函数图像及其应用(一)
高中数学 第三章 函数的概念与性质 3.4 函数的应用(一)
3.4函数的应用(一)知识解读•必须会知识点1 常见的几种函数模型1.(2022·安徽亳州高一期中)商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该商店现推出两种优惠方案:①买一个茶壶赠送一个茶杯;②按购买总价的92%付款。
某顾客需购买茶壶4个,茶杯若干个(不少于4个)。
当购买茶杯x个时,付款为y 元,试分别建立两种优惠方案中的y与x之间的函数解析式,并指出如果该顾客需购买茶杯40个,应选择哪种优惠方案。
解析:由优惠方案①,得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,x∈N*)。
由优惠方案②,得函数解析式为y2=(20×4+5x)×92%=4.6x+73.6(x≥4,x∈N*)。
当该顾客需购买茶杯40个时,采用优惠方案①应付款y1=5×40+60=260(元),采用优惠方案②应付款y2=4.6×40+73.6=257.6(元)。
由于y2<y1,故应选择优惠方案②。
知识点2 用函数模型解决实际问题的方法与步骤2.(2021·山东菏泽23校高一期末联考)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元。
根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆。
为了便于结算,每辆电动观光车的日租金x(元)(x只取整数),并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得)。
(1)求函数y=f(x)的解析式及其定义域;答案:(1)当x≤5时,y=60x-120,令60x-120>0,解得x>2,因为x∈N*,所以3≤x≤5。
当x>5时,y=[60-2(x-5)]x-120=-2x2+70x-120,令-2x2+70x-120>0,有x2-35x+60<0,上述不等式的整数解为2≤x ≤33(x ∈N *),所以5<x ≤33(x ∈N *)。
函数及其图象函数的图像函数的图象
函数及其图象xx年xx月xx日•函数的基本概念•函数的图像•不同类型函数的图像目录•函数图像的应用•函数图像的艺术01函数的基本概念设x和y是两个变量,D是一个给定的集合,在D上有唯一确定的y值与x对应,则称y是x的函数,记作y=f(x)。
集合D称为函数的定义域,x称为自变量,y称为因变量。
函数的定义函数的表示方法解析法用等式表示函数,如y=2x+1。
图象法用图象表示函数,如f(x)=sinx的图象为一条周期性变化的曲线。
表列法用表格列出函数值,如f(x)={1,2,3,4}。
010203函数的分类•常数函数:f(x)=const,如f(x)=0。
•一次函数:f(x)=kx+b,如f(x)=2x+1。
•二次函数:f(x)=ax^2+bx+c,如f(x)=x^2-2x+1。
•反比例函数:f(x)=k/x,如f(x)=2/x。
•对数函数:f(x)=logax,如f(x)=log2x。
•幂函数:f(x)=xn,如f(x)=x^3。
•复合函数:由若干个基本初等函数复合而成,如f(x)=sin(x^2)。
02函数的图像1函数图像的概念23将函数表达式中自变量与因变量之间的关系用图形表示出来。
函数图像在平面直角坐标系中,以横轴表示自变量,纵轴表示因变量。
坐标系根据函数表达式的性质,图像呈现不同形状,如直线、曲线、折线等。
函数图像的形状描点法根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法利用计算器或编程语言,直接在计算机上绘制出函数图像。
绘制函数图像的方法平移将函数图像沿横轴或纵轴方向移动一定距离。
将函数图像按比例进行缩放,使横轴或纵轴的长度发生改变。
将函数图像沿着一条直线翻折,使图像呈现镜像效果。
将函数图像沿着一定角度旋转一定角度,使图像的位置发生改变。
函数图像的变换伸缩翻折位移03不同类型函数的图像线性函数一次函数的图像是直线,表达式为$y=kx+b$,其中$k$是斜率,$b$是截距。
2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册
(1)多媒体设备:教师利用多媒体课件,生动形象地展示函数的性质和图像,激发学生的学习兴趣,提高教学效果。
(2)教学软件:教师运用教学软件,如数学建模软件、函数图像绘制工具等,辅助教学,使学生更好地理解函数的应用。
核心素养目标分析
本节课的核心素养目标主要围绕数学抽象、数学建模、数学运算、直观想象四个方面展开。
首先,通过实际问题引入函数模型,培养学生从复杂问题中抽象出函数关系的能力,即数学抽象素养。学生需要能够识别实际问题中的数量关系,自主构建函数模型,从而培养其抽象思维能力。
其次,通过对实际问题进行数学建模,让学生学会如何用函数来描述现实世界中的变化规律,培养学生的数学建模素养。学生需要能够将现实问题转化为数学问题,运用函数理论知识进行分析,进而提高其解决实际问题的能力。
(3)学生可以利用在线函数图像绘制工具,自主探索函数的性质和变化规律,加深对函数概念的理解。
(4)建议学生学习一些数学软件的使用方法,如MATLAB、Python等,掌握这些软件在函数分析和应用方面的功能,提高自己的实际问题解决能力。
内容逻辑关系
①函数应用的基本概念:
-重点词汇:函数、自变量、因变量、函数值、定义域、值域等。
选择几个典型的函数应用案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解函数应用的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用函数解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与函数应用相关的主题进行深入讨论。
(完整版)高中化学常见函数图像
完整版)高中化学常见函数图像1.引言在高中化学学习中,我们经常会遇到各种各样的函数图像,这些函数图像代表了不同化学反应的关系式。
掌握常见的化学函数图像可以帮助我们更好地理解和分析化学反应的特性和规律。
本文将介绍高中化学中常见的函数图像及其特点。
2.常见的化学函数图像2.1 直线函数图像直线函数图像在化学中常用来描述比例关系或线性规律。
在化学实验中,当两个物质的反应遵循简单的比例关系时,函数图像往往是一条直线。
直线函数图像的特点是斜率恒定,代表了化学反应的恒定速率。
2.2 指数函数图像指数函数图像在化学中常用来描述指数衰减或指数增长的情况。
例如,放射性衰变反应的速率就遵循指数函数规律。
指数函数图像的特点是曲线逐渐上升或下降,且增长或衰减的速度逐渐加快。
2.3 对数函数图像对数函数图像在化学中常用来描述浓度和反应速率之间的关系。
当反应速率与浓度呈指数关系时,函数图像往往是一条对数曲线。
对数函数图像的特点是曲线呈现逐渐平缓的增长或衰减趋势。
2.4 正弦函数图像正弦函数图像在化学中常用来描述周期性变化的情况。
例如,电化学反应中的电势变化往往呈现正弦函数规律。
正弦函数图像的特点是周期性波动,曲线呈现出波峰和波谷的交替变化。
2.5 反比例函数图像反比例函数图像在化学中常用来描述浓度和反应速率之间的关系。
当反应速率与浓度呈反比关系时,函数图像往往是一条反比例曲线。
反比例函数图像的特点是曲线逐渐趋于水平轴,并且在某个点处存在间断。
3.总结掌握常见的化学函数图像有助于我们更好地理解和分析化学反应的规律和特性。
