专练:含绝对值的一元一次方程的解法
含绝对值符号的一元一次方程习题附答案
6.2.5含绝对值符号的一元一次方程完成时间:40min一.选择题(共30小题)1.已知|2﹣x|=4,则x的值是()A.﹣3 B.9 C.﹣3或9 D.以上结论都不对2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a ﹣b|的结果是()A.2a B.2b C.2c D.03.方程|3x|+|x﹣2|=4的解的个数是()A.0B.1C.2D.34.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.35.方程|2x﹣6|=0的解是()A.3B.﹣3 C.±3 D.6.若|x﹣1|=3,则x=()A.4B.﹣2 C.±4 D.4或﹣27.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D.x=﹣38.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣19.方程|x﹣3|+|x+3|=6的解的个数是()A.2B.3C.4D.无数个10.若|x﹣2|=3,则x的值是()A.1B.﹣1 C.﹣1或5 D.以上都不对11.方程|3x|=18的解的情况是()A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解12.如果|x﹣1|+x﹣1=0,那么x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1 13.若|2000x+2000|=20×2000,则x等于()14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣115.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2B.4C.8D.1616.若|x|=3x+1,则(4x+2)2005=()A.﹣1 B.0C.0或1 D.117.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1 18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是()A.±B.±C.±7 D.±119.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数21.方程|2007x﹣2007|=2007的解是()A.0B.2C.1或2 D.2或022.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是()A.0B.±C.D.±23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤324.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.425.方程|x﹣19|+|x﹣93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在26.方程2|x|+3=5的解是()A.1B.﹣1 C.1和﹣1 D.无解27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.028.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是C.0,2,4不全是D.0,2,4之外没29.使方程3|x+2|+2=0成立的未知数x的值是()A.﹣2 B.0C.D.不存在30.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个6.2.5含绝对值符号的一元一次方程参考答案与试题解析一.选择题(共30小题)1.已知|2﹣x|=4,则x的值是()A.﹣3 B.9C.﹣3或9 D.以上结论都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:绝对值为4的数是±4,从而可去掉绝对值符号,计算即可.解答:解:∵|2﹣x|=4,∴2﹣x=4或2﹣x=﹣4,解得:x=﹣3或9;故选C.点评:本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等.2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是()A.2a B.2b C.2c D.0考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,可判断出a,b,c的取值范围,进而求解.解答:解:根据关于x的方程|5x﹣4|+a=0无解,可得出:a>0,由|4x﹣3|+b=0有两个解,可得出:b<0,由|3x﹣2|+c=0只有一个解,可得出;c=0,故|a﹣c|+|c﹣b|﹣|a﹣b|可化简为:|a|+|b|﹣|a﹣b|=a﹣b﹣a+b=0.故选D.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是根据已知条件判断出a,b,c的取值范围.然后化简.3.方程|3x|+|x﹣2|=4的解的个数是()A.0B.1C.2D.3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:根据x的取值范围取绝对值,所以需要分类讨论:①当x≥2时;②当0<x<2时;③当x<0时;根据x 的三种取值范围来解原方程.解答:解:①当x≥2时,由原方程,得3x+x﹣2=4,即4x﹣2=4,②当0<x<2时,由原方程,得3x﹣x+2=4,解得x=1;③当x<0时,由原方程,得﹣3x﹣x+2=4,解得x=﹣.综上所述,原方程有2个解.故选C.点评:本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.4.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.3考点:含绝对值符号的一元一次方程;一元一次方程的解.专题:计算题.分析:本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.解答:解:∵|x﹣|=0,∴x=,把x代入方程mx+2=2(m﹣x)得:m+2=2(m﹣),解之得:m=2;故选B.点评:此类题型的特点是,有2个方程,一个含有字母系数,一个是不含字母系数的方程,2方程同解,求字母系数的值.一般方法是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.5.方程|2x﹣6|=0的解是()A.3B.﹣3 C.±3 D.考点:含绝对值符号的一元一次方程.分析:根据非负数的性质去掉绝对值符号,求出未知数的值即可.解答:解:∵|2x﹣6|=0,∴2x﹣6=0,∴x=3.故选A.点评:本题考查的是非负数的性质,是中学阶段的基础题.6.若|x﹣1|=3,则x=()A.4B.﹣2 C.±4 D.4或﹣2考点:含绝对值符号的一元一次方程.专题:分类讨论;方程思想.分析:根据绝对值的意义,得出x﹣1=±3,可解得x的值.注意结果有两个.所以x﹣1=±3,解得x=4或﹣2.故选D.点评:本题考查了含绝对值符号的一元一次方程,注意绝对值都是非负数,互为相反数的两数绝对值相等.7.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D. x=﹣3考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,再根据解一元一次方程的步骤求解即可.解答:解:①当2x﹣1≥0,即x≥时,原式可化为:2x﹣1=4x+5,解得,x=﹣3,舍去;②当2x﹣1<0,即x<时,原式可化为:1﹣2x=4x+5,解得,x=﹣,符合题意.故此方程的解为x=﹣.故选C.点评:此题比较简单,解答此题的关键是根据绝对值的性质去掉绝对值符号,不要漏解.8.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣1考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:分两种情况去解方程即可①x≥0;②x<0.解答:解:①当x≥0时,去绝对值得,x=2x+1,得x=﹣1,不符合预设的x≥0,舍去.②当x<0时,去绝对值得,﹣x=2x+1,得x=﹣.故选B.点评:本题考查了一元一次方程的去绝对值的解法.要分类讨论.9.方程|x﹣3|+|x+3|=6的解的个数是()A.2B.3C.4D.无数个考点:含绝对值符号的一元一次方程.分析:根据x的取值范围取绝对值,所以需要分类讨论:①当x≥3时;②当﹣3≤x<3时;③当x<﹣3时;根据x的三种取值范围来解原方程即可.解答:解:当x≥3时,原方程可变形为:x﹣3+x+3=6,解得:x=3,当﹣3≤x<3时,原方程可变形为:﹣x+3+x+3=6,得出原方程有无数个解;当x<﹣3时,原方程可变形为:﹣x+3﹣x﹣3=6,解得:x=﹣3,故选D.点评:本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.10.若|x﹣2|=3,则x的值是()A.1B.﹣1 C.﹣1或5 D.以上都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:|x﹣2|=3去绝对值,可得x﹣2=±3,然后计算求解.解答:解:∵|x﹣2|=3,∴x﹣2=±3,∴x=﹣1或5.故选C.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.方程|3x|=18的解的情况是()A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析:去绝对值符号时,要分两种情况进行讨论,即x≥0和x<0两种情况.解答:解:∵|3x|=18∴这个方程就变形为3x=±18两个方程.当x≥0时,3x=18,∴x=6当x<0时,﹣3=18,∴x=﹣6故选B.点评:解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.解决本题还要运用分类讨论思想.12.如果|x﹣1|+x﹣1=0,那么x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1考点:绝对值;含绝对值符号的一元一次方程.专题:计算题.分析:先根据绝对值的性质讨论x﹣1的符号,确定出x的取值范围,再解关于x的一元一次方程,求出x的值.解答:解:当x﹣1≥0,即x≥1时,原方程可化为x﹣1+x﹣1=0,解得,x=1;当x﹣1<0,即x<1时,原方程可化为1﹣x+x﹣1=0,x无解.综上所述原方程的解集是x≤1,故选D.点评:本题考查的是含绝对值符号的一元一次方程,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;13.若|2000x+2000|=20×2000,则x等于()A.20或﹣21 B.﹣20或21 C.﹣19或21 D.19或﹣21专题:计算题.分析:根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,然后去掉绝对值即可.解答:解:根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,∴x+1=20或﹣(x+1)=20,移项解得:x=19或x=﹣21.故选D.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是正确去掉绝对值符号,不要漏解.14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣1考点:含绝对值符号的一元一次方程.分析:根据绝对值的性质和方程|x|=ax﹣a有正根且没有负根,确定a的取值范围.解答:解:①当ax﹣a≥0,a(x﹣1)>0,解得:x≥1 且a≥0,或者x≤1且a≤0,②正根条件:x>0,x=ax﹣a,即x=>0,解得:a>1 或a<0,由①,即得正根条件:a>1 且x≥1,或者a<0,0<x≤1,③负根条件:x<0,得:﹣x=ax﹣a,解得:x=<0,即﹣1<a<0,由①,即得负根条件:﹣1<a<0,x<0,根据条件:只有正根,没有负根,因此只能取a>1(此时x≥1,没负根),或者a≤﹣1(此时0<x≤1,没负根).综合可得,a>1或a≤﹣1.故选:D.点评:此题主要考查了含绝对值符号的一元一次方程,根据绝对值的性质,要分x≥0和x<0,两种情况进行讨论,确定a的取值范围.15.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2B.4C.8D.16考点:含绝对值符号的一元一次方程.分析:先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.解答:解:(1)当2a+7≥0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=82a+7+2a﹣1=8,解得,a=解不等式2a+7≥0,2a﹣1≥0得,a≥﹣,a≥,所以a≥,而a又是整式,(2)当2a+7≤0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7﹣2a+1=8,解得,a=﹣解不等式2a+7≤0,2a﹣1≤0得,a≤﹣,a≤,所以a≤﹣,而a又是整数,故a=﹣不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=82a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣,a≤,所以﹣≤a≤,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选B.点评:本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.16.若|x|=3x+1,则(4x+2)2005=()A.﹣1 B.0C.0或1 D.1考点:含绝对值符号的一元一次方程;绝对值;有理数的乘方;解一元一次方程.专题:计算题.分析:当x≥0时去绝对值符号,求出方程的解;当x<0时,去绝对值符号,求出方程的解,代入求出即可.解答:解:当x≥0时,原方程化为:x=3x+1,∴x=﹣<0(舍去),当x<0时,原方程化为:﹣x=3x+1,∴x=﹣,∴(4x+2)2005==1,故选D.