2011山东枣庄中考数学及答案

合集下载

2011年中考数学试题分类12 反比例函数(含答案)

2011年中考数学试题分类12 反比例函数(含答案)

第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。

3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。

若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3xyOABCD【答案】D5. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D7. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则A F B E ⋅= A .8 B .6 C .4 D .62 【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >1 【答案】C11. (2011广东茂名,6,3分)若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->mB .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x ,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A . S 1<S 2<S 3B . S 1>S 2>S 3C . S 1=S 2>S 3D . S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x =C .3y x =-D .12y x =【答案】 B15. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】AO xy图1y xOy x OyxOy xO 16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4)B .(2,3)C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )A B C D 【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( ) A .102x x <-<<或 B .12x x <->或 C .1002x x -<<<<或 D .102x x -<<>或【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( ) A . -3,1 B . -3,3 C . -1,1 D .3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .14-B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为 A .2y x=B .2y x=-C .12y x= D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x= 的图像大致是A B C D 【答案】Bxy-21O23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作P Q ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ=2PM ;⑤∠POQ 可以等于90°。

山东省17市2011年中考数学试题分类解析汇编 专题7 统计与概率

山东省17市2011年中考数学试题分类解析汇编 专题7 统计与概率

山东17市2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (日照3分)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为A 、14B 、316 C 、34D 、382.(滨州3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为A 、14B 、12 C 、34D 、13.(德州3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是A 、甲运动员得分的极差大于乙运动员得分的极差B 、甲运动员得分的的中位数大于乙运动员得分的的中位数C 、甲运动员的得分平均数大于乙运动员的得分平均数D 、甲运动员的成绩比乙运动员的成绩稳定4.(烟台4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.25.(东营3分)某中学为迎接建党九十周年.举行了“童心向党.从我做起”为主题的演讲比赛。

经预赛.七、八年级各有一名同学进入决赛.九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是A .12B .13 C .14 D .166.(济南3分)某校九年级一班体育委员在一次体育课上记录了六位同学托排球的个数分别为:37、25、30、35、28、25.这组数据的中位数是A .25B .28C .29D .32.57.(济南3分)某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出.据此估计该校希望举办文艺演出的学生人数为 A .1120 B .400 C .280 D .808.(潍坊3分)某市2011年5月1日—10日对空气污染指数的检测数据如下(主要污染物为可吸入颗 粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别是.A .36,78B .36,86C .20,78D .20,77.39.(济宁3分)在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是A. 1B.43 C. 21 D. 4110.(泰安3分)某校篮球班21名同学的身高如下表则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm )A 、186,186B 、186,187C 、186,188D 、208,18811.(泰安3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为A 、19B 、16 C 、13D 、1212.(莱芜3分)某校全唱团共有40名学生,他们的年龄如下表所示:则全唱团成员年龄的众数和中位数分别是A 、13,12.5B 、13,12C 、12,13D 、12,12.513.(莱芜3分)如图是两个可以自由转动的均匀圆盘A 和B ,A 、B分别被均匀的分成三等份和四等份,同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是A 、34B 、23C 、12D 、1314.(聊城3分)下列事件属于必然事件的是A .在1个标准大气压下,水加热到100ºC 沸腾B .明天我市最高气温为56ºCC .中秋节晚上能看到月亮D .下雨后有彩虹 15.(聊城3分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4 5 6 7 8 10 户数136541这20户家庭日用电量的众数、中位数分别是A .6,6.5B .6,7C .6,7.5D .7,7.516.(临沂3分)在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是 A 、这组数据的中位数是4.4 B 、这组数据的众数是4.5C 、这组数据的平均数是4.3D 、这组数据的极差是0.517.(临沂3分)如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是A 、12B 、23 C 、34D 、4518.(威海3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学 的测试成绩(单位:个/分钟)。

整式乘除中的数学思想

整式乘除中的数学思想

整式乘除中的数学思想作者:赵国瑞来源:《初中生之友·中旬刊》2013年第01期数学思想是数学的灵魂和精髓,是解决数学问题的金钥匙。

在学习数学知识的过程中,同学们要有意识地挖掘提炼其中的数学思想,并运用这些数学思想指导我们解决数学问题。

经常这样做,可以提高同学们分析问题和解决问题的能力,提高数学素养。

下面以整式乘除为例说明。

一、整体思想在推导多项式乘法法则(a+b)(m+n)=am+an+bm+bn时,我们先把其中的一个多项式(m+n)看成一个整体,即看成一个单项式,这样就将两个多项式相乘问题转化为我们熟悉的单项式与多项式相乘问题,这体现了数学中的整体思想。

