出的条件,列出方程组,便可求出未知数. 举一反三: 【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5 解:移项得3x+7x=2+5,合并得10x=7., 系数化为1得 7 10 x=. 【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2. 正确解法: 解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得 3 4 x=-. 类型二、去括号解一元一次方程 2. 解方程:112 [(1)](1) 223 x x x --=-. 【答案与解析】 解法1:先去小括号得:11122 [] 22233 x x x -+=-. 再去中括号得: 11122 24433 x x x -+=-.移项,合并得: 511 1212 x -=-. 系数化为1,得: 11 5 x=. 解法2:两边均乘以2,去中括号得: 14 (1)(1) 23 x x x --=-. 去小括号,并移项合并得: 511 66 x -=-,解得: 11 5 x=. 解法3:原方程可化为:112 [(1)1(1)](1) 223 x x x -+--=-. 去中括号,得1112 (1)(1)(1) 2243 x x x -+--=-.

一元一次方程及解法专题讲义(供参考)

一元一次方程的概念及解法 一、知识梳理: 知识点1、一元一次方程的概念: (1)、方程:含有未知数的等式叫方程,能够使方程左右两边的值相等的未知数的值叫方程的解,求方程的解的过程叫解方程。 (2)、一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的一类方程叫做一元一次方程。 一元一次方程的标准形式0ax b +=(其中x 是未知数,a b 、是已知数,并且0a ≠) 知识点2、等式及其基本性质 (1)定义:用等号“=”表示相等关系的式子叫等式。 (2)等式的基本性质: ①等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。 ②等式两边都乘以或除以同一个不为0的数,所得结果仍是等式。 三、解一元一次方程的一般步骤: (1)去分母:在方程两边都乘以各分母的最小公倍数; (2)去括号:先去小括号,再去中括号,最后去大括号; (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号); (4)合并同类项:把方程化为()0ax b a =≠的形式; (5)系数化为1:在方程两边都除以未知数的系数a ,得到方程的解b x a =。 解一元一次方程时,可以根据方程的形式灵活地安排解题步骤,不必机械地生搬硬套。 二、典例精讲: 考点一、概念的考查 例1、(2011、鄂州训练题)下列各式是方程的是 ,其中是一元一次方程的是 。 (1)327x -=;(2)4812+=;(3)3x -;(4)230m n -=;(5)23210x x --=; (6)23x +≠;(7)251 x =+ 变式训练: 1、判断下列各式中哪些是等式?哪些是代数式?哪些是方程?哪些是一元一次方程? (1)253-+=;(2)317x -=;(3)0m =;(4)3x >;(5)8x y +=; (6)22510x x ++=;(7)2a b + 2、方程()110m m x ++=是关于x 的一元一次方程,则m = 考点二、方程的解 例2、(2011、宜昌模拟)若关于x 的方程332x a x -= +的解是4x =,求2a a - 的值。 变式训练: 1、已知关于x 的方程432x m -=的解是x m =,求m 的值。 考点三、等式的性质 例3、下列等式变形正确的是( ) A 、如果,ay ax =那么y x = B 、如果y x =,那么y x -=-55 C 、如果,0=+b ax 那么a b x = D 、如果,2635-=-x x 那么1-=x ★变式赏析:由110.20.3x -=变形为1010123x -=的依据是( )

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

一元一次方程的定义及解法

一元一次方程的定义及 解法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一元一次方程的定义及解法 方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。 方程简介 一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。 “方程”一词来源于我国古算术书《九章算术》。在这本着作中,已经会列一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。 详细内容 合并同类项 1.依据:乘法分配律 2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项 3.合并时次数不变,只是系数相加减。 移项 1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 2.依据:等式的性质 3.把方程一边某项移到另一边时,一定要变号。性质 性质 等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立 解法步骤

绝对值与一元一次方程

绝对值与一元一次方程 绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符合中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程。 解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解,前者是通法,后者是技巧。 解绝对值方程时,常常要用绝对值的几何意义,去绝对值的符号法则,非负数性质,绝对值常用的基本性质等与绝对值相关的知识、技能与方法。 【例1】方程5665-=+x x 的解是 。 【例2】适合81272=-++a a 的整数a 的值的个数有( )。 A 、5 B 、4 C 、3 D 、2 【例3】解下列方程:413=+-x x ; 【例4】解下列方程:(1)113+=--+x x x ; (2)451=-+-x x .