直线函数图像代表了恒定速率,指数函数图像代表了增长或衰减的速度逐渐加快,对数函数图像代表了增长或衰减的速度逐渐减慢,正弦函数图像代表了周期性变化,反比例函数图像代表了反比关系。
通过对这些函数图像的分析,我们可以更深入地理解和应用化学知识。
以上就是关于高中化学常见函数图像的介绍。
希望本文能帮助到你在学习中的理解和应用。
函数的图像及其变换
的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=
数学中的函数图像的绘制与应用
数学中的函数图像的绘制与应用在数学中,函数是一个非常重要的概念。
而函数图像则是对函数进行可视化的一种方式,它可以让我们更加直观地理解函数的特征和性质。
本文将探讨函数图像的绘制方法、常见的函数图像形态及其应用。
一、函数图像的绘制方法函数图像绘制是一种基于函数的可视化表示方法。
为了绘制函数图像,我们需要先确定要绘制的函数。
这样才能在坐标系内绘制出函数的图像。
下面将介绍如何在笛卡尔坐标系中绘制常见的函数图像。
1. 直线函数的图像绘制直线函数方程为y=kx+b(其中k、b为常数),其图像通常是一条斜率为k,截距为b的直线。
这里以y=2x+1为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
(2)确定坐标:通过设定变量的值进行逐一计算;或设置x轴和y轴的单位间隔,根据方程中的值确定函数图像上的点坐标。
(3)依据坐标绘图:在坐标系中依照前面计算出来的坐标,描绘出直线。
2. 幂函数的图像绘制幂函数的方程通常具有以下形式:y=x^n(其中n为常数)。
幂函数的图像形态与其幂指数的正负有关。
当幂指数为正数时,函数的图像呈现出向上的凸形状;当幂指数为负数时,函数的图像则呈现出向下的凹形状。
以y=x^2为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
(2)确定坐标:通过设定变量的值进行逐一计算;或设置x轴和y轴的单位间隔,根据方程中的值确定函数图像上的点坐标。
(3)依据坐标绘图:在坐标系中依照计算出来的坐标,连结相邻的点形成一条曲线。
由于幂函数的曲线通常比较平滑,因此绘制时需要分段绘制(例如x<0部分,x=0的位置,x>0部分等),并且需要足够细致。
3. 三角函数的图像绘制三角函数具有周期性的特点,也就意味着可以将函数图像沿周期区间翻折并重叠,以此来推出整个函数图像的形态。
以下以正弦函数y=sin(x)为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
6.3 一次函数图像的应用(一)
初一下数学教学案42 §6.3 一次函数图像的应用(一)【学习目标】1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
【教学重点】初步体会方程与函数的关系【教学难点】初步体会方程与函数的关系一、考考你在一次函数y kx b=+中当0k>时,y随x的增大而增大,当时,直线交y轴于正半轴,必过象限;当0b<时,直线交y轴于,必过象限。
当0k时,y随x的增大而减小,<当0b>时,直线交y轴于,必过一、二、四象限;当时,直线交y轴于负半轴,必过二、三、四象限。
二、自主学习,合作探究(预习书本P152-P153)活动一由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(2)蓄水量小于400万米3时,将发生严重干旱警报。
干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?活动二1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示.根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?三、堂中测评某植物t天后的高度为y厘米。
下图l反映了y与t之间的关系。
根据图象回答下列问题:(1)3天后该植物高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10厘米?四、课堂小结谈谈你本节课的收获五、课后反思。
届高三数学一轮复习-函数的图像及其应用(共58张PPT)
考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是
一元二次函数图像
一元二次函数图像一、一元二次函数型式y =ax 2+bx +c 或f (x)=ax 2+bx +c二、一元二次函数图像画法1、 形状:抛物线2、 开口:a >0,开口向上;a <0,开口向下3、 对称轴:x =-ab 2 4、 与x 轴的交点:方程的根5、 最大最小值:ab ac 424-三、例题1、 y =x 2-5x +6解:a =1,开口向上对称轴:x =-a b 2=25 方程根:x 2-5x +6=0 x =2或x =3最小值:a b ac 424-=-412、 y =x 2+5x +6解:a =1,开口向上对称轴:x =-a b 2=-25 方程根:x 2+5x +6=0 x =-2或x =-3 最小值:a b ac 424-=-413、 y =-x 2+5x -6解:a =-1,开口向下对称轴:x =-a b 2=25 方程根:-x 2+5x -6=0 x =2或x =3最大值:a b ac 424-=414、 y =-x 2-5x -6解:a =-1,开口向下对称轴:x =-a b 2=-25 方程根:-x 2-5x -6=0 x =-2或x =-3 最大值:a b ac 424-=415、 y =x 2-2x解:a =1,开口向上对称轴:x =-a b 2=1 方程根:x 2-2x =0 x =0或x =2 最小值:a b ac 424-=-16、 y =-x 2-2x解:a =-1,开口向下对称轴:x =-a b 2=-1 方程根:-x 2-2x =0 x =0或x =-2 最大值:a b ac 424-=17、 y =x 2-2x +1解:a =1,开口向上对称轴:x =-ab 2=1 方程根:x 2-2x +1=0 x =1最小值:a b ac 424-=08、 y =-x 2+2x -1解:a =-1,开口向下对称轴:x =-ab 2=1 方程根:-x 2+2x -1=0 x =1最大值:ab ac 424-=09、 y =x 2解:a =1,开口向上对称轴:x =-a b 2=0 方程根:x 2=0x =0最小值:a b ac 424-=010、 y =-x 2解:a =-1,开口向下对称轴:x =-a b 2=0 方程根:-x 2=0 x =0最大值:a b ac 424-=011、 y =x 2+x +1解:a =1,开口向上对称轴:x =-a b 2=-21 方程根:△<0,方程无解 最小值:a b ac 424-=4312、 y =-x 2+x -1解:a =-1,开口向下对称轴:x =-a b 2=21 方程根:△<0,方程无解 最大值:a b ac 424-=-43一元二次函数图像题1、y=x2-7x+102、y=x2+3x+23、y=-x2+7x-124、y=-x2-6x-85、y=x2+7x6、y=-x2+7x7、y=x2+4x+48、y=-x2+6x-99、y=x2+x+210、y=-x2+2x-4。
指数函数图像及性质(一)
应用一
(1) 求使不等式 4 32 成立的 x 的集合;
x
(2) 已知 a a
4 5
2
,求数 a 的取值范围.
解: (1) 4 32, 即 2
x
x
2x
25 .