例1 (2012年天津市中考题)若实数x、y、z满足(x-z)2-4(x-y)(y-z)=0。

则下列式子一定成立的是()A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.x+z-2y=0分析注意到(x-y)+(y-z)=x-z,于是可将(x-y)、(y-z)分别看成一个整体。

解因为(x-y)+(y-z)=x-z,所以[(x-y)+(y-z)]2-4(x-y)(y-z)=0。

即(x-y)2+2(x-y)(y-z)+(y-z)2-4(x-y)(y-z)=0。

即(x-y)2-2(x-y)(y-z)+(y-z)2=0。

即[(x-y)-(y-z)]2=0。

所以(x-y)-(y-z)=0。

整理得x+z-2y=0。

故答案选D。

点评本题若按常规方法,需要先将已知等式左边的括号展开,然后再整理、分组,进行因式分解,即(x-z)2-4(x-y)(y-z)=(x2-2xz+z2)-4(xy-xz-y2+yz)=(x2+2xz+z2)-4(xy+yz)+4y2=(x+z)2-4y(x+z)+4y2=(x+z-2y)2。

显然这样比较麻烦,且分组有一定的困难。

当然本题也可应用完全平方公式的变形公式4ab=(a+b)2-(a-b)2,这样便有4(x-y)(y-z)=[(x-y)+(y-z)]2-[(x-y)-(y-z)]2=(x-z)2-(x+z-2y)2。