【例5】已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论。 练习 1、方程3(1-x )=15+x 的解是 ;方程1213+=-x x 的解是 。 2、已知19953990+x =1995,那么x = 。 3、已知x =x+2,那么19x 99 +3x+27的值为 。 4、关于x 的方程x a x a -+=1的解是x=0,则a 的值是 ;关于x 的方程x a x a -+=1的解是x=1,则有理数a 的取值范围是 。 6、方程055=-+-x x 的解的个数为( )A 不确定 B 无数个C 2个D 3个

7、已知关于x 的方程mx+2=2(m – x )的解满足0221=-- x ,则m 的值是( ) A 、10或52 B 、10或52- C 、-10或52 D 、-10或5 2- 8、若20002020002000?=+x ,则x 等于( ) A 、20或-21 B 、-20或21 C 、-19或21 D 、19或-21 9、解下列方程: (1)8453=+-x ; (2)43234+=--x x ; ( 3)312=+-x x ; 10、讨论方程23-+x =k 的解的情况。

一元一次方程的解法基础知识讲解

一元一次方程的解法(基础)知识讲解 撰稿:孙景艳审稿:赵炜 【学习目标】 1.熟悉解一元一次方程的一般步骤,理解每步变形的依据; 2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 3.进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】 要点一、解一元一次方程的一般步骤 变形名称具体做法注意事项 去分母 在方程两边都乘以各分母的最小公倍 数(1)不要漏乘不含分母的项 (2)分子是一个整体的,去分母后应加上括号 去括号 先去小括号,再去中括号,最后去大 括号(1)不要漏乘括号里的项 (2)不要弄错符号

移项把含有未知数的项都移到方程的一 边,其他项都移到方程的另一边(记住 移项要变号) (1)移项要变号 (2)不要丢项 合并同类 项 把方程化成ax=b(a≠0)的形式字母及其指数不变 系数化成 1在方程两边都除以未知数的系数a,得 到方程的解 b x a . 不要把分子、分母写颠倒 要点诠释: (1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程 1.含绝对值的一元一次方程

解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义. 要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论: (1)当0 c<时,无解;(2)当0 c=时,原方程化为:0 ax b +=;(3)当0 c>时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程 此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论: (1)当a≠0时, b x a =;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0 时,方程无解. 【典型例题】 类型一、解较简单的一元一次方程1.解下列方程 (1) 3 4 5 m m -=- (2)-5x+6+7x=1+2x-3+8x 【答案与解析】 解:(1)移项,得 3 4 5 m m -+=-.合并,得 2 4 5 m=-.系数化为1,得m=-10. (2)移项,得-5x+7x-2x-8x=1-3-6.合并,得-8x=-8.系数化为1,得x=1.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:

一元一次方程的解法专题训练

一元一次方程的解法专题训练 类型一:一元一次方程的概念 例1:若关于x 的方程02)1(2=+-m x m 是一元一次方程,求m 的值,并求出方程的解。 分析:回到定义,关于x 的方程是一元一次方程的条件是未知数x 的指数是1,而其系数不为0. 练:1、当=m 时,方程03)3(2=-+--m x m m 是一元一次方程,方程的解是。 类型二:一元一次方程的解的概念 例2:若2=x 是方程0132=-+m x 的解,则m 的值为。 练: 2、已知关于x 的方程423=-m x 的解是m x =,则m 的值是。 3、请写出一个解为2=x 的一元一次方程:。 4、已知p ,q 都是质数,且1=x 满足方程113=+q x p ,则q p =。 类型三:等式性质 例3:下列变形正确的是( ) A 、如果bx ax =,那么 b a = B 、如果1)1(+=+a x a ,那么1=x C 、如果y x =,则y x -=-55 D 、如果1)1(2=+x a ,则1 12+=a x 分析:正确理解等式的两个性质,利用等式性质2作等式变形时,应注意字母的取值范围。 练:5、若b a =,则下列等式中,正确的个数有( )个 ①33+=+b a ;②b a 43=;③b a 4343-=- ;④1313-=-b a ;⑤1122+=+c b c a 类型四:一元一次方程的解法 例4:依据下列解方程 3122.05.03.0-=+x x 的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。 解:原方程可变形为3 12253-=+x x ………… ( ) 去分母,得 )12(2)53(3-=+x x ………………( ) 去括号,得 24159-=+x x ……………… ( ) ( ),得21549--=-x x ……………… ( ) 合并, 得 175-=x ……………… ( ) ( ),得 5 17-=x ………………… ( ) 分析:当分母中含有小数时,可以用分数的基本性质,把它们化为整数,再按去分母、去括号、移项、合 并同类项、系数化为1的步骤进行解答。