5 因为 y=2 是 R 上的增函数,所以 2x>5,即 x 2 5 x 满足 4 32 的 x 的集合是 ( , ) ; 化为同底 2 的指数幂 4 x (2)由于 2 ,则 y a 是减函数, 5
0.3
0.9
3.1
解:根据指数函数的性质,得:
1.70.3 1.70 1 且 0.93.1 0.90 1
从而有
3.2
3.2
1.7
0.3
0.9
3.1
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
fx = 1.7x
1.8
fx = 0.9x
1.6
1.6
1.4
1.4
0.8
0.1
0.8
0.2
1.8
fx = 0.8x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-1.5
-1
-0.5
0.5
1
应用一
比较下列各题中两个值的大小: (1) 30.8与30.7 方法总结: 对同底数幂大小的比较用的是指数函数的 单调性,必须要明确所给的两个值是哪个指数 函数的两个函数值;对不同底数幂的大小的比 较可以与中间值进行比较. (2) 0.75-0.1与0.750.1
函数及其图像一知识点与对应习题
一、 考点分析及例析 一、函数及直角坐标系 1. 变量与常量在某一变化过程中,可以取不同数值的量,叫做变量,取值始终保持不变的量,称为常量。
2005年10月17日凌晨4时33分,神州六号在内蒙古四子王旗成功着陆。
在着陆前的最后48分时间内,它是在耐高温表层的保护下,以7800米/秒的速度冲入100千米厚的地球大气层。
在空气阻力的作用下,它在距地球表面10千米左右时,以180米/秒的速度下降 ,此时直径20多米的降落伞自动打开。
在上述过程中,你能说出哪些变量和常量?2. 函数的概念如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有的唯一值与之对应,我们就说x 是自变量,y 是因变量。
此时我们也称y 是x 的函数。
1、函数y =x 的取值范围是 ( )(A )3x > (B )3x ≥- (C )3x >- (D )3x ≥ 2、在函数y =x 的取值范围是 。
3. 函数关系式的表示表示函数关系的方法通常有三种:解析法、列表法、图象法。
其中解析法是最常见的表示方法。
1、设一长方体盒子高20cm ,底面是正方形;则这个长方体盒子的体积V(cm 3)与底面边长a(cm)之间的函数关系式为 ,自变量的取值范围是 。
4.平面直角坐标系的概念在平面上画两条原点重合,互相垂直且具有相同单位长度的数轴,这就建立了平面直角坐标系,其中水平的一条数轴叫做x 轴或者横轴,取向右为正方向;垂直的数轴叫做y 轴或者纵轴,取向上为正方向;两数轴的交点O 叫做坐标原点。
1、在平面直角坐标系内,下面说法错误的是 ( ) (A )原点O 在坐标平面内(B )原点既在X 轴上,又在Y 轴上 (C )原点O 不在任何象限内 (D )原点O 的坐标是O5.平面直角坐标系上的点在平面直角坐标系中的点和有序实数对是一一对应的。
提示:在平面直角坐标系中的任一个点一定对应着一对有序实数,反之,一对有序实数也一定对应着一个点。
专题01 三角函数的图象与综合应用(精讲精练)(原卷版)
专题01 三角函数的图象与综合应用【命题规律】三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1、三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2、利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.3、三角恒等变换的求值、化简是高考命题的热点,常与三角函数的图象、性质结合在一起综合考查,如果单独命题,多用选择、填空题中呈现,难度较低;如果三角恒等变换作为工具,将其与三角函数及解三角形相结合求解最值、范围问题,多以解答题为主,中等难度.【核心考点目录】核心考点一:齐次化模型 核心考点二:辅助角与最值问题 核心考点三:整体代换与二次函数模型 核心考点四:绝对值与三角函数综合模型 核心考点五:ω的取值与范围问题 核心考点六:三角函数的综合性质【真题回归】1.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1B .32C .52D .32.(2022·全国·高考真题(理))设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤⎥⎝⎦3.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2022·全国·高考真题(文))将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .125.(多选题)(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 B .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭有两个极值点 C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 6.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________. 【方法技巧与总结】1、三角函数图象的变换(1)将sin y x =的图象变换为sin()y A x ωϕ=+(0,0)A ω>>的图象主要有如下两种方法:(2)平移变换函数图象的平移法则是“左加右减、上加下减”,但是左右平移变换只是针对x 作的变换; (3)伸缩变换①沿x 轴伸缩时,横坐标x 伸长(01)ω<<或缩短(1)ω>为原来的1ω(倍)(纵坐标y 不变);②沿y 轴伸缩时,纵坐标y 伸长(1)A >或缩短(01)A <<为原来的A (倍)(横坐标x 不变). (4)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. 2、三角函数的单调性 (1)三角函数的单调区间sin y x =的单调递增区间是2,2()22k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z ,单调递减区间是32,2()22k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ; cos y x =的单调递增区间是[2,2]()k k k π-ππ∈Z ,单调递减区间是[2,2]()k k k ππ+π∈Z ;tan y x =的单调递增区间是,()22k k k ππ⎛⎫π-π+∈ ⎪⎝⎭Z .(2)三角函数的单调性有时也要结合具体的函数图象如结合|sin |y x =,sin ||y x =, |cos |y x =,cos ||cos y x x ==的图象进行判断会很快得到正确答案.3、求三角函数最值的基本思路(1)将问题化为sin()y A x B ωϕ=++的形式,结合三角函数的图象和性质求解. (2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的图象和性质求解. (3)利用导数判断单调性从而求解. 4、对称性及周期性常用结论 (1)对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.(2)与三角函数的奇偶性相关的结论若sin()y A x ωϕ=+为偶函数,则有()2k k ϕπ=π+∈Z ;若为奇函数,则有()k k ϕ=π∈Z .若cos()y A x ωϕ=+为偶函数,则有()k k ϕ=π∈Z ;若为奇函数,则有()2k k ϕπ=π+∈Z . 若tan()y A x ωϕ=+为奇函数,则有()k k ϕ=π∈Z . 5、已知三角函数的单调区间求参数取值范刪的三种方法(1)子集法:求出原函数相应的单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正弦、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)周期性:由所给区间的两个端点到其相应对称中心的距离不超过14个周期列不等式(组)求解.【核心考点】核心考点一:齐次化模型【规律方法】齐次分式:分子分母的正余弦次数相同,例如:αααα++sin cos sin cos a b c d (一次显型齐次化)或者αααααααααα++⇒+222222sin cos +sin cos sin cos +sin cos sin cos a b c a b c (二次隐型齐次化)这种类型题,分子分母同除以αcos (一次显型)或者α2cos (二次隐型),构造成αtan 的代数式,这个思想在圆锥曲线里面关于斜率问题处理也经常用到.【典型例题】例1.(2022·广东揭阳·高三阶段练习)若tan 2θ=-,则()sin 1sin 24θθπθ-=⎛⎫- ⎪⎝⎭( )A .25B .25-C .65D .65-例2.(2022·江苏省丹阳高级中学高三阶段练习)已知tan 3α=,则3cos cos πcos 2ααα-=⎛⎫+ ⎪⎝⎭( )A .34-B .34C .310-D .310例3.(2022·湖南·高三阶段练习)已知曲线y =()1,4处的切线的倾斜角为2α,则1sin cos π14ααα++=⎛⎫+ ⎪⎝⎭( ) AB.C .12D .1例4.