2011枣庄中考数学试题

2011枣庄中考数学试题

2011 年初中毕业生学业考试数学试题卷考生须知:1.全卷共 4 页,有 3 大题, 24 小题 . 满分为 120 分 . 考试时间 120 分钟 .2.本卷答案一定做在答题纸的对应地点上,做在试题卷上无效.3.请考生将姓名、准考据号填写在答题纸的对应地点上,并认真批准条形码的姓名、准考据号 .4.作图时,可先使用2B 铅笔,确立后一定使用0.5 毫米及以上的黑色署名笔涂黑.5.本次考试不可以使用计算器 .温馨提示:请认真审题,仔细答题,相信你必定会有优秀的表现!参照公式:二次函数b 4ac b2y=ax2+bx+c(a≠ 0)图象的极点坐标是( ,) .2a4a卷Ⅰ说明:本卷共有 1 大题, 10 小题,每题 3 分,共 30 分.请用2B 铅笔在“答题纸”大将你以为正确的选项对应的小方框涂黑、涂满.一、选择题 ( 请选出各题中一个切合题意的正确选项,不选、多项选择、错选,均不给分)1.-2的相反数是A . 2 B.- 2 C.1 1D.2.以下四个立体图形中, 主视图为圆的是2 2A .B .C.D.3.以下计算正确的选项是A . a3· a2=a6B . a2+ a4=2a2 C. ( a3) 2=a6 D . ( 3a) 2=a6 4.一个正方形的面积是15, 预计它的边长大小在A.2与3之间 B . 3与4之间C. 4与 5之间D. 5与 6之间5.在 x=- 4, - 1, 0, 3中 , 知足不等式组x 2,2( x 的 x值是1)2A.- 4和0 B.- 4和- 1 C. 0和3 D.- 1和 0 6.假如三角形的两边长分别为3 和 5, 第三边长是偶数 , 则第三边长能够是A . 2 B. 3 C. 4 D. 87.如图 , 将周长为8 的△ ABC 沿 BC 方向平移 1 个单位A D获得△ DEF , 则四边形 ABFD 的周长为A . 6 B. 8B E CF8.以下计算错误的是..0.2a b 2a b x 3 y 2 x0.7 a b 7a b x 2 y 3 ya b1 12 3A .B .C.b a D.c c c9.义乌国际小商品展览会某志愿小组有五名翻译, 此中一名只会翻译阿拉伯语, 三名只会翻译英语 , 还有一名两种语言都会翻译 . 若从中随机精选两名构成一组,则该组能够翻译上述两种语言的概率是3 7 3D. 16A .B . C.255 10 1010.如图 , 已知抛物线 y1=- 2x2+ 2, 直线 y2=2x+2, 当 x 任取一值时 , x 对yy2 应的函数值分别为y1、 y2. 若 y1≠ y2,取 y1、 y2中的较小值记为 M;若 y1=y2,记 M= y1=y2. 比如:当 x=1 时, y1=0, y2=4, y1< y2,此时M=0. 以下判断:①当 x>0 时, y1> y ;②当 x<0 时, x 值越大, M 值越小;2O③使得 M 大于 2 的 x 值不存在;④使得 M=1 的 x 值是 1 或y1x2 .此中正确的选项是2 2A. ①②B. ①④C. ②③D. ③④卷Ⅱ说明:本卷共有 2 大题, 14 小题,共90 分 . 答题请用0.5 毫米及以上的黑色署名笔书写在“答题纸”的对应地点上 .二、填空题(此题有 6 小题,每题 4 分,共24 分)11.因式分解 : x2- 9= ▲ .12.如图 , 已知 a∥ b,小亮把三角板的直角极点放在直 2 a 线 b 上. 若∠ 1=40° , 则∠ 2 的度数为▲ . 1 b 13.在义乌市中小学生“人人会乐器”演奏竞赛中, 某(第 12题图) 班 10 名学生成绩统计以下图, 则这 10 名学生成人数绩的中位数是▲分, 众数是▲分 . 5 414.正 n 边形的一个外角的度数为60° , 则 n 的值为▲ . 315.最近几年来 , 义乌市民用汽车拥有量连续增加, 2007 年至2 12011 年我市民用汽车拥有量挨次约为:11, 13, 15, 19, 80 85 90 95分数x(单位:万辆) , 这五个数的均匀数为16, 则 x 的值(第 13题图)为▲ .y Q16.如图 , 已知点 A( 0, 2)、 B(3 , 2)、 C( 0, 4), 过点2C 向右作平行于 x 轴的射线 , 点 P 是射线上的动点 , 连接 AP , 以 AP 为边在其左边作等边△ APQ , 连接PB、 BA. 若四边形ABPQ 为梯形 , 则( 1)当 AB 为梯形的底时, 点 P 的横坐标是▲;( 2)当 AB 为梯形的腰时, 点 P 的横坐标是▲ . CPA BO x (第 16 题图)三、解答题(此题有8 小题,第17~ 19 题每题 6 分,第 20、 21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12 分,共 66 分)AEBDCF17.计算: 2 (1) 2012(4)0.18.如图 , 在△ ABC 中, 点 D 是 BC 的中点 , 作射线 AD , 在线段 AD及其延伸线上分别取点 E 、 F, 连接 CE 、 BF. 增添一个条件 ,使得△ BDF ≌△ CDE, 并加以证明 .你增添的条件是▲(不增添协助线) .19.学习成为商城人的时髦 , 义乌市新图书室的启用, 吸引了大量读者 . 相关部门统计了 2011 年 10 月至 2012 年 3 月时期到市图书室的读者的职业散布状况 , 统计图以下:读者职业散布扇形统计图读者职业散布条形统计图人数(万人)学生6 25% 员工4其余2商人学生 员工 商人 其余 职业( 1)在统计的这段时间内 , 共有 ▲ 万人到市图书室阅读 , 此中商人所占百分比是 ▲ ,并将条形统计图增补完好(温馨提示:作图时别忘了用 0.5 毫米及以上的黑色署名....笔涂黑); ( 2)若今年 4 月到市图书室的读者共 28000 名 , 预计此中约有多少名员工 .20. 如图,已知 AB 是⊙O 的直径 ,点 C 、D 在⊙O 上,B点 E 在⊙ O 外 , ∠EAC=∠D=60°.C( 1)求∠ ABC 的度数;DO( 2)求证: AE 是⊙ O 的切线;( 3)当 BC=4 时,求劣弧 AC 的长 .21.如图 , 矩形 OABC 的极点 A 、C 分别在 x 、 y 轴的正半轴上 , 点 D 为对角线 OB 的中点,点 E(4, n)在边 AB 上 , 反比率函数 y k0) 在第一象限内的图象经过点D 、 E, ( k 1 x 且 tan BOA.y2( 1)求边 AB 的长;( 2)求反比率函数的分析式和n 的值;C FB( 3)若反比率函数的图象与矩形的边 BC 交于点 F, 将矩GDE形折叠,使点 O 与点 F 重合 , 折痕分别与 x 、y 轴正半轴交于点 H 、G, 求线段 OG 的长 .O H A x22.周末 , 小明骑自行车从家里出发到野外郊游.从家出发小y(km)时后抵达甲地 , 游乐一段时间后按原速前去乙地 . 小明离家 1 小时 20 分钟后 , 妈妈驾车沿同样路线前去乙地 , 如图是他们离家的行程 y ( km )与小明离家时间 x ( h )的函数图象.已知妈妈驾车的速度是小明骑车速度的 3 倍.10( 1)求小明骑车的速度和在甲地游乐的时间;( 2)小明从家出发多少小时后被妈妈追上?此时离家多远?O0.5 1 4x(h)( 3)若妈妈比小明早 10 分钟抵达乙地 , 求从家到乙地的行程 .323.在锐角△ ABC 中 , AB =4, BC=5, ∠ ACB=45° , 将△ ABC 绕点 B 按逆时针方向旋转 , 获得△ A 1BC 1.(1)如图 1, 当点 C1在线段 CA 的延伸线上时 , 求∠ CC1A1的度数;(2)如图 2, 连接 AA 1, CC1. 若△ ABA1的面积为 4, 求△ CBC 1的面积;(3)如图 3, 点 E 为线段 AB 中点 , 点 P 是线段 AC 上的动点 , 在△ ABC 绕点 B 按逆时针方向旋转过程中, 点 P 的对应点是点P1, 求线段 EP 1长度的最大值与最小值.C1C1C1 P1 AAAA1 EPA1B C B CB C A1图 3图 1 图 224.如图 1, 已知直线 y=kx 与抛物线y4 x2 22 交于点 A( 3,6) .27 3(1)求直线 y=kx 的分析式和线段 OA 的长度;(2)点 P 为抛物线第一象限内的动点 , 过点 P 作直线 PM , 交 x 轴于点 M(点 M、 O 不重合) , 交直线 OA 于点 Q, 再过点 Q 作直线 PM 的垂线 , 交 y 轴于点 N. 尝试究:线段 QM 与线段QN 的长度之比能否为定值?假如是, 求出这个定值 , 假如不是 , 说明原因;( 3)如图 2, 若点 B 为抛物线上对称轴右边的点合) , 点 D (m,0)是 x 轴正半轴上的动点, 点 E 在线段 OA 上(与点O、A 不重, 且知足∠ BAE=∠ BED=∠ AOD . 连续探究: m 在什么范围时, 切合条件的 E 点的个数分别是1个、2个?yPyA AEQNBO M x O D x 图 1 图 2。