点评:本题主要考查对绝对值,解一元一次方程,含绝对值符号的一元一次方程,有理数的乘方等知识点的理解和掌握,求出未知数x的值是解此题的关键.17.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1考点:含绝对值符号的一元一次方程.分析:由方程|2x﹣1|﹣a=0恰有两个正数解,即可得不等式组,解此不等式组即可求得答案.解答:解:∵方程|2x﹣1|﹣a=0恰有两个正数解,∴,解得:0<a<1.故选C.点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题难度较大,解题的关键是根据题意得到不等式组:.18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是()A.±B.±C.±7 D.±1考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据x﹣y=4,得:x=y+4,代入|x|+|y|=7,然后分类讨论y的取值即可.解答:解:由x﹣y=4,得:x=y+4,代入|x|+|y|=7,∴|y+4|+|y|=7,①当y≥0时,原式可化为:2y+4=7,解得:y=,②当y≤﹣4时,原式可化为:﹣y﹣4﹣y=7,解得:y=,③当﹣4<y<0时,原式可化为:y+4﹣y=7,故此时无解;所以当y=时,x=,x+y=7,当y=时,x=,x+y=﹣7,综上:x+y=±7.故选C.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是把x用y表示出来后进行分类讨论y的取值范围.19.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析:分别讨论①x≥,②﹣<x<,③x≤﹣,根据x的范围去掉绝对值,解出x,综合三种情况可得出x 的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:3x﹣4+3x+2=6,解得:x=;第二种:当﹣<x<时,原方程就可化简为:﹣3x+4+3x+2=6,恒成立;第三种:当x≤﹣时,原方程就可化简为:﹣3x+4﹣3x﹣2=6,解得:x=﹣;所以x的取值范围是:﹣≤x≤,故符合条件的整数位:0,1.故选C.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键掌握正确分类讨论x的取值范围.20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数考点:同类项;含绝对值符号的一元一次方程.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程|x|=1,|4x|=3﹣x,即可求出x的值.解答:解:由同类项的定义得:|x|=1,解得x=±1,又|4x|=3﹣x,解得x=﹣1或x=,∴x=﹣1.故选B.点评:本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.21.方程|2007x﹣2007|=2007的解是()A.0B.2C.1或2 D.2或0考点:含绝对值符号的一元一次方程.专题:数形结合.分析:分别讨论x≥1,x<1,可求得方程的解.解答:解:①当x≥1时,原方程可化为:2007x﹣2007=2007,解得:x=2,②当x<1时,原方程可化为:2007﹣2007x=2007,解得:x=0,综上可得x=0或2.故选D.点评:本题考查含绝对值的一元一次方程,解决此题的关键是能够根据x的取值范围进行分情况化简绝对值.22.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是()A.0B.±C.D.±考点:含绝对值符号的一元一次方程.专题:计算题.分析:看到比较繁琐的有绝对值得计算题,首先要考虑怎样去掉绝对值.明确x的取值范围决定去掉绝对值之后的正负关系.解答:解:(1)当x>1时,原式=x﹣x+1﹣x+1+x=1,2=1显然不成立,故舍去.(2)当0<x<1时,原式=|﹣(x﹣1)﹣x|﹣(1﹣x)+x,=|﹣2x+1|﹣1+2x,=2x﹣1﹣1+2x,=4x﹣2,又∵原式=1,∴4x﹣2=1,∴x=.故选C.点评:本题主要考查的是含有绝对值符号的一元一次方程的最基本的计算,难易适中.23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:分三种情况讨论a的取值范围:①a=3,②a>3,③a<3,再去绝对值符号进行求解.解答:解:原方程为|3x|=ax+1.①若a=3,则|3x|=3x+1.当x<0时,﹣3x=3x+1,∴x=﹣;当x≥0时,3x=3x+1,不成立;∴当a=3时,原方程的根为:x=﹣;②若a>3,当x<0时,﹣3x=ax+1,∴x=<0;当x≥0时,3x=ax+1,∴x=<0,矛盾,∴当a>3时,原方程的解为:x=<0.③若a<3时,当x≥0时,3x=ax+1,∴x=0,∴原方程的根是正数,不符合题意.综上所述:当a≥3时,原方程的根是负根.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度较大,关键是分类讨论a的取值范围后再进行求解.24.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.4考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥,②0<x<,③x≤0,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:2x﹣1﹣x=2,解得:x=3;第二种:当0<x<时,原方程就可化简为:﹣2x+1﹣x=2,解得:x=﹣,不符合题意;第三种:当x≤0时,原方程就可化简为:﹣2x+1+x=2,解得:x=﹣1;所以x的不同实数解为:x=3或x=﹣1,共有两个.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是掌握正确分类讨论x的取值范围.25.方程|x﹣19|+|x﹣93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在考点:含绝对值符号的一元一次方程.分析:首先根据x的范围去掉绝对值符号,转换成一般的一元一次方程,从而求解.解答:解:当x≤19时,方程即:19﹣x+93﹣x=74,解得:x=19;当19<x<93时,方程变形为:x﹣19+93﹣x=74,恒成立;当x≥93时,方程变形为:x﹣19+x﹣93=74,解得:x=93.则x为范围[19,93]中的有理数,即至少有3个.故选A.点评:本题主要考查了绝对值方程的解法,关键是正确进行讨论.26.方程2|x|+3=5的解是()A.1B.﹣1 C.1和﹣1 D.无解考点:含绝对值符号的一元一次方程.分析:首先利用一元一次方程的求解方法,求得|x|的值,继而求得答案.解答:解:∵2|x|+3=5,∴2|x|=2,∴|x|=1,∴x=±1.故选C.点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题比较简单,注意换元思想的应用.27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.0考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论x≥6、x<2、2≤x<6,根据x的范围去掉绝对值,解出x,综合六种情况可得出x的最终范围.解答:解:根据题意,知(1)|x﹣2|﹣|x﹣6|=1,①当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=1,解得x=﹣1,不合题意,舍去;②当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=1,即﹣4=1,显然不成立;③当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=1,解得x=4.5;(2)|x﹣2|﹣|x﹣6|=﹣1,④当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=﹣1,解得x=﹣3,不合题意,舍去;⑤当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=﹣1,即﹣4=﹣1,显然不成立;⑥当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=﹣1,解得x=3.5;综上所述,原方程的解是:x=4.5,3.5,共有2个.故选A.点评:本题考查了含有绝对值符号的一元一次方程.其实,本题不难,只要在解题过程中多一份细心,就不会丢解的.28.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是根C.0,2,4不全是根D.0,2,4之外没有根考点:含绝对值符号的一元一次方程.分析:解含有绝对值符号的方程的关键是去绝对值符号,这可用“零点分段法”.即令x+2=0,x+1=0,x=0,x﹣1=0,x﹣2=0,x﹣3=0,x﹣4=0,分别得到x=﹣2,﹣1,0,1,2,3,4,这7个数将数轴分成8段,然后在每一段上去掉绝对值符号再求解.解答:解:①当x≥4时,原方程化为x﹣4=0,解得x=4,在所给的范围x≥4之内,x=4是原方程的解;②当3≤x<4时,原方程化为4﹣x=0,解得x=4,不在所给的范围3≤x<4之内,x=4不是原方程的解;③当2≤x<3时,原方程化为x﹣2=0,解得x=2,在所给的范围2≤x<3之内,x=2是原方程的解;④当1≤x<2时,原方程化为2﹣x=0,解得x=2,不在所给的范围1≤x<2之内,x=2不是原方程的解;⑤当0≤x<1时,原方程化为x=0,在所给的范围0≤x<1之内,x=0是原方程的解;⑥当﹣1≤x<0时,原方程化为x=0,不在所给的范围﹣1≤x<0之内,x=0不是原方程的解;⑦当﹣2≤x<﹣1时,原方程化为x+2=0,解得x=﹣2,在所给的范围﹣2≤x<﹣1之内,x=﹣2是原方程的解;⑧当x<﹣2时,原方程化为﹣2﹣x=0,解得x=﹣2,不在所给的范围x<﹣2之内,x=﹣2不是原方程的解.综上,可知原方程的解为x=4,2,0,﹣2.故选A.点评:本题考查了含绝对值符号的一元一次方程,属于竞赛题型,难度较大.29.使方程3|x+2|+2=0成立的未知数x的值是()A.﹣2 B.0C.D.不存在考点:含绝对值符号的一元一次方程.专题:计算题.分析:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的性质即可得出答案.解答:解:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的非负性,即可得知使方程3|x+2|+2=0成立的x不存在.故选D.点评:本题考查了含绝对值符号的一元一次方程,比较容易,关键是根据绝对值的非负性即可判断.30.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥,②﹣5<x<,③x≤﹣5,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:x+5﹣3x+7=1,解得:x=符合题意;第二种:当﹣5<x<时,原方程就可化简为:x+5+3x﹣7=1,解得:x=符合题意;第三种:当x≤﹣5时,原方程就可化简为:﹣x﹣5+3x﹣7=1,解得:x=不符合题意;所以x的值为:或.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是分类讨论x的取值范围.。
含绝对值号的一元一次方程
含绝对值号的一元一次方程题目特点:一元一次方程中的未知数含有绝对值号。
解题关键:去绝对值号,化为一元一次方程求解。
解题方法:分类讨论,分x ≥0和x <0两种情况讨论。
讨论时,要注意方程的解是否符合题意。
解题关键:去绝对值号。
所用知识:0||0x x x x x ⎧=⎨-<⎩?。
,,||(),.x a x a x a x a a x x a -⎧-=⎨--=-<⎩… 例1 方程|3x|=15的解的情况是( )A 、有一个解,是5B 、无解C 、有无数个解D 、有两个解,是±5解:①当x ≥0时,去绝对值得:3x=15,解得:x=5;②当x <0时,去绝对值得:-3x=15,解得:x=-5。
故方程有两根,分别为x=5和x=-5.故选D .点评:这是绝对值方程,正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0. 例2 若关于x 的方程||21x x =+的解为负数,则x 的值为( )A 、14-B 、13-C 、12- D 、-1 分析:分x ≥0和x <0两种情况讨论去绝对值即可.解:①当x ≥0时,去绝对值得,x=2x+1,解得x=-1,不符合预设的x ≥0,舍去.②当x <0时,去绝对值得,-x=2x+1,得13x =-.故选B .例3 方程2|x-5|=6x 的解为( )A 、x=52-或54x =B 、x=52或54x =-C 、54x =D 、52x =- 分析:首先考虑去掉绝对值,这是要考虑x 的取值范围,即x >5和x <5,又有方程2|x-5|=6x 可知,x >0,由上可知方程的解.解:(1)当x ≥5时,2(x-5)=6x ,∴4x=-10,解得x=52-,与x >5矛盾,舍去; (2)当x <5时,2(5-x )=6x ,∴8x=10,解得x=54;故选C 。
点评:本题主要考查的是含有绝对值符号的一元一次方程的一般计算题,充分考察了绝对值的几何意义.难易适中.例4 方程|21|45x x -=+的解是( )A 、x=-3或23x =-B 、x=3或23x =C 、23x =- D 、3x =- 分析:分210x -…和210x -<两种情况讨论去掉绝对值符号,再根据解一元一次方程的步骤求解即可.解:①当2x-1≥0,即x ≥12时,原式可化为:2145x x -=+,解得,x=-3,舍去; ②当2x-1<0,即x <12时,原式可化为:1245x x -=+,解得,23x =-,符合题意. 故此方程的解为23x =-.故选C .练习:1.方程|2x-6|=0的解是()A、3B、-3C、±3D、132.方程|3x|=15的解的情况是()A、有一个解,是5B、无解C、有无数个解D、有两个解,是±5 3.方程|2007x-2007|=2007的解是()A、0B、2C、1或2D、2或04.若|x-2|=3,则x的值是()A、1B、-1C、-1或5D、以上都不对5.使方程3|x+2|+2=0成立的未知数x的值是()A、-2B、0C、23D、不存在6.已知|3x|-y=0,|x|=1,则y的值等于()A、3或-3B、1或-1C、-3D、37.关于x的方程mx+1=2(m-x)的解满足|x+2|=0,则m的值为()A、43B、43-C、34D、34-8.已知关于x的方程mx+2=2(m-x)的解满足|x-12|-1=0,则m的值是()A、10或25B、10或25-C、-10或25D、-10或25-9.方程|x|=5的解是x= ,|x-2|=0的解是,3|x|=-6的解是,|x+2|=3的解是。