(2022·湖北·襄阳五中高三开学考试)若ππ2θ<<,tan 3θ=-,=( ) A .35 B .54-C .45-D .45核心考点二:辅助角与最值问题【规律方法】第一类:一次辅助角:αα±sin cos a b αϕ±).(其中ϕ=tan b a)第二类:二次辅助角()ωωω±>2sin cos cos ,0a x x b x a bωωω±=2sin cos cos a x x b x ()()ωωωϕϕ±+=±±=sin2cos212(tan )222a b b b x x x a【典型例题】例5.(2022·内蒙古·赤峰二中高三阶段练习(理))已知函数()41sin cos 55f x x x =+,当x β=时,()f x 取得最大值,则cos β=( ) ABC .47D .17例6.(2022·四川省成都市新都一中高三阶段练习(理))若2,43⎡⎤∈⎢⎥⎣⎦x ππ,则函数2()3sin cos =f x x x x 的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.D.[0,3+例7.(2022·四川省成都市新都一中高三阶段练习(文))若π0,2x ∈⎡⎤⎢⎥⎣⎦,则函数()23sin cos f x x x x=的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.⎡⎣ D.0,3⎡⎣例8.(2022·全国·高三专题练习)函数()222sin f x x x =+,若()()123f x f x ⋅=-,则122x x -的最小值是( ) A .23πB .4πC .3πD .6π例9.(2022·浙江省杭州第二中学高三阶段练习)已知关于x 的方程sin cos 2a x b x +=有实数解,则()()2211a b -+-最小值是______.例10.(2022·全国·高三专题练习)函数()44sin sin cos 44xf x x x =+的最小值为___________. 例11.(2022·全国·高三专题练习)已知2251x y -+=,,x y R ∈,则22x y +的最小值为____.核心考点三:整体代换与二次函数模型【规律方法】三角函数和二次函数交汇也是一种常见题型,我们将其分为三类,第一类是最简单的,就是sin x ,cos x 与cos2x 之间的二次函数关系,第二类则有一点隐藏,就是±sin cos x x 与sin cos x x 之间的关系,第三类则是+sin cos a x b x 与sin2x 之间的关系.【典型例题】例12.(2022·全国·高三专题练习)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 例13.(2022·全国·高考真题(文))函数cos 22sin y x x =+的最大值为________.例14.(2022·全国·高考真题(理))函数sin cos sin cos y x x x x =++的最大值是_________. 例15.(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()f x 的最大值为___________.例16.(2022·全国·高三专题练习)若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是 A.12+B.12-+C .1 D核心考点四:绝对值与三角函数综合模型 【规律方法】关于=sin y x 和=sin y x ,如图,=sin y x 将=sin y x 图像中x 轴上方部分保留,x 轴下方部分沿着x 轴翻上去后得到,故=sin y x 是最小正周期为π的函数,同理ωφ=+sin()y A x 是最小正周期为πω的函数;=sin y x 是将=sin y x 图像中y 轴右边的部分留下,左边的删除,再将y 轴右边图像作对称至左边,故=sin y x 不是周期函数.我们可以这样来表示:ππππππ⎧∈+⎪=⎨-∈-⎪⎩,,sin ([22])sin sin ((22))x x k k x x x k k ,⎧≥⎪=⎨-<⎪⎩sin (0)sin sin (0)x x x x x 【典型例题】例17.(2022·安徽·铜陵一中高三阶段练习(理))已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小正周期为πB .()f xC .()3f x f x π⎛⎫-= ⎪⎝⎭D .()f x 5,012π⎡⎤-⎢⎥⎣⎦上有解 例18.(2022·全国·高三专题练习)已知()sin |||sin |cos |||cos |=+++f x x x x x ,给出下述四个结论: ①()y f x =是偶函数; ②()y f x =在3,22ππ⎛⎫⎪⎝⎭上为减函数; ③()y f x =在(,2)ππ上为增函数; ④()y f x =的最大值为 其中所有正确结论的编号是( )A .①②④B .①③④C .①②③D .①④例19.(2022·江苏·泗阳县实验高级中学高三阶段练习)已知函数()cos ||2|sin |f x x x =-,以下结论正确的是( )A .π是()f x 的一个周期B .函数在2π0,3⎡⎤⎢⎥⎣⎦单调递减C .函数()f x 的值域为[D .函数()f x 在[2π,2π]-内有6个零点例20.(多选题)(2022·安徽·砀山中学高三阶段练习)已知函数()sin cos 336x x f x π⎛⎫=++ ⎪⎝⎭,则( ) A .()f x 的最小正周期为3π B .()f xC .()f x 在[5,7]ππ上单调递减D .()f x 在[4,4]ππ-上有4个零点例21.(2022·湖南省临澧县第一中学高三阶段练习)函数()sin sin cos cos f x x x x x =+++的最大值为______.例22.(2022·全国·高三专题练习)已知函数()sin 2f x x x π⎛⎫=- ⎪⎝⎭,则 ①()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最小值是1; ②()f x 的最小正周期是2π;③直线()2k x k Z π=∈是()fx 图象的对称轴;④直线2y x π=与()fx 的图象恰有2个公共点.其中说法正确的是________________.例23.(2022·陕西·长安一中高一期末)关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间()2,π上递增; ③()f x 在[]π,π-上有4个零点; ④()f x 的最大值为2.其中所有正确结论的编号__________.例24.(2022·云南省玉溪第一中学高二期中(文))设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________.①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点.核心考点五:ω的取值与范围问题【规律方法】1、()sin()f x A x ωϕ=+在()sin()f x A x ωϕ=+区间()a b ,内没有零点⎪⎪⎩⎪⎪⎨⎧+≤+<+<+≤≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+≤-≥≤-⇒ωϕππωϕπk b k a T a b 2 同理,()sin()f x A x ωϕ=+在区间[]a b ,内没有零点 ⎪⎪⎩⎪⎪⎨⎧+<+<+<+<≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+<-><-⇒ωϕππωϕπk b k a T a b 2 2、()sin()f x A x ωϕ=+在区间()a b ,内有3个零点⎪⎩⎪⎨⎧+≤+<++<+≤≤-<⇒ππϕωππππϕωπk b k k a k Ta b T 432(1)(3)(24)T b a k T k a k k b πϕπϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒≤<⎨⎪⎪+<-≤-+-<≤⎪⎩同理()sin()f x A x ωϕ=+在区间[]a b ,内有2个零点⎪⎪⎩⎪⎪⎨⎧+<+≤++≤+<<-≤⇒ππϕωππππϕωπk b k k a k T a b T 32232(2))2(332k TT b k a k b a k πϕππϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+≤-<-+-≤<⎪⎩ 3、()sin()f x A x ωϕ=+在区间()a b ,内有n 个零点⇒(()(+1)1)(1)22n Tn T b a k k a k n k n b πϕππϕωωπϕπϕωω-+≤-⎧⎪⎪-+-⎪≤<⎨⎪⎪+-+-<≤⎩<⎪同理()sin()f x A x ωϕ=+在区间[]a b ,内有n 个零点(1)(1()()22+1)n T n T b k k a k n k n b a πϕππϕωωπϕπϕωω-+≤-<⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+-+-≤<⎪⎩4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为214n T +,则21(21)42n n T b a πω++==-. 