含绝对值的一元一次方程的解法

含绝对值的一元一次方程的解法 【小故事】 银条 一位银矿勘探员无力预付3月份的房租。他有一根长31英寸(英制长度单位。1英寸合2.54厘米)的纯银条,如图5-3所示,因此他和女房东达成如下协议。他说,他将把银条切成小段。3月份的第一天,他给女房东1英雨的一段,然后每天给她增加1英寸,以此作为抵押。勘探员预期到3月份的最后一天,他能全数付清租金,而届时女房东将把银条小段全部还给他。 3月份有31天,一种方法是把银条切成31段,每段长1英寸。可是晕得花很多的功夫。 勘探员希望既履行协义,又能使银条的分段数目尽量减少。例如,他可以第一天给女房东1英寸的一段,第二天再给1英寸的一段,第三天他取回这两段1英寸的而给她3英寸的一段。 假设银条的各段是按照这种方式来回倒换的,看看你能不能回答这样一个问题:勘探员至少需要把他的银条切成多少段? 为了信守协议,勘探员可以把31英寸的银条只切成5段,它们的长度分别为1英寸、2英寸、4英寸、8英寸和16英寸。 第一天,他女房东1英寸的一小段银条;第二天,给她2英寸的一段,取回1英寸的那两段,第三天,再给她1英寸的一段;第四天,取回1英寸和2英寸的那两段,给她4英寸的一段。按照这样的方式来回倒换,在3月份全月的31天中,他就能每天给房东增加1英寸银条。 【知识要点】 解绝对值方程和不等式的关键,就是根据绝对值的定义或性质,去掉绝对值符号,代为一般的方程和不等式,从而解决问题! 1.不等式的基本性质主要有: (1)0 -a b >;0 a b (2)a b >b a ; <;a b b a (3), >>?>; a b b c a c >?+>+; (4)a b a c b c (5),0 >>?>; a b c ac bc a b c ac bc >>>>?>。 a b c d ac bd

一元一次方程及解法

一元一次方程及解法 撰稿:占德杰责编:赵炜 一、目标认知 学习目标: 经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。 重点: 一元一次方程的解法 难点: 一元一次方程的解法 二、知识要点梳理

知识点一:方程的概念 1、含有未知数的等式叫做方程. 2、使方程中等号左右两边相等的未知数的值叫做方程的解. 3、求方程的解的过程叫做解方程。 4、方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数)。 知识点二:一元一次方程的概念 1、概念:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程。一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0), “元”是指未知数,“次”是指未知数的次数,应从以下几点理解此概念: (1)方程中的未知数的个数是1。例如2x+3y=2就不是一元一次方程,因为未知数的个数是两个,而不 是一个。 (2)一元一次方程等号的两边都是整式,并且至少有一边是含有未知数的整式。例如方程,

其中不是整式,所以它不是一元一次方程。 (3)未知数的次数是1,如x2+2x-2=0,在x2项中,未知数的次数是2,所以它不是一元一次方程。 2、判定:判断一个方程是不是一元一次方程应看它的最终形式,而不是看原始形式。 (1)如果一个方程经过去分母、去括号、移项、合并同类项等变形能化为ax =b(a≠0), 或ax b=0(a≠0),那么它就是一元一次方程;否则就不是一元一次方程。 (2)方程ax=b或ax b=0,只有当a≠0时才是一元一次方程;反之,如果明确指出方程ax=b或 ax+b=0是一元一次方程,则隐含条件a≠0. 例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程。 知识点三:等式的性质 1、等式的概念:用符号“=”来表示相等关系的式子叫做等式。

相关文档
最新文档