人教版七年级数学上思维特训(十一)含答案:含有绝对值的一元一次方程的解法
思维特训(十一) 含有绝对值的一元一次方程的解法方法点津 ·定义:我们把绝对值符号内含有未知数的方程叫做含有绝对值的方程.解含有绝对值的方程的基本思路:含有绝对值的方程→不含有绝对值的方程.一般有以下两种解法:1.几何解法:在数轴上到一个点的距离等于一个常数的点有两个,分别在这个点的左右两侧,可利用数轴直接观察得到方程的解.2.代数解法:利用绝对值的性质去掉绝对值符号,把含有绝对值的一元一次方程转化成两个不含有绝对值的一元一次方程求解.||a =⎩⎪⎨⎪⎧a (a>0),0(a =0),-a (a<0).典题精练 ·类型一 几何解法1.阅读材料:我们知道|x|的几何意义表示在数轴上的数x 对应的点与原点的距离,即|x|=|x -0|,也就是说|x|表示在数轴上数x 与数0对应的点之间的距离.这个结论可以推广为|x 1-x 2|表示在数轴上数x1与数x2对应的点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点的距离为2的点对应的数为-2或2,即x =-2或x=2.例2:已知|x-1|=2,求x的值.解:在数轴上与数1对应的点之间的距离为2的点对应的数为3和-1,即x=3或x=-1.例3:解方程|x-1|+|x+2|=5.图11-S-1解:由绝对值的几何意义知,该方程表示求在数轴上与数1和数-2对应的点之间的距离之和为5的点对应的数,即为x的值.在数轴上,数1和-2对应的点的距离为3,满足方程的x在数轴上的对应点在1的右边或-2的左边.若x对应的点在1的右边,如图11-S-1,可以看出x=2;同理,若x对应的点在-2的左边,可得x =-3.故原方程的解是x=2或x=-3.仿照阅读材料的解法,求下列各式中x的值:(1)|x-3|=3;(2)|4x+2|=8;(3)|x-3|+|x+4|=9.类型二代数解法2.有些含绝对值的方程,可以通过讨论去掉绝对值符号,转化成一元一次方程求解.例1:解方程|2x-1|=3.我们只要把2x-1看成一个整体就可以根据绝对值的意义进一步解决问题.解:根据绝对值的意义,得2x-1=3或2x-1=-3.解这两个一元一次方程,得x=2或x=-1.检验:(1)当x=2时,原方程的左边=|2x-1|=|2×2-1|=3,原方程的右边=3.因为左边=右边,所以x =2是原方程的解.(2)当x =-1时,原方程的左边=|2x -1|=|2×(-1)-1|=3,原方程的右边=3.因为左边=右边,所以x =-1是原方程的解.综上可知,原方程的解是x =2或x =-1.例2:解方程x +2|x|=3.解:当x ≥0时,方程可化为x +2x =3,解得x =1,符合题意;当x <0时,方程可化为x -2x =3,解得x =-3,符合题意.所以原方程的解为x =1或x =-3.仿照上面的解法,解下列方程:(1)x +3|x -1|=7;(2)|x -12|-x =1.详解详析1.解:(1)由题意,得在数轴上与数3对应的点之间的距离为3的点对应的数为0和6,即x =0或x =6.(2)由题意,得在数轴上与数-2对应的点之间的距离为8的点对应的数为6或-10,即4x =6或4x =-10,所以x =32或x =-52.(3)由绝对值的几何意义知,该方程表示求在数轴上与数3和数-4对应的点之间的距离之和为9的点对应的数,即为x 的值.在数轴上,数3和-4对应的点的距离为7,满足方程的x 在数轴上的对应点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;同理,若x 对应的点在-4的左边,可得x =-5.故原方程的解是x =4或x =-5.2.解:(1)当x <1时,方程可化为x +3(1-x)=7,即3-2x =7,解得x =-2,符合题意;当x ≥1时,方程可化为x +3(x -1)=7,即4x -3=7,解得x =52,符合题意.所以原方程的解为x =-2或x =52.(2)原方程可变形为|x -12|=x +1,根据绝对值的意义,得x -12=1+x 或x -12=-(1+x),解得x =-3或x =-13,经检验:x =-3不是原方程的解,x =-13是原方程的解.所以原方程的解是x =-13.。
知识点106--含绝对值符号的一元一次方程解答题
三、解答题1、(2008•乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为 1或﹣7 ;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.考点:含绝对值符号的一元一次方程;解一元一次不等式。
专题:阅读型。
分析:仔细阅读材料,根据绝对值的意义,画出图形,来解答.解答:解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与﹣3的距离为4的点对应的x的值为1或﹣7.(3分)(2)∵3和﹣4的距离为7,因此,满足不等式的解对应的点3与﹣4的两侧.当x在3的右边时,如图,易知x≥4.(5分)当x在﹣4的左边时,如图,易知x≤﹣5.(7分)∴原不等式的解为x≥4或x≤﹣5(8分)(3)原问题转化为:a大于或等于|x﹣3|﹣|x+4|最大值.(9分)当x≥﹣1时,|x﹣3|﹣|x+4|应该恒等于7,当﹣4<x<﹣1,|x﹣3|﹣|x+4|=﹣2x﹣1随x的增大而减小,当x≤﹣4时,|x﹣3|﹣|x+4|=7,即|x﹣3|﹣|x+4|的最大值为7.(11分)故a≥7.(12分)点评:本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.2、解方程:.考点:含绝对值符号的一元一次方程。
几种类型的一元一次方程的解法
几种类型的一元一次方程的解法一、含字母系数的一元一次方程例1、解下列关于的方程:()()()(0)cx b c x a b x b a x a c --=---+≠.例2、解关于x 的方程:. 同步练习:1、解关于x 的方程.2 解关于x 的方程()()m x n x m -=-413 二、一元一次方程的整数解1、若方程139125325+=-x m x 有一个正整数解,则m 取的最小正数是多少?并求出相应的解 2、 已知关于x 的方程:17834-=-x m x ,当m 为某些负整数时,方程的解为负整数,试求负整数m 的最大值。
三、含绝对值的方程的解法解含有绝对值符号的一元一次方程的基本思路就是去掉绝对值符号.转化为一般方程来求解.常用的转化方法有以下几种:(一)、对于最简绝对值方程,依据绝对值的定义,去掉绝对值符号,化为两个一元一次方程分别解之,即:若||x a = ,则x a =± .例1、已知|31|2x -=,则x =( ).例2.若||,x a =则||x a -=( ).例3.若|20002000|202000x +=⨯.则x 等于( ).同步练习:1、解方程:4213)1(=-x (2)、|5|25x x -+=- 3213)3(+=-x x 3、已知关于x 的方程22()mx m x +=-的解满足1||102x --=,则x 的值是( ).4、方程|56|65x x +=-的解是_________.5、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围是_________.(二)、对于含有双重或多重绝对值符号的较复杂的绝对值方程,可用零点分段法分类讨论转化为最简绝对值方程来解.例1.解方程|3||1|1x x x +--=+同步练习:1.若0a <,则200011||a a +等于_________.2.方程|1||99||2|1992x x x +++++=共有( )个解.(三)、对于某些特殊的绝对值方程,还可借助数轴用绝对值的几何意义求解.2371022331-1x x x x x ---=+-例1、适合|27||21|8a a ++-=的整数的值的个数有_________.例2、若0,0a b ><则使||||x a x b a b -+-=-成立的的取值范围是_______.同步练习:1、适合关系式|34||32|6x x -++=的整数的值是_____.(A )0 (B )1 (C )2 (D )大于2的自然数2、解方程|1||5|4x x -+-=:. 四、特殊方程1、方程2001200220013221=⨯++⨯+⨯x x x 的解是_________. 2、方程⎪⎭⎫ ⎝⎛≠++=--+--+--01113c b a c b a x b a c x a c b x 其中的解为 五、不定方程不定方程(组)是指未知数的个数多于方程个数的方程(组)。
知识点106 含绝对值符号的一元一次方程解答题
三、解答题1、(2008•乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为1或﹣7;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.考点:含绝对值符号的一元一次方程;解一元一次不等式。
专题:阅读型。
分析:仔细阅读材料,根据绝对值的意义,画出图形,来解答.解答:解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与﹣3的距离为4的点对应的x的值为1或﹣7.(3分)(2)∵3和﹣4的距离为7,因此,满足不等式的解对应的点3与﹣4的两侧.当x在3的右边时,如图,易知x≥4.(5分)当x在﹣4的左边时,如图,易知x≤﹣5.(7分)∴原不等式的解为x≥4或x≤﹣5(8分)(3)原问题转化为:a大于或等于|x﹣3|﹣|x+4|最大值.(9分)当x≥﹣1时,|x﹣3|﹣|x+4|应该恒等于7,当﹣4<x<﹣1,|x﹣3|﹣|x+4|=﹣2x﹣1随x的增大而减小,当x≤﹣4时,|x﹣3|﹣|x+4|=7,即|x﹣3|﹣|x+4|的最大值为7.(11分)故a≥7.(12分)点评:本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.2、解方程:.考点:含绝对值符号的一元一次方程。
专练:含绝对值的一元一次方程的解法
含绝对值的一元一次方程的解法1.含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解;②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a--=. 解方程:⑴235x += ⑵21302x --= ⑶200520052006x x -+-= ⑷1121123x x +--+-=(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;④将求得的解代入0cx d +≥检验,舍去不合条件的解.解方程⑴4329x x +=+ ⑵525x x -+=-(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =- ⑵2131x x -=+(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:①根据绝对值的几何意义可知x a x b a b -+-≥-;②当c a b <-时,此时方程无解;当c a b =-时,此时方程的解为a x b ≤≤;当c a b >-时,分两种情况: ①当x a <时,原方程的解为2a b c x +-=; ②当x b >时,原方程的解为2a b c x ++=. 解方程⑴134x x -+-= ⑵154x x -+-= ⑶216x x -++=(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =;②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.解方程⑴2123x x +--= ⑵2134x x --+= ⑶23143x x x +--=-(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和()()ax b ex f cx d +=-+-+;③解②中的两个绝对值方程.【题01】解方程93352x x x ++-=+ 35162x x ---= 3548x -+=【题02】解方程:2112x --= 2121x x -+=+ 314x x -+= 11110x ----=【题03】当01x ≤≤时,求方程1110x ---=的解。
绝对值与一元一次方程(含问题详解)-
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、•12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
人教版(五四制)2019-2020七年级数学上册第十一章一元一次方程的解法专项训练题2(附答案)