5、已知单调区间(,)a b ,则2T a b -≤.【典型例题】例25.(2022·河南·模拟预测(文))已知函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,3x π=-为()f x 的一个零点,3x π=为()y f x =图象的一条对称轴,且()f x 在,20216ππ⎛⎫⎪⎝⎭内不单调,则ω的最小值为______. 例26.(2022·全国·高三专题练习)若函数()()cos 0f x x ωω=>在区间()2,3ππ内既没有最大值1,也没有最小值1-,则ω的取值范围是___________.例27.(2022·上海·高三专题练习)已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0ω>)有且仅有3个零点,则ω的最小值是_________.例28.(2022·宁夏·平罗中学高三期中(理))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在()2ππ,内单调且有一个零点,则ω的最大值是______________.例29.(2022·湖南·永州市第一中学高三阶段练习)若函数()()π2sin 04f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,46⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为________.例30.(2022·全国·高三阶段练习(理))已知函数π()2cos (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,()f x 的一个极值点为πx=.若π2π33T <<,则ω的最大值是_____.例31.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))将函数()sin2cos 222x x x f x ωωω⎛⎫=-+ ⎪⎝⎭(0ω>)的图象向左平移π3个单位长度,得到曲线C .若C 关于y 轴对称,则ω的最小值是______.例32.(2022·北京师大附中高三阶段练习)记函数()()()cos 0,0f x x ωϕωϕ=+><<π的最小正周期为T ,若()f T =π12x =为()f x 的零点,则ω的最小值为_______. 例33.(2022·云南·高三阶段练习)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.例34.(2022·四川成都·模拟预测(理))已知函数()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,若03f π⎛⎫=⎪⎝⎭,且()f x 在5,312ππ⎛⎫ ⎪⎝⎭上有最大值,没有最小值,则ω的最大值为______. 例35.(2022·全国·高三专题练习(理))设函数()sin()f x x ωϕ=+,其中0ω>.且1(0),0263f f f ππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,则ω的最小值为________.例36.(2022·福建省福州教育学院附属中学高三开学考试)已知()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,则ω=______.例37.(多选题)(2022·山西·高三阶段练习)已知函数()(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间π,π3⎛⎤⎥⎝⎦内没有零点,则ω的值可以是( )A .18B .12C .76D .32核心考点六:三角函数的综合性质 【典型例题】例38.(多选题)(2022·山东德州·高三期中)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭同时满足下列三个条件:②该函数图象的两条对称轴之间的距离的最小值为π; ③该函数图象关于5,03π⎛⎫⎪⎝⎭对称. 那么下列说法正确的是( ) A .ϕ的值可唯一确定B .函数56f x π⎛⎫-⎪⎝⎭是奇函数 C .当52()6x k k ππ=-∈Z 时,函数()f x 取得最小值 D .函数()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增例39.(多选题)(2022·湖北襄阳·高三期中)函数π()sin(2)3f x x =-的图象向左平移π4个单位长度,得到函数()g x 的图象,则下列结论正确的有( ) A .直线5π6x =-是()g x 图象的一条对称轴B .()g x 在ππ(,)26-上单调递增C .若()g x 在(0,)α上恰有4个零点,则23π29π(,]1212α∈ D .()g x 在ππ[,]42上的最大值为12例40.(多选题)(2022·江苏南通·高三期中)已知函数()f x ,()g x 的定义域均为R ,它们的导函数分别为()f x ',()g x '.若()1y f x =+是奇函数,()()cos g x x π'=,()f x 与()g x 图象的交点为()11,x y ,()22,x y ,…,(),m m x y ,则( )A .()f x 的图象关于点()1,0-对称B .()f x '的图象关于直线1x =对称C .()g x 的图象关于直线12x =对称D .()1mi i i x y m =+=∑例41.(多选题)(2022·山东菏泽·高三期中)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则下列说法正确的是( ).A .π2f ⎛⎫= ⎪⎝⎭B .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 C .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭上有且仅有2个零点 D .将()f x 的图象向右平移π12个单位长度后,可得到一个奇函数的图象 例42.(多选题)(2022·河北·模拟预测)已知函数π()sin()(0,0π),()04f x x f ωϕωϕ=+><<=,且对任意x ∈R均有π()(),()2f x f f x 在π[0,]2上单调递减,则下列说法正确的有( ) A .函数()f x 为偶函数B .函数()f x 的最小正周期为2πC .若1()([0,2π])3f x x =∈的根为(1i x i =,2,⋯,)n ,则14πn i i x ==∑ D .若(2)()f x f x >在(,)m n 上恒成立,则n m -的最大值为π3例43.(多选题)(2022·广东·深圳实验学校光明部高三期中)已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图(1)所示,函数()()1111()cos 0,0,||πg x A x A ωαωα=+>><的部分图象如图(2)所示,下列说法正确的是( )A .函数()y f x =的周期为2πB .函数()y f x =的图象关于直线1912x π=对称 C .函数()1y f x =-在区间[0,2]π上有4个零点 D .将函数()y f x =的图像向左平移23π可使其图像与()y g x =图像重合例44.(多选题)(2022·福建·厦门外国语学校高三期中)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图像上所有的点向右平移π6个单位长度,得到函数()g x 的图像,则下列说法正确的是( ) A .()g x 的最小正周期为π B .()g x 图像的一个对称中心为7π,012⎛⎫⎪⎝⎭C .()g x 的单调递增区间为()π5ππ,πZ 36k k k ⎡⎤++∈⎢⎥⎣⎦D .()g x 的图像与函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图像重合例45.(多选题)(2022·黑龙江齐齐哈尔·高三期中)已知()44cossin 22x xf x =+,则下列说法错误的是( ) A .函数()f x 的最小正周期为2π B .函数4f x π⎛⎫- ⎪⎝⎭为奇函数C .函数()f x 在,63ππ⎛⎫⎪⎝⎭上的值域为5,18⎛⎫⎪⎝⎭D .函数()34y f x =-在区间[]2,2ππ-上的零点个数为8【新题速递】一、单选题1.(2022·河北·张家口市第一中学高三期中)函数()()πtan 0,02f x x ωϕϕω⎛⎫=+<<> ⎪⎝⎭某相邻两支图象与坐标轴分别交于点π,06A ⎛⎫ ⎪⎝⎭,2π,03B ⎛⎫⎪⎝⎭,则方程()[]πsin 2,0,π3f x x x ⎛⎫=-∈ ⎪⎝⎭所有解的和为( ) A .5π12B .5π6 C .π2D .π2.(2022·北京市第十一中学高三阶段练习)已知函数()2π2cos 4f x x ⎛⎫=- ⎪⎝⎭则( )A .()f x 是奇函数B .函数()f x 的最小正周期为4πC .曲线()y f x =关于π2x =对称D .()()12f f >3.(2022·贵州·顶效开发区顶兴学校高三期中(理))已知函数()()sin f x x ωϕ=+(0ω>,π<ϕ),其图象相邻两条对称轴的距离为π2,且对任意x ∈R ,都有()7π12f x f ⎛⎫⎪⎝⎭,则在下列区间中,()f x 为单调递减函数的是( ) A .