人教版(五四制)2019-2020七年级数学上册第十一章一元一次方程的解法专项训练题2(附答案)1.解方程(组):(1)()()31651x x -=+- (2) 2312{ 3417x y x y +=+= 2.解方程:(1)2(x ﹣1)+1=0(2)4(2x ﹣1)﹣3(5x+1)=14(3)x ﹣=1﹣(4)3.解方程:(1)2x+1=8-5x ; (2). 4.解下列一元一次方程:(1)(2) 5.解方程:(1)7y +6=-9y; (2)2(3y -1)-3(2-4y )=9y +10;(3) y -=2-; (4)-2+=3(x -1). 6.解下列方程(1)7+6=8-3(2)4-3(20-)=6-7(9-)(3)(4)7.解方程:(1); (2). 8.解下列方程: (1)a ﹣6=a+1; (2)3x+=3﹣. 9.解方程3714x x --10.解方程:(1)()()512132x x x ---=+ (2)221146x x +--= 11.解下列方程:(1)()319x +=; (2)2121136x x --=-. 12.满足方程|2|2x -4|-3|=2x -1的所有解的和为多少?13.已知方程6x -9=10x -45与方程3a -1=3(x +a )-2a 的解相同(1)求这个相同的解;(2)求a 的值;(3)若[m]表示不大于m 的最大整数,求[-2]的值14.解方程:(1)(2) 15.解方程(1)4x-3(5-x )=6 (2) 12226x x -+=- 16.小东同学在解一元一次方程时,发现这样一种特殊现象: x+=0的解为x=﹣,而﹣=﹣1; 2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x 的方程ax+b=0(a≠0)的解为x=b ﹣a ,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x 的方程ax+b=0(a≠0)为奇异方程,解关于y 的方程:a (a ﹣b )y+2=(b+)y .17.解方程:(1)2x +3=x +5; (2)2(3y -1)-3(2-4y)=9y +10;18.解方程:−=0.5.19.老师在黑板上出了一道解方程的题,小虎马上举手,要求到黑板上去做,他是这样做的:5(3x-1)=2(4x+2)-1①,15x-5=8x+4-1②,15x-8x=4-1+5③7x④,x=⑤老师说:小虎解一元一次方程的一般步骤都知道,但没有掌握好,因此解题出现了错误,请指出他的错步及错误原因:,方程的正确的解是x=.然后,你自己细心的解下面的方程:.20.解方程:(1)3x+7=2x﹣5 ;(2)2(x﹣1)﹣3(2+x)=5;(3)(4)[(﹣)]= +121.计算:(1)-16-(-1+)÷3×[2-(-4)2](2)解方程:-=-1(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-.22.解下列方程:(1)4(x﹣2)=3(1+3x)﹣12(2)=1.23.当x取何值时,代数式比代数式少1 ?24.25.解方程:211248 x x+-=-26.解方程:1221 43x x+--=.27.解方程:x-=2-.28.当m为何值时,关于x的方程5m+12x=6+x的解比关于x的方程x(m+1)=m(1+x)的解大2.29.列方程求解(1)m为何值时,关于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.(2)已知|a﹣3|+(b+1)2=0,代数式22b a m-+的值比12b﹣a+m多1,求m的值.参考答案1.(1)2x =-;(2)3{ 2x y ==. 【解析】试题分析:(1)方程去括号,移项合并同类项,化系数为1即可;(2)用加减消元法解答即可.试题解析:解:(1)去括号得:3x -3=6+5x -5,移项得:3x -5x =6-5+3,合并同类项得:-2x =4,解得:x =-2;(2)2312{ 3417x y x y +=+=①②,①×3-②×2得:y =2,把y =2代入①得:x =3,∴3{ 2x y ==. 2.(1)x=(2)x=-3(3)x=4(4)x=【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)去括号得:2x-2+1=0,移项合并得:2x=1,解得:x=;(2)去括号得:8x-4-15x-3=14,移项合并得:-7x=21,解得:x=-3;(3)去分母得:6x-3x-3=6-x+7,移项合并得:4x=16,解得:x=4;(4)去分母得:70x-30x=21,移项合并得:40x=21,解得:x=.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(1)x=1;(2)x=0.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得:2x+5x=8-1,合并同类项得:7x=7,系数化为1得:x=1;(2)去分母得:3(x+2)-2(2x-3)=12,去括号得:3x+6-4x+6=12,合并同类项得:-x=0,系数化为1得:x=0.【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解答本题的关键.4.(1) ;(2) x=1【解析】【分析】根据解一元一次方程的一般步骤进行:去分母,去括号,移项,合并同类项,系数化为1. 【详解】解:(1)去括号,得:移项,得:合并同类项,得:(2)去分母,得:去括号,得:移项,得:合并同类项,得:-5x=-5系数化为1,得:x=1【点睛】本题考核知识点:解一元一次方程. 解题关键点:掌握解方程的一般步骤.5.(1)y=-;(2) y=2;(3) y=;(4) x=.【解析】【分析】⑴移项,将未知数系数化为1即可求解;⑵去括号,移项,合并同类项,将未知数系数化为1即可求解;⑶去分母,移项,合并同类项,将未知数系数化为1即可求解;⑷去分母,移项,合并同类项,将未知数系数化为1即可求解.【详解】(1)7y+6=-9y,移项,得7y+9y=-6,合并同类项,16y=-6.系数化为1,得y=-.(2)去括号,得6y-2-6+12y=9y+10.移项得6y+12y-9y=10+2+6,合并同类项,得9y =18,系数化为1,得y=2.(3)去分母,得6y-3(y-1)=12-(y+2),去括号,得6y-3y+3=12-y-2,移项,得6y-3y+y=12-2-3,合并同类项,得4y=7,系数化为1,得y=.(4)去分母,得2(3x-1)-12+3(2x+4)=18(x-1),去括号,得6x-2-12+6x+12=18x-18,移项,得6x+6x-18x=-18+2+12-12,合并同类项,得-6x=-16,系数化为1,得x=.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,是解决本题的关键.6.(1)=;(2);(3)y=-1(4)=0.1【解析】【分析】(1)移项,合并同类项,系数化为1即可;(2)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;(3)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解;(4)先利用分数的基本性质将分母中含有的小数转化为整数,再去分母,去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【详解】(1)移项得,7x+3x=8-6,合并同类项得,10x=2,系数化为1得x=;(2)去括号得,4x-60+3x=6x-63+7x,移项得,4x+3x-6x-7x=-63+60,合并同类项得,-6x=-3,系数化为1得,x=;(3)去分母得,2y-5(y-1)=10-2(y+2),去括号得,2y-5y+5=10-2y-4,移项得,2y-5y+2y=10-4-5,合并同类项得,-y=1,系数化为1得,y=-1;(3)方程可化为,-=,去分母得,18-80x-6(1.3-3x)=4(50x-4),去括号得,18-80x-7.8+18x=200x-16,移项得,-80x+18x-200x=-16-18+7.8,合并同类项得,-262x=-26.2,系数化为1得,x=0.1.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.(1)x=3;(2)x=-7.【解析】【分析】(1)先去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解;(2)先去分母,再去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解.【详解】(1)去括号得:4x﹣15+3x=6,移项得:4x+3x=6+15,合并同类项得:7x=21,化系数为1得:x=3;(2)去分母得:3(x+1)﹣2(2x﹣1)=12,去括号得:3x+3﹣4x+2=12,移项得:3x﹣4x=12﹣3﹣2,合并同类项得:﹣x=7,化系数为1得:x=﹣7.【点睛】本题考查了一元一次方程的求解方法,去分母,去括号,移项,合并同类项,化系数为1,是常用的一元一次方程的求解方法.8.(1)a=﹣28;(2)x=.【解析】【分析】(1)通过去分母、移项合并同类项,化未知数系数为1来解方程;(2)先去分母,然后去括号,移项、合并同类项【详解】(1)移项,得:a﹣a =6 +1,合并同类项,得:﹣a=7,系数化为1,得:a=﹣28;(2)去分母得:18x+3(x﹣1)=18﹣2(2x+1),去括号,得18x+3x﹣3=18﹣4x﹣2,移项、合并同类项,得:25x=19,系数化为1,得:x=.【点睛】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去分母、去括号、移项、合并同类项、系数化为1等.9.(1)72x =-;(2)19x =. 【解析】试题分析:(1)方程去括号,移项合并,将x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.试题解析:(1)去括号得:3x-3=5x+4,移项合并得:-2x=7,解得:x=72-; (2)去分母得:9-21x=5-20x-15,移项合并得:x=19.10.(1) x =2;(2)x =-4【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1进行解答即可; (2)两边同乘12去掉分母,然后去括号,移项,合并同类项,系数化为1即可. 试题解析:解:(1)()()512132x x x ---=+ ,5x -5-2+2x =3+2x ,5x +2x -2x =3+2+5,5x =10,x =2;(2)221146x x --+=, 3(x +2)-12=2(2x -1),3x +6-12=4x -2,4x -3x =6-12+2,x =-4.11.(1)x=2;(2)x=1.5.【解析】试题分析:(1)去括号,移项.(2)去分母,去括号,合并同类项,移项,系数化1. 试题解析:解:(1)方程整理得:x +1=3,解得:x =2.(2)去分母得:4x ﹣2=6﹣2x +1,移项合并得:6x=9,解得:x=1.5.点睛:解方程的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5) 化系数为1.易错点:(1)去分母时,要给方程两边的每一项都乘以最小公倍数,特别强调常数项也必须要乘最小公倍数.(2)乘最小公倍数的时候,一定要与每一个字母进行相乘,不要漏掉某一个分母.(3)如果某字母项或某常数项前面是有符号的,那么乘最小公倍数的时候,这个符号不要丢掉.12.8【解析】分析:因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元一次方程,求出方程的根,即可得到结果.详解:①当2x-4≥0时,方程化为|4x-11|=2x-1,即4x-11=2x-1或4x-11=1-2x,解得x=5或x=2;②当2x-4<0时,方程化为|5-4x|=2x-1,即5-4x=2x-1或5-4x=1-2x,解得x=1或x=2(舍去),故方程|2|2x-4|-3|=2x-1的所有解的和为5+2+1=8.点睛:本题考查的是含绝对值符号的一元一次方程,由于带有绝对值符号,必须对题目进行讨论,对重复的根要舍去.13.(1)x=9;(2)a=14;(3)2【解析】试题分析:(1)方程6x-9=10x-45即可得出这个相同的解;(2)把(1)中的解代入方程3a-1=3(x+a)-2a,然后解以a为未知数的方程即可;(3)把a的值代入[-2],根据[m]的定义求解即可.试题解析:(1)6x-9=10x-45,6x-10x=9-45,-4x=-36,x=9;(2)把x=9代入方程3a -1=3(x+a)-2a得:3a-1=3(9+a)-2a,3a-1=27+3a-2a,2a=28,a=14,(3)因为a =14,所以[-2]= [143-2]=[ 83]=2. 考点:一元一次方程.14.(1);(2). 【解析】【分析】根据解一元一次方程的步骤解方程即可.【详解】解:(1)(2)【点睛】考查解一元一次方程,一般步骤是:去分母,去括号,移项,合并同类项,把系数化为1.15.(1)x=3;(2)x=134【解析】试题分析:根据解一元一次方程的步骤解方程即可.试题解析:(1)去括号得:4x −15+3x =6,移项、合并得:7x =21,系数化为1得:x =3.(2)去分母得: ()()31122x x -=-+,去括号得: 33122x x -=--,移项合并得: 413x =,系数化为1得: 13.4x = 点睛:解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1. 16.(1)见解析;(2)见解析.【解析】【分析】(1)把a=-1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,由于b≠b+1,根据“奇异方程”定义即可求解;(2)根据“奇异方程”定义得到a(a-b)=b,方程a(a-b)y+2=(b+)y可化为by+2=(b+)y,解方程即可求解.【详解】(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.【点睛】考查了解一元一次方程,关键是熟悉若一个关于x的方程ax+b=0(a≠0)的解为x=b-a,则称之为“奇异方程”.17.(1)x=2;(2)y=2【解析】【分析】(1)移项、合并同类项即可求解;(2)先去括号,再移项、合并同类项和系数化为1即可求解;【详解】(1)移项,得合并同类项,得(2)去括号,得移项,得合并同类项,得系数化为1,得【点睛】本题考查了一元一次方程的解法,熟练掌握解一元一次方程的步骤是解题的关键.一般步骤是:去分母,去括号,移项,合并同类项,把系数化为1.18.x=−.【解析】【分析】先把分母中的小数化为整数,再去分母,去括号,移项,合并同类项,把x的系数化为1即可.【详解】把分母中的小数化为整数得:﹣=0.5去分母得:5x﹣10﹣(10x+5)=0.5去括号得:5x﹣10﹣10x﹣5=0.5移项得:5x﹣10x=0.5+10+5合并同类项得:-5x=15.5x的系数化为1得:x=-.【点睛】本题考查了解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.19.①去分母时右边﹣1没有乘以10;④等式右边缺失;⑤化系数为1时,没有除以x的系数;﹣;x=4.【解析】【分析】依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1求解可得.【详解】他的错步及错误原因:①去分母时右边﹣1没有乘以10;④等式右边缺失,⑤化系数为1时,没有除以x的系数;方程的正确的解是x=﹣.2(x+1)﹣4=8+2﹣x,2x+2﹣4=8+2﹣x,2x+x=8+2﹣2+4,3x=12,x=4.