ππ,63⎡⎤-⎢⎥⎣⎦B .7π0,12⎡⎤⎢⎥⎣⎦C .π12π,2⎡⎤⎢⎥⎣⎦D .7π,π12⎡⎤⎢⎥⎣⎦4.(2022·吉林长春·模拟预测)定义域为[]0,π的函数())()1cos cos 02f x x x x ωωωω=-+>,其值域为1,12⎡⎤-⎢⎥⎣⎦,则ω的取值范围是( ) A .30,2⎛⎤ ⎥⎝⎦B .3,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .12,33⎡⎤⎢⎥⎣⎦5.(2022·江苏南通·高三期中)已知112tan sin =-αα,则πtan 4α⎛⎫-= ⎪⎝⎭( )A .7-B .17-C .19D .436.(2022·河南·高三阶段练习(理))设函数()sin()(0)5f x x πωω=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论中,正确结论的编号是( ) ①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在05π⎛⎫⎪⎝⎭,单调递增④ω的取值范围是1229510⎡⎫⎪⎢⎣⎭, A .①④B .②③C .①②③D .①③④7.(2022·天津市南开中学滨海生态城学校高三阶段练习)下列关于函数()4cos cos 3f x x x ⎛⎫=- ⎪⎝⎭π的命题,正确的有( )个(1)它的最小正周期是π2(2)π,012⎛⎫-⎪⎝⎭是它的一个对称中心 (3)π6x =是它的一条对称轴 (4)它在π0,3⎛⎤⎥⎝⎦上的值域为[]2,3A .0B .1C .2D .38.(2022·宁夏六盘山高级中学高三期中(理))已知函数()()sin f x x ωϕ=+(其中0,2πωϕ><),()30,88f f x f ππ⎛⎫⎛⎫-=≤ ⎪ ⎪⎝⎭⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,给出下列命题①()f x 是偶函数;②()304f f π⎛⎫= ⎪⎝⎭;③ω是奇数;④ω的最大值为3;其中正确的命题有( )A .①②③B .①②④C .②③④D .①③④二、多选题9.(2022·重庆八中高三阶段练习)已知函数()()sin 2(0π)f x x ϕϕ=+<<,曲线()y f x =关于点7π,012⎛⎫- ⎪⎝⎭中心对称,则( )A .将该函数向左平移π6个单位得到一个奇函数B .()f x 在3π7π,46⎛⎫⎪⎝⎭上单调递增 C .()f x 在π7π,1212⎛⎫-⎪⎝⎭上只有一个极值点 D .曲线()y f x '=关于直线π6x =对称10.(2022·福建·泉州五中高三期中)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .直线7π6x =是()fx 的对称轴B .点2π,03⎛⎫⎪⎝⎭是()f x 的对称中心 C .()f x 在区间π22π,3⎡⎤⎢⎥⎣⎦上单调递减D .()f x 的图象向右平移7π12个单位得cos 2y x =的图象11.(2022·山东青岛·高三期中)已知函数i π()sin 23s n 2cos π66f x x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭,则( )A .()f x 的最大值为2B .π3x =是()f x 的图象的一条对称轴C .()f x 在ππ,63⎛⎫-⎪⎝⎭上单调递减 D .()f x 的图象关于π,06⎛⎫ ⎪⎝⎭对称12.(2022·湖北·荆门市龙泉中学高三阶段练习)设()()sin f x x ωϕ=+(其中ω为正整数,π2<ϕ),且()f x 的一条对称轴为π12x =-;若当0ϕ=时,函数()f x 在ππ,55⎡⎤-⎢⎥⎣⎦单调递增且在ππ,33⎡⎤-⎢⎥⎣⎦不单调,则下列结论正确的是( ) A .2ω=B .()f x 的一个对称中心为5π,06⎛⎫⎪⎝⎭C .函数()f x 向右平移π12个单位后图象关于y 轴对称 D .将()f x 的图象的横坐标变为原来的一半,得到()g x 的图象,则()g x 的单调递增区间为()ππ5ππ,Z 242242k k k ⎛⎫-++∈ ⎪⎝⎭三、填空题13.(2022·甘肃·兰州市外国语高级中学高三阶段练习(文))已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的相邻对称轴之间的距离为π2,且()f x 图象经过点π,03P ⎛⎫⎪⎝⎭,则下列说法正确的是___________.(写出所有正确的题号)A .该函数解析式为()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;B .函数()f x 的一个对称中心为2π,03⎛⎫-⎪⎝⎭C .函数y =()π5ππ,π2424k k k ⎡⎤-++∈⎢⎥⎣⎦Z D .将函数()y f x =的图象向右平移(0)b b >个单位,得到函数()g x 的图象,且函数()g x 的图象关于原点对称,则b 的最小值为π3.14.(2022·四川省遂宁市教育局模拟预测(文))正割(Secant ,sec )是三角函数的一种,正割的数学符号为sec ,出自英文secant .该符号最早由数学家吉拉德在他的著作《三角学》中所用,正割与余弦互为倒数,即1sec cos x x=.若函数()sec sin f x x x x =⋅-,则下列结论正确的有__ ①函数()f x 的图像关于直线x π=对称;②函数()f x 图像在(),()f ππ处的切线与x 轴平行,且与x 轴的距离为π; ③函数()f x 在区间95,168ππ⎡⎤⎢⎥⎣⎦上单调递增; ④()f x 为奇函数,且()f x 有最大值,无最小值.15.(2022·河南·驻马店市第二高级中学高三阶段练习(理))若1sin cos 2θθ=,则()sin 1sin 2sin cos θθθθ-=+______.16.(2022·吉林·东北师大附中模拟预测)已知函数()sin ||f x x x =,若关于x 的方程()f x m =在4π,2π3⎛⎤- ⎥⎝⎦上有三个不同的实根,则实数m 的取值范围是_________. 四、解答题17.(2022·江西·丰城九中高三开学考试(理))已知函数()2cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)若函数()()g x f x k =-在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的零点,求实数k 的取值范围.18.(2022·江苏盐城·高三阶段练习)已知函数()22cos 2sin cos sin (04)f x x x x x ωωωωω=+-<<,且_____.从以下①②③三个条件中任选一个,补充在上面条件中,并回答问题:①过点;8π⎛⎝②函数()f x 图象与直线0y 的两个相邻交点之间的距离为;π③函数()f x 图象中相邻的两条对称轴之间的距离为2π.(1)求函数()f x 的单调递增区间;(2)设函数()2cos 23g x x π⎛⎫=-⎪⎝⎭,则是否存在实数m ,使得对于任意1[0,]2x π∈,存在2[0,]2x π∈,()()21m g x f x =-成立?若存在,求实数m的取值范围;若不存在,请说明理由.19.(2022·黑龙江·哈师大附中高三阶段练习)已知函数()4sin cos 3f x x x π⎛⎫=- ⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)若函数()()32g x f x =-在区间(0,π)上恰有2个零点()1212,x x x x <,求()12cos x x -的值.20.(2022·福建省诏安县桥东中学高三期中)已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图象横坐标不变,纵坐标缩短到原来的12倍,得到函数()g x 图象,再将()g x 图象右平移π12个单位后得到()h x 的图象,求函数()y h x =在π3π,124x ⎡⎤∈⎢⎥⎣⎦上的单调减区间.21.(2022·青海·西宁市海湖中学高三期中)某同学用“五点法”画函数()sin()0,||2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:()f x 的解析式;(2)将()y f x =图象上所有点向左平移(0)θθ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5,012π⎛⎫⎪⎝⎭,求θ的最小值.22.(2022·北京·北大附中高三阶段练习)已知函数()()sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图像如下图所示.(1)直接写出()f x 的解析式;(2)若对任意0,3s π⎡⎤∈⎢⎥⎣⎦,存在[]0,t m ∈,满足()()f s f t =-,求实数m 的取值范围.。
比赛课:对数函数的图像与性质 (一)
2、我动手我发现 用描点法在同一直角坐标系中作出
与
的图像
作图步骤:
①列表, ②描点, ③用平滑曲线连接。
y 2
1
0
11 42
y log2 x
1 2
4
x
-1 -2
y l og1 x
2
3、我合作我深化:观察两个图像,讨论以下问题
(1)y=logax图像的两种形状如何? (2)y=logax性质(定义 域、值域、定点、单调性、 函数值变化如何? y
复 习 引入
1. 指数与对数的相互转化 ab=N logaN=b. 注意:底数大于0且不等于1,真数大于0 2、loga1=0,logaa=1
3、某种细胞分裂时,第一次由1个分 裂成2个,第二次由2个分裂成4个 ……,第三次由4个分裂为8个,…… 那么分裂次数y与细胞个数x的函数关 系式为 y=log x
y
x =1
y loga x (a 1)
0<a<1
y
X
x =1
图 象 性
O
(1,0)
(1,0)
O
y loga x (0 a 1)
X
定义域 : ( 0,+∞) 值 域 : R
质 定 点: (1 ,0), 即当x =1时,y=0
增函数 在(0,+∞)上是 减函数 在(0,+∞)上是:
回顾指数函数的图像及其性质
(3)我锻炼我升华:练习 ① log76 < 1 ② log0.53 < 1 ③ log67 > 1 ④ log0.60.1 > 1
<
例3(4)log35.1 (5)log76
解: (4) ∵ log35.1>0
中考数学专题复习:二次函数图象综合应用
图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。
一次函数的图像性质及其应用(一)
一次函数的图像、性质及其应用(一)知识回顾:1. 一次函数是刻画现实世界变量间的关系的最简单的一个模型,有关计时的漏刻,计重的天平、弹簧秤都是一次函数模型.2. 形如)0(≠+=k b kx y 的函数叫做一次函数.【类型一:求一次函数的解析式】1. 已知一次函数)0(≠+=k b kx y ,当41≤≤x 时,63≤≤y ,则b 的值是 . 方法引领:(1)待定系数法是求函数解析式的常用方法,但要注意k 的符号带来的分类讨论.(2)两直线平行,暗示两直线解析式中的k 值相同.(3)交点在x 轴上,隐含交点的纵坐标为0;交点在y 轴上,隐含交点的横坐标为0.变式:2. 在平面直角坐标系中,已知点()()7,4,3,2B A ,直线()0≠-=k k kx y 与线段AB 有交点,则k 的取值范围为 .3. 设一次函数)0(≠+=k b kx y 的图像经过点)2,1(P ,它与x 轴、y 轴的正半轴分别交于B A 、两点,坐标原点为O . 若6=+OB OA ,则此函数的解析式是 .4. 已知直线)3(2a x y -+=与x 轴的交点在()()0,3,0,2B A 之间(包括B A 、两点),则a 的取值范围是 .5. 设一次函数)0(≠+=k b kx y 的图像经过()()2-,0,3,1B A 两点,试求b k ,的值.6. 已知两直线)0()0(22221111≠+=≠+=k b x k y L k b x k y L :;:,若21L L ⊥,则有121-=•k k .(1)应用:已知12+=x y 与1-=kx y 垂直,求k .(2)已知某直线经过点)3,2(A ,且与331+-=x y 垂直,求该直线的解析式.7. 某商业集团新进了40台空调机、60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店. 两个连锁店销售这两种电器每台的利润(元)如下表:y (元).(1)求y 关于x 的函数关系式,并求出x 的取值范围.(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问:该集团应如何设计调配方案,使总利润达到最大?【类型二:一次函数的图像与性质】1. 一次函数)0(≠+=k b kx y 不经过第四象限,则( ).A. 0,0>>b kB.0,0><b kC.0,0≥≥b kD.0,0≥<b k2. 已知a c b a b c b a c c b a k ++-=+-=-+=,且n n m 6952=++-,则关于自变量x 的一次函数mn kx y -=的图像一定经过的象限为( ).A. 一、二B. 三、四C. 二、三D. 一、四方法引领:根据一次函数图像与两常数b k ,的关系求解.3. 如图,直线l 经过第二、三、四象限,l 的解析式是()n x m y +-=2,则m 的取值范围在数轴上表示为( )4. 若0<abc ,直线ac x b a y -=不经过第四象限,则直线()c x b a y ++=一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5. 如图,点C B A ,,在一次函数m x y +-=2的图像上,它们的横坐标依次为2,1,1-,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A. 1B. 3C. ()13-mD. ()223-m6. 一次函数()()m x m y -+-=142和()()3-22m x m y ++=的图像分别与y 轴交于点P 和点Q ,这两点关于x 轴对称,则m 的取值是( )A. 2B. 2或1-C. 1或1-D. 1-7. 在平面直角坐标系xOy 中,点P 的坐标为()1-m 1,m +.(1)试判断点P 是否在一次函数2-=x y 的图像上,并说明理由.(2)如图,一次函数321+-=x y 的图像与x 轴、y 轴分别相交于点B A ,,若点P 在AOB ∆的内部,求m 的取值范围.。
一次函数的性质和图像(一)课件
斜率和函数单调性
1 斜率为正
表示函数是递增的,随 x 的增加,y 也增加。
2 斜率为
3 斜率为0
表示直线是水平的,函数与 y 轴平行。
一次函数的图像特点
直线
一次函数的图像是直线,与 x 轴和 y 轴相交。
斜率
斜率决定了直线的倾斜程度,越大越陡峭。
截距
截距表示直线与 y 轴的交点,反映了函数值在 x = 0 时的取值。
一次函数的定义域和值域
1 定义域
一次函数的定义域为全体实数。
2 值域
值域取决于斜率,如果斜率为正,则值 域为负无穷至正无穷;如果斜率为负, 则值域为正无穷至负无穷。
一次函数与直线的关系
相同点
不同点
• 一次函数是直线的一种特殊情况。 • 都满足直线上两点确定一条直线的性质。
一次函数的性质和图像 (一) PPT课件
本次课程将讲解一次函数的定义、解析式形式以及图像的特点。我们将深入 探讨斜率、截距和函数的性质,以及在实际生活和经济学中的应用。
一次函数的定义
一次函数是指不含有次数大于等于2的项的代数式,形式为y = mx + b(其中 m 和 b 都是实数,且 m ≠ 0)。
• 一次函数具有函数性质,每个 x 对应 唯一的 y 值。
• 直线可以是一次函数,也可以是其他 类型的函数。
一次函数的应用和实际联系
一次函数的应用广泛,可以用于建模经济学中的供求关系、利润函数等。它 们也用于描述线性运动、金融领域等实际问题。
示例和总结
1
示例
一次函数的性质可以帮助我们解决实际问题,如利润最大化的方程。
2
总结
一次函数是数学中的基础概念,它们的图像和性质在现实世界中有广泛的应用。
函数及其图象函数的图像函数的图象
在数据处理和分析中,通过绘制图像将数据呈现出来,帮助我 们更好地理解和分析数据。
04
函数的图象及其应用
图象的几何意义
点的坐标
函数图象上的每一个点都代表 一个坐标点,横坐标为自变量
,纵坐标为因变量。
曲线的形状
函数图象的形状可以反映函数 的性质,例如单调性、极值等
。
曲线的交点
函数图象的交点代表了两个函 数在某一点的值相等。
图象的物理意义
01
02
03
波动现象
函数图象可以描述波动现 象,例如振动、波动传播 等。
运动轨迹
函数图象可以描述物体的 运动轨迹,例如平动、转 动等。
图像处理
函数图象可以用于图像处 理中的滤波、变换等操作 。
图象在各领域的应用
数学领域
函数图象在数学领域中有着广泛的 应用,例如解方程、求最值、证明 定理等。
物理领域
函数图象可以描述物理现象和规律 ,例如力学、电磁学、光学等。
工程领域
函数图象可以用于工程设计、优化 和控制系统分析等。
社会科学领域
函数图象可以用于描述社会现象和 规律,例如人口统计、经济分析、 心理测试等。
THANKS
《函数及其图象函数的图像函数的 图象》
xx年xx月xx日
目 录
• 函数的概念 • 函数的图像 • 函数的图像表示 • 函数的图象及其应用
01
函数的概念
函数的定义
函数的定义
函数是数学上的一种概念,它表示一个变量和另一个变量之间的关系。这种关系 可以用一个公式或一个表格来表示。在一个函数中,被表示的变量被称为因变量 ,而决定因变量的变量被称为自变量。
函数的图像
图像的绘制
指数函数的图像及性质的应用
例4.讨论函数 的单调性,并求其值域.
任取x1,x2∈(-∞,1],且x1< x2 ,
∵f(x1)>0, f(x2)>0,
解:
则
复合函数的单调性
所以 f( x ) 在 (-∞,1]上为增函数.
又 x2 - 2x =(x -1)2 -1≥-1,
解:
例7.求证函数 是奇函数
证明:函数的定义域为R,
所以f(x)在R上是奇函数.
01
02
03
指数形式的复合函数的奇偶性
利用 f(0)= 0
1
解:若 f ( x ) 为奇函数,则 f(-x )=-f (x),
2
设a是实数, (2)试确定a的值,使f(x)为奇函数.
02
复合函数:
复合函数的单调性
内u=g(x)
增函数
减函数
增函数
减函数
外y=f(u)
增函数
减函数
减函数
增函数
复y=f[g(x)]
规律: 当内外函数的单调性相同时,其复合函数是增函数; 当内外函数的单调性不相同时,其复合函数是减函数 “同增异减”
增函数
增函数
减函数
减函数
“异”“同” 指内外函数单调性的异同
3
∴ a = 1.