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.20.(1)x=﹣12;(2)x=﹣13;(3)x=﹣25;(4)x=﹣.【解析】【分析】(1) 移项合并,将x系数化为1,即可求出解;(2) 去括号,移项合并,将x系数化为1,即可求出解;(3) 去分母,去括号,移项合并,将x系数化为1,即可求出解.(4) 去括号,移项合并,将x系数化为1,即可求出解.【详解】解:(1)3x﹣2x=﹣5﹣7,x=﹣12;(2)2x﹣2﹣6﹣3x=5,2x﹣3x=5+2+6,﹣x=13,x=﹣13;(3)4(2x﹣1)=24+3(3x﹣1),8x﹣4=24+9x﹣3,8x﹣9x=24﹣3+4,﹣x=25,x=﹣25;(4)﹣=+1,﹣=1+,﹣x=,x=﹣.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.(1)-(2)x=-5(3)2xy-y2,-5【解析】【分析】(1)先计算16、(-4)2,再算括号里面和乘除法,最后算减法得结果;(2)按解一元一次方程的步骤求解即可;(3)先对代数式进行化简,然后再代入求值.【详解】(1)原式=-1-(-)××(-14)=-1-=-;(2)去分母,得3(x-7)-2(2x-5)=-6,去括号,得3x-21-4x+10=-6,移项,得3x-4x=-6+21-10,合并,得-x=5所以,x=-5;(3)原式=2x2-4xy+(2y2-3x2+6xy-3y2+x2)=2x2-4xy+2y2-3x2+6xy-3y2+x2=2xy-y2.当x=1,y=-时,原式=2×1×(-)-(-)2=-3-=-5.【点睛】本题考查了有理数的混合运算、整式的加减、解一元一次方程等知识点.解决(1)的关键是掌握有理数混合运算的顺序,注意(2)去分母时勿漏乘,(3)需先化简再求值.. 22.(1)x=0.2;(2)x=.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:4x-8=3+9x-12,移项合并得:-5x=-1,解得:x=0.2;(2)去分母得:30x-119+140x=21,移项合并得:170x=140,解得:x=.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.x=﹣7【解析】【分析】根据题意,列出方程,然后根据一元一次方程的解法,直接解方程即可【详解】解:根据题意,得:去分母,得:x +1−2(x −1)=10,去括号,得:x +1−2x +2=10,移项,得:x −2x =10−3,合并同类项,得:−x =7,系数化为1,得:x =−7.,故当x =−7时,代数式比代数式少1.【点睛】 考查解一元一次方程,列出方程,熟练掌握解一元一次方程的步骤是解题的关键.24.x=4【解析】【分析】根据一元一次方程的求解方法:移项合并同类项,再系数化一,即可求得答案.【详解】原方程化为:1.3x+0.5x=0.7+6.5,整理得:1.8x=7.2,解得:x=4.【点睛】本题考查了解一元一次方程,解题的关键是熟练的掌握解一元一次方程的方法.25.3x =【解析】试题分析:按照解一元一次方程的步骤解方程即可.试题分析: ()()221161x x +=--,42161x x +=-+,41612x x +=+-,515x =,3x =.26.x=﹣15.【解析】试题分析:先去分母,再去括号,移项合并同类项,系数化1. 试题解析:去分母得:3(x+1)﹣4(2x﹣2)=12,去括号得:3x+3﹣8x+8=12,移项、合并同类项得:﹣5x=1,系数化为1得:x=﹣15.点睛:解一元一次方程的步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解27.x=1.【解析】分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.详解:去分母,得6x-3(x-1)=12-2(x+2).去括号,得6x-3x+3=12-2x-4.移项,得6x-3x+2x=12-4-3.合并同类项,得5x=5.系数化为1,得x=1.点睛:此题考查了一元一次方程的解法,注意:不要漏乘不含分母的项;若分子是一个整体,需加上括号;移项时项的系数要变号.28.m=﹣1.【解析】试题分析:先用含m的代数式表示出两个方程的解,然后根据第一个方程的解比第二个方程的解大2列出关于m的方程求解.解:解关于x的方程5m+12x=6+x,得:x=,解关于x的方程x(m+1)=m(1+x),得:x=m,根据题意得﹣m=2,解得:m=﹣1.点睛:本题考查了含参一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.29.(1)- 14;(2)0.【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m的值即可;(2)根据题意列出方程,利用非负数的性质求出a与b的值,代入计算即可求出m的值.试题解析:解:(1)方程4x﹣2m=3x﹣1,解得:x=2m﹣1.方程x=2x﹣3m,解得:x=3m.由题意得:2m﹣1=6m,解得:m=﹣14;(2)由|a﹣3|+(b+1)2=0,得到a=3,b=﹣1,代入方程211 22b a mb a m-+⎛⎫--+=⎪⎝⎭,得:513122mm-⎛⎫---+=⎪⎝⎭,整理得:513122mm-++-=,去分母得:m﹣5+1+6﹣2m=2解得:m=0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.。
2024年北师大版七年级上册数学复习专项突破练11 一元一次方程的解法
于 y 的方程:
从而解得
6 y -2 y =3 y +5
x =2
;
1
2
3
,通过先求 y 的值,
(2)利用上述方法解方程:
3(x-1)- (x-1)=2(x-1)- (x+1).
解:设 x -1= y ,
则原方程可化为3 y - y =2 y - (y+2),
解得 y =- .
=2,可将绝对值符号内的 x -1看成一个整体,则可得 x
-1=2或 x -1=-2,分别解方程可得 x =3或 x =-1.利
用上面的知识,解下列方程:
1
2
3
(1)| x +4|=5;
解:因为| x +4|=5,
所以 x +4=-5或 x +4=5,
解得 x =-9或 x =1.
(2)|2 x -10|=7.
−
−
=x-
;
解: x =-
1
2
3
(5)
+
+
=5 x ;
解: x =1
−
+
(6)
-
=3.
.
.
解: x =20
1
2
3
题型2
分类讨论法解含绝对值的方程
2. 【2024汉中月考】因为|2|=2,|-2|=2,所以
当| x |=2时,可得 x =2或 x =-2.若解方程| x -1|
北师陕西 七年级上册
第五章
一元一次方程
专项突破练11 一元一次方程的解法
(完整)含参数一元一次方程、含绝对值一元一次方程
含参数的一元一次方程、含绝对值的一元一次方程一. 含有参数的一元一次方程 1. 整数解问题2. 两个一元一次方程同解问题3. 已知方程解的情况求参数4. 一元一次方程解的情况(分类讨论)二: 解含有绝对值的一元一次方程 一. 含有参数的一元一次方程 1. 整数解问题(常数分离法)例题1:⑴ 【中】 已知关于x 的方程9314x kx +=+有整数解,求整数_____k = 答案:(9)11k x -= 119x k=- ∵,x k 均为整数 ∴91,11k -=±± ∴2,8,10,20k =-⑵ 【中】 关于x 的方程()2(1)130n x m x -+--=是一元一次方程(1)则,m n 应满足的条件为:___m ,____n ; (2)若此方程的根为整数,求整数=____m答案:(1)1,1≠=;(2)由(1)可知方程为(1)3m x -=, 则31x m =- ∵此方程的根为整数.∴31m -为整数又∵m 为整数,则13,1,1,3m -=-- ∴2,0,2,4m =-测一测1: 【中】 关于x 的方程143+=+x ax 的解为正整数,则整数a 的值为( )A.2B.3C.1或2D.2或3 答案:D方程143+=+x ax 可化简为:()24-=-x a 解得42--=a x 解为正整数,()214--=-或a 32或=a测一测2: 【中】 关于x 的方程917x kx -=的解为正整数,则k 的值为___________答案:917x kx -=可以转化为(9)17k x -= 即:179x k=-,x 为正整数,则88k =或- 测一测3: 【中】m 为整数,关于x 的方程 6x mx =- 的解为正整数,求_____m = 答案: 由原方程得:61x m =+ ,x 是正整数,所以1m + 只能为6的正约数, 11,2,3,6m += 所以0,1,2,5m =2. 两个一元一次方程同解问题例题2:⑴ 【易】若方程29ax x -=与方程215x -=的解相同,则a 的值为_________【答案】第二个方程的解为3x =,将3x =代入到第一个方程中,得到369a -= 解得 5a =⑵ 【中】若关于x 的方程:k(x+3)(2)10354k x x --=-与方程1252(1)3x x --+=的解相同,求___k = 【答案】由方程k(x+3)(2)10354k x x --=-解得x=2, 代入方程1252(1)3xx --+=中解得k=4测一测1:【易】方程213x +=与202a x--=的解相同,则a 的值是( ) A 、7 B 、0 C 、3 D 、5 【答案】D第一个方程的解为1x =,将1x =代入到第二个方程中得:12=02a --,解得5a = 例题3: 【中】 若关于x 的方程231x -=和32x kk x -=-解互为相反数,则k 的值为() A. 143- B 。
2022-2023学年七年级数学上学期期末专题07 解一元一次方程重难题型分类练(九大考点)
解一元一次方程重难题型分类练(九大考点)一.方程定义的理解1.已知(m ﹣3)x |m |﹣2+m ﹣3=0是关于x 的一元一次方程,则m = .2.已知关于x 的方程(m ﹣1)x |m |﹣3=0是一元一次方程,则m = .二.含绝对值的方程--分类思想3.已知|2x ﹣3|=1,则x 的值为 .4.已知方程|2x ﹣1|=2﹣x ,那么方程的解是 . 5.先阅读下列解题过程,然后解答后面两个问题. 解方程:|x +3|=2.解:当x +3≥0时,原方程可化为x +3=2,解得x =﹣1; 当x +3<0时,原方程可化为x +3=﹣2,解得x =﹣5. 所以原方程的解是x =﹣1或x =﹣5. (1)利用上述方法解方程:|3x ﹣2|=4.(2)当b 满足什么条件时,关于x 的方程|x ﹣2|=b ﹣1,①无解;②只有一个解;③有两个解.三.方程中的新定义6.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =ab 2﹣2ab +a .如:1☆3=1×32﹣2×1×3+1=4.(1)求(﹣2)☆5的值; (2)若a+12☆3=8,求a 的值;(3)若m =2☆x ,n =(13−x )☆3(其中x 为有理数),试比较大小m n (填“>”、“<”或“=”).7.“*”是新规定的这样一种运算法则:a *b =a 2﹣2ab ,比如3*(﹣2)=32﹣2×3×(﹣2)=21 (1)试求(﹣2)*3的值;(2)若(﹣2)*(1*x )=x ﹣1,求x 的值.8.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a . 如:1⊕3=1×32+2×1×3+1=16.(1)则(﹣2)⊕3的值为 ; (2)若a+12⊕(−3)=8,求a 的值.9.我们规定:若关于x 的一元一次方程ax =b 的解为x =b +a ,则称该方程为“和解方程”.例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”. 请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =m 是“和解方程”,求m 的值;(2)已知关于x 的一元一次方程﹣2x =mn +n 是“和解方程”,并且它的解是x =n ,求m ,n 的值.10.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x =8和x +1=0为“美好方程”.(1)若关于x 的方程3x +m =0与方程4x ﹣2=x +10是“美好方程“,求m 的值; (2)若“美好方程”的两个解的差为8,其中一个解为n ,求n 的值; (3)若关于x 的一元一次方程12022x +3=2x +k 和12022x +1=0是“美好方程”,求关于y 的一元一次方程12022(y +1)+3=2y +k +2的解.四.解方程易错--去分母,去括号11.解方程: (1)y−12=2−y+25(2)x−30.3−2x+0.10.2=−112.解下列方程:(1)2(2x ﹣1)=3x ﹣1 (2)3x+42=2x+13(3)1.5x0.3−1.5−x0.1=1.5(4)3x−13−x =1−4x−16. 13.解方程:(1)12[x −12(x ﹣1)]=23(x +2).(2)7+0.3x−0.20.2=1.5−5x0.5. 五.看错类---将错就错来改错14.王聪在解方程x+a 3−1=2x−13去分母时,方程左边的﹣1没有乘3,因而求得方程的解为x =2,你能正确求出原先这个方程的解吗? 15.小明是七年级(2)班的学生,他在对方程2x−13=x+a 2−1去分母时由于粗心,方程右边的﹣1没有乘6而得到错解x =4,你能由此判断出a 的值吗?如果能,请求出方程正确的解. 16.晶晶在解关于x 的方程ax−12+6=2+x 3时,把6错写成1,解得x =1,并且晶晶在解题中没有错误,请你正确求出此方程的解.六.解的关系---先求解。
几种类型的一元一次方程的解法
几种类型的一元一次方程的解法 解一元一次方程时,一般按照“去分母、去括号、移项、合并同类项、系数化为1”等步骤来进行,但是对于某些特殊类型的一元一次方程,需根据实际情况来进行求解.下面分类举例说明.一、含绝对值的方程的解法解含有绝对值符号的一元一次方程的基本思路就是去掉绝对值符号.转化为一般方程来求解.常用的转化方法有以下几种:(一)、对于最简绝对值方程,依据绝对值的定义,去掉绝对值符号,化为两个一元一次方程分别解之,即:若||x a = ,则x a =± .例1.(2001年湖南常德中考题)已知|31|2x -=,则x =( ).(A )1 (B )-13 (C )1或-13(D )无解 解:由绝对值的定义,得312312x x -=-=-或,分别解得113x x ==-或,故选(C ). 例2.(1996年“希望杯”赛题)若||,x a =则||x a -=( ).(A )0或2a (B )x a - (C )a x - (D )0 解:由绝对值的定义,得x a =±,分别代入||x a -中得: 当x a =时,||0x a -=;当x a =-时,||2x a a -=.故选(A ). 例 3.(2001年重庆市竞赛题)若|20002000|202000x +=⨯.则x 等于( ).(A )20或-21 (B )-20或21(C )-19或21 (D )19或-21 解:由绝对值的定义,得|20002000|202000x +=±⨯,分别解得1921x x ==-或.故选(D ).同步练习:1.(1997年四川省初中数学竞赛题)方程|5|25x x -+=-的根是_________.2.(2000年山东省初中数学竞赛题)已知关于x 的方程22()mx m x +=-的解满足1||102x --=,则x 的值是( ).(A )10或25 (B )10或-25(C )-10或25 (D )-10或-253.(2000年重庆市初中数学竞赛题)方程|56|65x x +=-的解是_________.答案:1.x =-10;2.(C );3.11x = .(二)、对于含有双重或多重绝对值符号的较复杂的绝对值方程,可用零点分段法分类讨论转化为最简绝对值方程来解.例4.(“迎春杯”竞赛题)解方程|3||1|1x x x +--=+ 分析与解:(1)定零点令x +3=0,x -1=0.解得x =-3,x =1.(2)对x 的取值分段讨论以-3,1为界将数轴分为三段,即x ≤-3,-3<x ≤1,x >1.(3)分别在每一段上讨论当x ≤-3时,-x -3+x -1=x +1,解得x =-5.当-3<x ≤1时,x +3+x -1=x +1,解得x =-1.当x >1时,x +3-x +1=x +1,解得x =3.同步练习:1.(2000年“希望杯”竞赛题)若0a <,则200011||a a+等于( ).(A )2007a (B )-2007a (C )-1989a (D )1989a2.(“江汉杯”竞赛题)方程|1||99||2|1992x x x +++++=共有()个解.(A)4 (B)3 (C)2 (D)1答案:1.(D);2.(C).(三)、对于某些特殊的绝对值方程,还可借助数轴用绝对值的几何意义求解.例5.(第11届“希望杯”竞赛题)适合|27||21|8++-=a a的整数的值的个数有().(A)5 (B)4 (C)3 (D)2解:由已知知,即在数轴上表示2a的点到-7和+1的点的距离的和等于8,所以2a表示-7到+1之间的偶数,有-6、-4、-2、0四个.故选(B).例 6.(1999年武汉市竞赛题)若0,0><则使a b-+-=-成立的的取值范围是_______.x a x b a b||||解:||-表示数x和b的x bx a-表示数x和a的点的距离,||点的距离,a-b表示a、b的点的距离,可知,表示x的点应位于表示a、b的两点之间.故b≤x≤a即为所求的x的取值范围.同步练习:1.(1998年“希望杯”竞赛题)适合关系式|34||32|6-++=x x的整数的值是().(A)0 (B)1 (C)2 (D)大于2的自然数2.(“祖冲之杯”竞赛题)解方程x x-+-=:.|1||5|4答案:1.(C);2.1≤x≤5.二、含字母系数的一元一次方程一个一元一次方程中,除了未知数以外,还有其它字母的方程叫做含有字母系数的方程,那么,这类方程怎样解呢?含字母系数的一元一次方程总可化为ax b=的形式.其方程的解由a b、的取值范围确定或对解方、的取值范围确定,当字母a b程的过程并未产生实质性的影响时,其解法同数字系数的一元一次方程一样;当字母a b、的取值范围围给出时,则需讨论解的情况.例7.解下列关于的方程:()()()(0)cx b c x a b x b a x a c--=---+≠.分析:这个方程中除了字母x外,还有字母a b c、、,由于说明是关于x的方程,应视为x未知数,a b c、、为已知数,故去括号,移项,合并同类项等整理时都要以x为未知数进行.例8.解关于x的方程:.分析:这个方程仍然以x为未知数,看作已知数来解.同步练习:解关于的方程.答案:11 xa =-.。
七年级上数学期末压轴题专项复习:动点问题(pdf版)
题型一:绝对值方程教师备课提醒:由于绝对方程会以“解普通一元一次方程”为基础,所以授课老师在讲解本部分内容 时候根据班级情况复习普通的一元一次方程解法. 含绝对值的一次方程的解法⑴形如 ax + b = c (a ≠ 0) 型的绝对值方程的解法:①当c < 0 时,根据绝对值的非负性,可知此时方程无解;②当c = 0 时,原方程变为 ax + b = 0 ,即 ax + b = 0 ,解得 x = - b;a ③当c > 0 时,原方程变为 ax +b =c 或 ax + b = -c ,解得 x = c - b 或 x = -c - b.a a ⑵形如 ax +b = cx + d (ac ≠ 0) 型的绝对值方程的解法:①根据绝对值代数意义将原方程化为两个方程 ax + b = cx + d 和 ax + b = -(cx + d ) ;2动点问题知识互联网②分别解方程 ax + b = cx + d 和 ax + b = -(cx + d ) . ⑶形如 ax + b = cx + d (ac ≠ 0) 型的绝对值方程的解法: ①根据绝对值的非负性可知cx + d ≥ 0 ,求出 x 的取值范围;②根据绝对值的代数意义将原方程化为两个方程 ax + b = cx + d 和 ax + b = -(cx + d ) ; ③分别解方程 ax + b = cx + d 和 ax + b = -(cx + d ) ; ④将求得的解代入cx + d ≥ 0 检验,舍去不合条件的解.【例题1】 ⑴若 x + 5 = 2 ,则x = .⑵若 3x + 1 = 4 ,则 x = .⑶解关于 x 的绝对值方程: 1 1 - 2x - 1= 1 .3 6【解析】 ⑴ x = -3 或 x = -7 ;⑵ x = 1 或x = - 5 ;⑶ x = 9 或 x = - 5 3 4 4【例题2】 ⑴ 2x + 3 = 4 - x ;⑵ -3x + 2 = 3 + x .【解析】 ⑴ x = 1 或 x = -7 ;⑵ x = - 1 或 x = 5 3 4 2【例题3】 ⑴若 5x + 6 = 6x - 5 ,则 x = .⑵解方程 【解析】⑴11; 4x + 3 = 2x + 9 . ⑵解法一:令4x + 3 = 0 得 x = - 3,将数分成两段进行讨论:4①当 x ≤- 3 时,原方程可化简为: -4x - 3 = 2x + 9 , x = -2 在 x ≤- 3的范围内,是方程4 4 的解.②当 x >- 3 时,原方程可化简为: 4x + 3 = 2x + 9 , x = 3 在 x >- 3的范围内,是方程的4 4 解.综上所述 x = -2 和 x = 3 是方程的解. 解法二:依据绝对值的非负性可知 2x + 9 ≥ 0 ,即 x ≥ - 9.原绝对值方程可以转化为2① 4x + 3 = 2x + 9 ,解得: x = 3 ,经检验符合题意. ②4x + 3 = -(2x + 9 ,解得 x = -2 ,经检验符合题意. 综合①②可知 x = -2 和 x = 3 是方程的解.例题赏析1. 数轴上两点的距离①两点间的距离=这两点分别所表示的数的差的绝对值,②两点间的距离=右端点表示的数- 左端点表示的数。
含绝对值符号的一元一次方程习题附答案
6.2.5含绝对值符号的一元一次方程完成时间:40min一.选择题(共30小题)1.已知|2﹣x|=4,则x的值是()A.﹣3 B.9 C.﹣3或9 D.以上结论都不对2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a ﹣b|的结果是()A.2a B.2b C.2c D.03.方程|3x|+|x﹣2|=4的解的个数是()A.0B.1C.2D.34.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.35.方程|2x﹣6|=0的解是()A.3B.﹣3 C.±3 D.6.若|x﹣1|=3,则x=()A.4B.﹣2 C.±4 D.4或﹣27.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D.x=﹣38.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣19.方程|x﹣3|+|x+3|=6的解的个数是()A.2B.3C.4D.无数个10.若|x﹣2|=3,则x的值是()A.1B.﹣1 C.﹣1或5 D.以上都不对11.方程|3x|=18的解的情况是()A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解12.如果|x﹣1|+x﹣1=0,那么x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1 13.若|2000x+2000|=20×2000,则x等于()14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣115.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2B.4C.8D.1616.若|x|=3x+1,则(4x+2)2005=()A.﹣1 B.0C.0或1 D.117.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1 18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是()A.±B.±C.±7 D.±119.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数21.方程|2007x﹣2007|=2007的解是()A.0B.2C.1或2 D.2或022.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是()A.0B.±C.D.±23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤324.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.425.方程|x﹣19|+|x﹣93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在26.方程2|x|+3=5的解是()A.1B.﹣1 C.1和﹣1 D.无解27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.028.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是C.0,2,4不全是D.0,2,4之外没29.使方程3|x+2|+2=0成立的未知数x的值是()A.﹣2 B.0C.D.不存在30.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个6.2.5含绝对值符号的一元一次方程参考答案与试题解析一.选择题(共30小题)1.已知|2﹣x|=4,则x的值是()A.﹣3 B.9C.﹣3或9 D.以上结论都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:绝对值为4的数是±4,从而可去掉绝对值符号,计算即可.解答:解:∵|2﹣x|=4,∴2﹣x=4或2﹣x=﹣4,解得:x=﹣3或9;故选C.点评:本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等.2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是()A.2a B.2b C.2c D.0考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,可判断出a,b,c的取值范围,进而求解.解答:解:根据关于x的方程|5x﹣4|+a=0无解,可得出:a>0,由|4x﹣3|+b=0有两个解,可得出:b<0,由|3x﹣2|+c=0只有一个解,可得出;c=0,故|a﹣c|+|c﹣b|﹣|a﹣b|可化简为:|a|+|b|﹣|a﹣b|=a﹣b﹣a+b=0.故选D.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是根据已知条件判断出a,b,c的取值范围.然后化简.3.方程|3x|+|x﹣2|=4的解的个数是()A.0B.1C.2D.3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:根据x的取值范围取绝对值,所以需要分类讨论:①当x≥2时;②当0<x<2时;③当x<0时;根据x 的三种取值范围来解原方程.解答:解:①当x≥2时,由原方程,得3x+x﹣2=4,即4x﹣2=4,②当0<x<2时,由原方程,得3x﹣x+2=4,解得x=1;③当x<0时,由原方程,得﹣3x﹣x+2=4,解得x=﹣.综上所述,原方程有2个解.故选C.点评:本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.4.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.3考点:含绝对值符号的一元一次方程;一元一次方程的解.专题:计算题.分析:本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.解答:解:∵|x﹣|=0,∴x=,把x代入方程mx+2=2(m﹣x)得:m+2=2(m﹣),解之得:m=2;故选B.点评:此类题型的特点是,有2个方程,一个含有字母系数,一个是不含字母系数的方程,2方程同解,求字母系数的值.一般方法是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.5.方程|2x﹣6|=0的解是()A.3B.﹣3 C.±3 D.考点:含绝对值符号的一元一次方程.分析:根据非负数的性质去掉绝对值符号,求出未知数的值即可.解答:解:∵|2x﹣6|=0,∴2x﹣6=0,∴x=3.故选A.点评:本题考查的是非负数的性质,是中学阶段的基础题.6.若|x﹣1|=3,则x=()A.4B.