4
变式练习
练习:
的定义域均为R
变式 1 、 函数 的单调增区间是
2、函数 的增区间为 ________. 值域为_________.
(-∞,1]
(0,81]
B
指数形式的复合函数的定义域与值域
2
O
x
y
7
6
5
4
3
2
函数及其图象一次函数求一次函数的表达式
《函数及其图象一次函数求一次函数的表达式》xx年xx月xx日CATALOGUE 目录•一次函数的概念•一次函数的表达式•一次函数的图像与性质•一次函数的应用01一次函数的概念形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。
一次函数一次函数y=kx+b(k,b是常数,k≠0)的图象为直线,我们称这种函数为线性函数。
线性函数一次函数的定义一次函数的性质当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
一次函数的图象当k>0,b>0时,函数图象经过一、二、三象限;当k>0,b<0时,函数图象经过一、三、四象限;当k<0,b>0时,函数图象经过一、二、四象限;当k<0,b<0时,函数图象经过二、三、四象限。
一次函数的性质一次函数的图像画法先确定自变量x的范围,再根据具体问题确定函数值y的范围,然后在平面直角坐标系中描点作图。
一次函数的图像平移规律在一次函数y=kx+b中,当k>0时,“横坐标每增加一个单位,纵坐标增加k 个单位”;当k<0时,“横坐标每增加一个单位,纵坐标减少-k个单位”。
一次函数的图像02一次函数的表达式一次函数表达式的一般形式为:y = kx + b,其中k、b为常数,k≠0。
x为自变量,y为因变量,通过给定x和y的值,可求得k和b的值。
1 2 3根据已知数据,利用最小二乘法或图解法,求出k和b的值。
利用已知数据,通过解方程组,求出k和b的值。
根据已知数据,利用图解法,求出k和b的值。
一次函数表达式的斜率k表示函数图像的倾斜程度,k>0时,图像向右倾斜;k<0时,图像向左倾斜。
一次函数表达式的截距b表示函数图像与y轴的交点,b>0时,交点在y轴的正半轴上;b<0时,交点在y轴的负半轴上。
一次函数表达式的关系式03一次函数的图像与性质定义函数首先需要确定一次函数的表达式,通常形式为 y = kx + b,其中 k 和 b 是常数,k 称为斜率,b 称为截距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像及其应用
第1题. (2006 常州课改)已知:如图1,点G 是B C 的中点,点H 在A F 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:G C D E F H →→→→→,相应的A B P △的面积2(cm )y 关于运动时间
(s)t 的函数图象如图2.若6cm A B =,则下列四个结论中正确的个数有( )
①图1中的B C 长是8cm , ②图2中的M 点表示第4秒时y 的值为224cm , ③图1中的C D 长是4cm , ④图2中的N 点表示第12秒时y 的值为218cm .
A .1个
B .2个
C .3个
D .4个
答案:D
第2题. (2006 梅州课改)我市大部分地区今年5月中、下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映我市主要河流水位变化情况的图象大致是( )
答案:B
第3题. (2006 成都课改)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A 地到B 地时,行驶的路程y (千米)与经过的时间x (小时)之间的函数关系.
请根据这个行驶过程中的图象填空:汽车出
发
小时与电动自行车相遇;电动自行车的速度为 千米/小时;汽车的速度为 千米/小时;汽车比电动自行车早 小时到达B 地.
答案:0.5,9,45,2
第4题. (2006 泰安非课改)如图,是一同学骑自行车出行时所行路程s (km )与时间t (m in )的函数关系图象,从中得到的正确信息是( )
图1 G B
(s)t
图2
第17题 A .
B .
C .
D .
(小时)
/m in
t
A.整个行程的平均速度为
7km /h 60
B.前二十分钟的速度比后半小时的速度慢
C.前二十分钟的速度比后半小时的速度快 D.从起点到达终点,该同学共用了50m in
答案:C
第5题. (2006 滨州非课改)如图(单位:m ),直角梯形A B C D 以
2m/s 的速度沿直线l 向正方形C E F G 方向移动,直到A B 与F E 重
合,直角梯形A B C D 与正方形C E F G 重叠部分的面积S 关于移动时间t 的函数图象可能是( )
答案:C
第6题. (2006 枣庄非课改)小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A.37.2分钟 B.48分钟 C.30分钟
D.33分钟
答案:A
第7题. (2006 北京非课改)如右图,在梯形A B C D 中,A D B C ∥,90B ∠=
,3122
A D A
B B
C ==
=,,,P 是B C 边上的一个动点(点P 与
点B 不重合,可以与点C 重合),D E AP ⊥于点E .设AP x =,DE y =. 在下列图象中,能正确反映y 与x 的函数关系的是( )
A .
B .
C .
D . A G F
l
10 10 D B
C E
5
10
360时间/分钟
y
A. B. C. D.
A
D
E
答案:B
第8题. (2006 长沙课改)某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )
答案:B
第9题. (2006 常德课改)若用(1),(2),(3
)
,(
4)四幅图象分别表示变量之间的关系,将下面的(a ),(b ),(c ),(
d )对应的图象排序:
(a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)
(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)
(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)
,其中正确的顺序是(
)
A.(3)
(4)
(
1)
(2)
B.(3)
(2)(1)
(4
) C.(4)(3)(1)(2)
D.(3)(4)(2)(1)
答案:A
第10题. (2006 德州非课改)如图所示,边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为( ) A .
B .
C .
D .
(1) (2) (3) (4) A. B. C. D.
第11题. (2006 上海非课改)某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元. 答案:5.09
第12题. (2006 湖北十堰课改)学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
答案:A
第13题. (2006 烟台非课改)若用(1)(2)(3)(4)四幅图象分别表示下面四个函数的关系,请根据图象所给顺序,将下面的(a )(b )(c )(d )四个函数关系对应排序:
(a )静止的小车从光滑的斜面上滑下,小车的速度y 与时间x 的关系 (b )一个弹簧不挂重物到逐渐挂重物,弹簧长度y 与所挂重量x 的关系 (c )运动员推出去的铅球,铅球的高度y 与时间x 的关系
(d )小明从A 到B 后,停留一段时间,然后按原速度原路返回,小明到A 的距离y 与时间x 的关系 正确的顺序是( )
A.(c )(d )(a )(b ) B.(a )(b )(c )(d ) C.(c )(b )(a )(d ) D.(d )(a )(c )(b )
答案:A
第14题. (2006 湛江课改)小颖从家出发,直走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,下图中表示小颖离家时间与距离之间的关系的是( )
数量(单位:
升)
O
时间
A.
高度
O
时间
B.
高度
O
时间 C.
高度
O
时间
D.
高度 O
y
x
O
y
x
O
y
x
O
y
x
(1) (2) (3) (4)
x (分)
D .
A .
B .
C .
第15题. (2006 镇江课改)已知:如图1,点G 是B C 的中点,点H 在A F 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:G C D E F H →→→→→,相应的A B P △的面积2(cm )y 关于运动时间(s)t 的函数图象如图2,若6cm A B =,则下列四个结论中正确的个数有( ) ①图1中的B C 长是8cm , ②图2中的M 点表示第4秒时y 的值为224cm , ③图1中的C D 长是4cm , ④图2中的N 点表示第12秒时y 的值为218cm .
A .1个
B .2个
C .3个
D .4个
答案:D
图1
G B
(s)t
图2。