﹣2 C.±4 D.4或﹣2考点:含绝对值符号的一元一次方程.专题:分类讨论;方程思想.分析:根据绝对值的意义,得出x﹣1=±3,可解得x的值.注意结果有两个.所以x﹣1=±3,解得x=4或﹣2.故选D.点评:本题考查了含绝对值符号的一元一次方程,注意绝对值都是非负数,互为相反数的两数绝对值相等.7.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D. x=﹣3考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,再根据解一元一次方程的步骤求解即可.解答:解:①当2x﹣1≥0,即x≥时,原式可化为:2x﹣1=4x+5,解得,x=﹣3,舍去;②当2x﹣1<0,即x<时,原式可化为:1﹣2x=4x+5,解得,x=﹣,符合题意.故此方程的解为x=﹣.故选C.点评:此题比较简单,解答此题的关键是根据绝对值的性质去掉绝对值符号,不要漏解.8.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣1考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:分两种情况去解方程即可①x≥0;②x<0.解答:解:①当x≥0时,去绝对值得,x=2x+1,得x=﹣1,不符合预设的x≥0,舍去.②当x<0时,去绝对值得,﹣x=2x+1,得x=﹣.故选B.点评:本题考查了一元一次方程的去绝对值的解法.要分类讨论.9.方程|x﹣3|+|x+3|=6的解的个数是()A.2B.3C.4D.无数个考点:含绝对值符号的一元一次方程.分析:根据x的取值范围取绝对值,所以需要分类讨论:①当x≥3时;②当﹣3≤x<3时;③当x<﹣3时;根据x的三种取值范围来解原方程即可.解答:解:当x≥3时,原方程可变形为:x﹣3+x+3=6,解得:x=3,当﹣3≤x<3时,原方程可变形为:﹣x+3+x+3=6,得出原方程有无数个解;当x<﹣3时,原方程可变形为:﹣x+3﹣x﹣3=6,解得:x=﹣3,故选D.点评:本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.10.若|x﹣2|=3,则x的值是()A.1B.﹣1 C.﹣1或5 D.以上都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:|x﹣2|=3去绝对值,可得x﹣2=±3,然后计算求解.解答:解:∵|x﹣2|=3,∴x﹣2=±3,∴x=﹣1或5.故选C.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.方程|3x|=18的解的情况是()A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析:去绝对值符号时,要分两种情况进行讨论,即x≥0和x<0两种情况.解答:解:∵|3x|=18∴这个方程就变形为3x=±18两个方程.当x≥0时,3x=18,∴x=6当x<0时,﹣3=18,∴x=﹣6故选B.点评:解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.解决本题还要运用分类讨论思想.12.如果|x﹣1|+x﹣1=0,那么x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1考点:绝对值;含绝对值符号的一元一次方程.专题:计算题.分析:先根据绝对值的性质讨论x﹣1的符号,确定出x的取值范围,再解关于x的一元一次方程,求出x的值.解答:解:当x﹣1≥0,即x≥1时,原方程可化为x﹣1+x﹣1=0,解得,x=1;当x﹣1<0,即x<1时,原方程可化为1﹣x+x﹣1=0,x无解.综上所述原方程的解集是x≤1,故选D.点评:本题考查的是含绝对值符号的一元一次方程,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;13.若|2000x+2000|=20×2000,则x等于()A.20或﹣21 B.﹣20或21 C.﹣19或21 D.19或﹣21专题:计算题.分析:根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,然后去掉绝对值即可.解答:解:根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,∴x+1=20或﹣(x+1)=20,移项解得:x=19或x=﹣21.故选D.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是正确去掉绝对值符号,不要漏解.14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣1考点:含绝对值符号的一元一次方程.分析:根据绝对值的性质和方程|x|=ax﹣a有正根且没有负根,确定a的取值范围.解答:解:①当ax﹣a≥0,a(x﹣1)>0,解得:x≥1 且a≥0,或者x≤1且a≤0,②正根条件:x>0,x=ax﹣a,即x=>0,解得:a>1 或a<0,由①,即得正根条件:a>1 且x≥1,或者a<0,0<x≤1,③负根条件:x<0,得:﹣x=ax﹣a,解得:x=<0,即﹣1<a<0,由①,即得负根条件:﹣1<a<0,x<0,根据条件:只有正根,没有负根,因此只能取a>1(此时x≥1,没负根),或者a≤﹣1(此时0<x≤1,没负根).综合可得,a>1或a≤﹣1.故选:D.点评:此题主要考查了含绝对值符号的一元一次方程,根据绝对值的性质,要分x≥0和x<0,两种情况进行讨论,确定a的取值范围.15.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2B.4C.8D.16考点:含绝对值符号的一元一次方程.分析:先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.解答:解:(1)当2a+7≥0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=82a+7+2a﹣1=8,解得,a=解不等式2a+7≥0,2a﹣1≥0得,a≥﹣,a≥,所以a≥,而a又是整式,(2)当2a+7≤0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7﹣2a+1=8,解得,a=﹣解不等式2a+7≤0,2a﹣1≤0得,a≤﹣,a≤,所以a≤﹣,而a又是整数,故a=﹣不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=82a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣,a≤,所以﹣≤a≤,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选B.点评:本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.16.若|x|=3x+1,则(4x+2)2005=()A.﹣1 B.0C.0或1 D.1考点:含绝对值符号的一元一次方程;绝对值;有理数的乘方;解一元一次方程.专题:计算题.分析:当x≥0时去绝对值符号,求出方程的解;当x<0时,去绝对值符号,求出方程的解,代入求出即可.解答:解:当x≥0时,原方程化为:x=3x+1,∴x=﹣<0(舍去),当x<0时,原方程化为:﹣x=3x+1,∴x=﹣,∴(4x+2)2005==1,故选D.点评:本题主要考查对绝对值,解一元一次方程,含绝对值符号的一元一次方程,有理数的乘方等知识点的理解和掌握,求出未知数x的值是解此题的关键.17.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1考点:含绝对值符号的一元一次方程.分析:由方程|2x﹣1|﹣a=0恰有两个正数解,即可得不等式组,解此不等式组即可求得答案.解答:解:∵方程|2x﹣1|﹣a=0恰有两个正数解,∴,解得:0<a<1.故选C.点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题难度较大,解题的关键是根据题意得到不等式组:.18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是()A.±B.±C.±7 D.±1考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据x﹣y=4,得:x=y+4,代入|x|+|y|=7,然后分类讨论y的取值即可.解答:解:由x﹣y=4,得:x=y+4,代入|x|+|y|=7,∴|y+4|+|y|=7,①当y≥0时,原式可化为:2y+4=7,解得:y=,②当y≤﹣4时,原式可化为:﹣y﹣4﹣y=7,解得:y=,③当﹣4<y<0时,原式可化为:y+4﹣y=7,故此时无解;所以当y=时,x=,x+y=7,当y=时,x=,x+y=﹣7,综上:x+y=±7.故选C.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是把x用y表示出来后进行分类讨论y的取值范围.19.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析:分别讨论①x≥,②﹣<x<,③x≤﹣,根据x的范围去掉绝对值,解出x,综合三种情况可得出x 的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:3x﹣4+3x+2=6,解得:x=;第二种:当﹣<x<时,原方程就可化简为:﹣3x+4+3x+2=6,恒成立;第三种:当x≤﹣时,原方程就可化简为:﹣3x+4﹣3x﹣2=6,解得:x=﹣;所以x的取值范围是:﹣≤x≤,故符合条件的整数位:0,1.故选C.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键掌握正确分类讨论x的取值范围.20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数考点:同类项;含绝对值符号的一元一次方程.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程|x|=1,|4x|=3﹣x,即可求出x的值.解答:解:由同类项的定义得:|x|=1,解得x=±1,又|4x|=3﹣x,解得x=﹣1或x=,∴x=﹣1.故选B.点评:本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.21.方程|2007x﹣2007|=2007的解是()A.0B.2C.1或2 D.2或0考点:含绝对值符号的一元一次方程.专题:数形结合.分析:分别讨论x≥1,x<1,可求得方程的解.解答:解:①当x≥1时,原方程可化为:2007x﹣2007=2007,解得:x=2,②当x<1时,原方程可化为:2007﹣2007x=2007,解得:x=0,综上可得x=0或2.故选D.点评:本题考查含绝对值的一元一次方程,解决此题的关键是能够根据x的取值范围进行分情况化简绝对值.22.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是()A.0B.±C.D.±考点:含绝对值符号的一元一次方程.专题:计算题.分析:看到比较繁琐的有绝对值得计算题,首先要考虑怎样去掉绝对值.明确x的取值范围决定去掉绝对值之后的正负关系.解答:解:(1)当x>1时,原式=x﹣x+1﹣x+1+x=1,2=1显然不成立,故舍去.(2)当0<x<1时,原式=|﹣(x﹣1)﹣x|﹣(1﹣x)+x,=|﹣2x+1|﹣1+2x,=2x﹣1﹣1+2x,=4x﹣2,又∵原式=1,∴4x﹣2=1,∴x=.故选C.点评:本题主要考查的是含有绝对值符号的一元一次方程的最基本的计算,难易适中.23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:分三种情况讨论a的取值范围:①a=3,②a>3,③a<3,再去绝对值符号进行求解.解答:解:原方程为|3x|=ax+1.①若a=3,则|3x|=3x+1.当x<0时,﹣3x=3x+1,∴x=﹣;当x≥0时,3x=3x+1,不成立;∴当a=3时,原方程的根为:x=﹣;②若a>3,当x<0时,﹣3x=ax+1,∴x=<0;当x≥0时,3x=ax+1,∴x=<0,矛盾,∴当a>3时,原方程的解为:x=<0.③若a<3时,当x≥0时,3x=ax+1,∴x=0,∴原方程的根是正数,不符合题意.综上所述:当a≥3时,原方程的根是负根.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度较大,关键是分类讨论a的取值范围后再进行求解.24.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.4考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥,②0<x<,③x≤0,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:2x﹣1﹣x=2,解得:x=3;第二种:当0<x<时,原方程就可化简为:﹣2x+1﹣x=2,解得:x=﹣,不符合题意;第三种:当x≤0时,原方程就可化简为:﹣2x+1+x=2,解得:x=﹣1;所以x的不同实数解为:x=3或x=﹣1,共有两个.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是掌握正确分类讨论x的取值范围.25.方程|x﹣19|+|x﹣93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在考点:含绝对值符号的一元一次方程.分析:首先根据x的范围去掉绝对值符号,转换成一般的一元一次方程,从而求解.解答:解:当x≤19时,方程即:19﹣x+93﹣x=74,解得:x=19;当19<x<93时,方程变形为:x﹣19+93﹣x=74,恒成立;当x≥93时,方程变形为:x﹣19+x﹣93=74,解得:x=93.则x为范围[19,93]中的有理数,即至少有3个.故选A.点评:本题主要考查了绝对值方程的解法,关键是正确进行讨论.26.方程2|x|+3=5的解是()A.1B.﹣1 C.1和﹣1 D.无解考点:含绝对值符号的一元一次方程.分析:首先利用一元一次方程的求解方法,求得|x|的值,继而求得答案.解答:解:∵2|x|+3=5,∴2|x|=2,∴|x|=1,∴x=±1.故选C.点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题比较简单,注意换元思想的应用.27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.0考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论x≥6、x<2、2≤x<6,根据x的范围去掉绝对值,解出x,综合六种情况可得出x的最终范围.解答:解:根据题意,知(1)|x﹣2|﹣|x﹣6|=1,①当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=1,解得x=﹣1,不合题意,舍去;②当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=1,即﹣4=1,显然不成立;③当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=1,解得x=4.5;(2)|x﹣2|﹣|x﹣6|=﹣1,④当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=﹣1,解得x=﹣3,不合题意,舍去;⑤当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=﹣1,即﹣4=﹣1,显然不成立;⑥当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=﹣1,解得x=3.5;综上所述,原方程的解是:x=4.5,3.5,共有2个.故选A.点评:本题考查了含有绝对值符号的一元一次方程.其实,本题不难,只要在解题过程中多一份细心,就不会丢解的.28.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是根C.0,2,4不全是根D.0,2,4之外没有根考点:含绝对值符号的一元一次方程.分析:解含有绝对值符号的方程的关键是去绝对值符号,这可用“零点分段法”.即令x+2=0,x+1=0,x=0,x﹣1=0,x﹣2=0,x﹣3=0,x﹣4=0,分别得到x=﹣2,﹣1,0,1,2,3,4,这7个数将数轴分成8段,然后在每一段上去掉绝对值符号再求解.解答:解:①当x≥4时,原方程化为x﹣4=0,解得x=4,在所给的范围x≥4之内,x=4是原方程的解;②当3≤x<4时,原方程化为4﹣x=0,解得x=4,不在所给的范围3≤x<4之内,x=4不是原方程的解;③当2≤x<3时,原方程化为x﹣2=0,解得x=2,在所给的范围2≤x<3之内,x=2是原方程的解;④当1≤x<2时,原方程化为2﹣x=0,解得x=2,不在所给的范围1≤x<2之内,x=2不是原方程的解;⑤当0≤x<1时,原方程化为x=0,在所给的范围0≤x<1之内,x=0是原方程的解;⑥当﹣1≤x<0时,原方程化为x=0,不在所给的范围﹣1≤x<0之内,x=0不是原方程的解;⑦当﹣2≤x<﹣1时,原方程化为x+2=0,解得x=﹣2,在所给的范围﹣2≤x<﹣1之内,x=﹣2是原方程的解;⑧当x<﹣2时,原方程化为﹣2﹣x=0,解得x=﹣2,不在所给的范围x<﹣2之内,x=﹣2不是原方程的解.综上,可知原方程的解为x=4,2,0,﹣2.故选A.点评:本题考查了含绝对值符号的一元一次方程,属于竞赛题型,难度较大.29.使方程3|x+2|+2=0成立的未知数x的值是()A.﹣2 B.0C.D.不存在考点:含绝对值符号的一元一次方程.专题:计算题.分析:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的性质即可得出答案.解答:解:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的非负性,即可得知使方程3|x+2|+2=0成立的x不存在.故选D.点评:本题考查了含绝对值符号的一元一次方程,比较容易,关键是根据绝对值的非负性即可判断.30.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥,②﹣5<x<,③x≤﹣5,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:x+5﹣3x+7=1,解得:x=符合题意;第二种:当﹣5<x<时,原方程就可化简为:x+5+3x﹣7=1,解得:x=符合题意;第三种:当x≤﹣5时,原方程就可化简为:﹣x﹣5+3x﹣7=1,解得:x=不符合题意;所以x的值为:或.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是分类讨论x的取值范围.。
专练:含绝对值的一元一次方程的解法
含绝对值的一元一次方程的解法【1】1.含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解;②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a--=. 解方程:⑴235x +=⑵21302x --=⑶200520052006x x -+-=⑷1121123x x +--+-=(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;④将求得的解代入0cx d +≥检验,舍去不合条件的解.解方程⑴4329x x +=+⑵525x x -+=-(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =-⑵2131x x -=+(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:①根据绝对值的几何意义可知x a x b a b -+-≥-;②当c a b <-时,此时方程无解;当c a b =-时,此时方程的解为a x b ≤≤;当c a b >-时,分两种情况:①当x a <时,原方程的解为2a b c x +-=; ②当x b >时,原方程的解为2a b c x ++=. 解方程⑴134x x -+-=⑵154x x -+-=⑶216x x -++=(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =;②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.解方程⑴2123x x +--=⑵2134x x --+=⑶23143x x x +--=-(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和 ()()ax b ex f cx d +=-+-+;③解②中的两个绝对值方程.【题01】解方程93352x x x ++-=+35162x x ---=3548x -+=【题02】解方程:2112x --=2121x x -+=+314x x -+=11110x ----=【题03】当01x ≤≤时,求方程1110x ---=的解。
含绝对值的一元一次方程解法
(1)1x | = 7;(2) 5 | x | = 10; (3) | x | = 0; (4) | x | = -3; (5) | 3x | = 9.x -1看成一个字母y ,则原方程变为:含绝对值的一元一次方程解法、绝对值的代数和几何意义。
绝对值的代数意义: 正数的绝对值是它本身; 负数的绝对值是它的相反数;零的绝对值 是零。
aa 0 用字母表示为a 0 a 0a a 0绝对值的几何意义:表示这个数的点离开原点的距离。
因此任何数的绝对值是非负 数。
1、求下列方程的解:解: 二、根据绝对值的意义,我们可以得到:广当a > 0时 x = ± a| x | = a y 当 a = 0 时 x = 0 当a < 0时 方程无解.(三)例1 :解方程:(1)19 T x | = 100 -10 | x | (2)2|x| 3 3 |x| 4解: (1) 例2、思考:如何解 | x -1 | = 2 分析:用换元(整体思想)法去解决,把 | y | = 2,这个方程的解为 y = ± 2,即x -1 = ± 2,解得x = 3或x = -1.解:解方程:||2y 1| 6d )且 (2 )解方程:例 3:解方程:| 2x -1 | -3 = 0解: 三:形如 ax b ex d 的绝对值的一元一次方程可变形为: ax b (ex ex d 0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。
例1:解方程:5x 6 6x 5练习:(1)解方程:4x 3 2 3x 4四:“零点分段法”解含多个绝对值的代数问题“零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。
例1:化简下列各式1、2x 12、x 1 x 3练习:化简:x 1 2x 1 x例2:解下列方程1、x 1 x 5 42、x 3 x 1 x 1练习:1、3x 1 2x 12、2x 1 x 2 2x 1。
初中一年级数学上册解方程专项训练题(650)
初中一年级数学上册解方程专项训练题(650)好的,以下是针对初中一年级数学上册解方程专项训练题的内容:1. 一元一次方程求解- 题目:小华有x个苹果,小明有y个苹果,已知x+y=10,且x-y=2,求小华和小明各有多少个苹果?2. 含绝对值的方程- 题目:一个数的绝对值是3,这个数可能是多少?请列出所有可能的解。
3. 一元一次方程的应用- 题目:小明以每小时5公里的速度行走,小华以每小时7公里的速度行走。
如果他们同时从同一地点出发,2小时后他们相距多远?4. 一元一次方程的变形- 题目:一个数的3倍加上4等于这个数的5倍减去6,求这个数是多少?5. 一元一次方程的整数解- 题目:方程2x-3=7的解是整数吗?如果是,请求出解;如果不是,请说明理由。
6. 一元一次方程的检验- 题目:已知方程x+3=8,求出x的值后,如何检验这个解是否正确?7. 一元一次方程的解法- 题目:方程3x-5=2x+4,使用移项和合并同类项的方法求解。
8. 一元一次方程的图形解法- 题目:画出方程y=2x+3和y=-x+1的图形,找出它们的交点坐标。
9. 一元一次方程的参数问题- 题目:如果一个数的两倍加上3等于这个数的三倍减去5,求这个数。
10. 一元一次方程的解的讨论- 题目:方程2x-5=3x+1是否有解?如果有,请求解;如果没有,请说明理由。
这些题目覆盖了一元一次方程的基本概念、解法、应用以及一些特殊问题的处理,适合作为初中一年级数学上册解方程专项训练题。
通过这些题目的练习,学生可以加深对一元一次方程的理解,并提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含绝对值的一元一次方程的解法
1.含绝对值的一次方程的解法
(1)形如(0)ax b c a +=≠型的绝对值方程的解法:
①当0c <时,根据绝对值的非负性,可知此时方程无解;
②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a
=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a
--=. 解方程:⑴235x += ⑵21302x --= ⑶200520052006x x -+-= ⑷1121123
x x +--+-=
(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:
①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;
②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;
④将求得的解代入0cx d +≥检验,舍去不合条件的解.
解方程⑴4329x x +=+ ⑵525x x -+=-
(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:
①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =- ⑵2131x x -=+
(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:
①根据绝对值的几何意义可知x a x b a b -+-≥-;
②当c a b <-时,此时方程无解;
当c a b =-时,此时方程的解为a x b ≤≤;
当c a b >-时,分两种情况: ①当x a <时,原方程的解为2a b c x +-=
; ②当x b >时,原方程的解为2a b c x ++=.
解方程⑴134x x -+-= ⑵154x x -+-= ⑶216x x -++=
(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:
①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =;
②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;
③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.
解方程⑴2123x x +--= ⑵2134x x --+= ⑶23143x x x +--=-
(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:
解法一:由内而外去绝对值符号:
按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.
解法二:由外而内去绝对值符号:
①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;
②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和
()()ax b ex f cx d +=-+-+;
③解②中的两个绝对值方程.
【题01】解方程93352x x x ++-=
+ 35162x x ---= 3548x -+=
【题02】解方程:2112x --= 2121x x -+=+ 314x x -+= 11110x ----=
【题03】当01x ≤≤时,求方程1110x ---=的解 【题04】
【题05】
【题06】
【题07】
【题08】
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)
【题09】
【题10】。