山东省枣庄市中考数学试题(word版及答案)

山东省枣庄市中考数学试题(word版及答案)

m nnn图2图130°45°αA 1A .B .C .D .数 学 试 题一、选择题(本大题共12小题,每小题3分,共36分)1.下列运算中,错误的是( )A .a 3+a 3=2a 3B .a 2·a 3=a 5C .(-a 3)2=a 9D .2a 3÷a 2=2a 2.下列运算,正确的是( )A .3+2= 5B .3×2= 6C .(3-1)2=3-1D .353522-=-3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )4.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内含 5.将一副三角板按如图方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 6.如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .―2― 3 B .―1― 3C .―2+ 3D .1+ 37.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆 相切于点C ,则AB =( ) A .4cm B .5cmC .6cmD .8cm8.在△ABC 中,∠C =90º,BC =4cm ,AC =3cm .把△ABC 绕点A 到△AB 1C 1(如图所示),则点B 所走过的路径长为( )A .52cmB . 5π 4cmC . 5π 2cmD .5πcm 9.如图1,把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .m -n2B .m -nC . m 2D . n210.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二A O BC楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( )A .833m B .4mC .43mD .8m11.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A . 1 2B . 1 3C . 1 6D . 1812.如图,正△AOB的顶点A在反比例函数y=3x(x >0)的图象上, 则点B 的坐标为( )A .(2,0)B .(3,0)C .(23,0)D .(32,0) 二、填空题(本大题共6小题,每小题4分,共24分)13.化简22422b a a b b a+--的结果是 .14.如图,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片2= . 15.若2||323x x x ---的值为零,则x 16.如图,边长为2的正方形O的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 . 17.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2010个梅花图案中,共有__________个“ ”图案.18.已知抛物线y =ax 2+bx +c (a ≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a <0;②a +b +c >0;③- b2a>0.把正确结论的序号填在横线上 .三、解答题(本大题共7小题,共60分)19.(8分)在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .……20.(8分)解不等式组⎩⎪⎨⎪⎧4x -3<5x ,x -4 2+ x +2 6≤ 1 3,并把解集在数轴上表示出来.21.(8分)利民种子培育基地用A 、B 、C 三种型号的玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广.通过试验知道,C 型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图(图1、图2):ACB图1ACB图2ACB图3ACB图4D A B CEF(1)C 型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C 型号发芽种子的概率.22.(8分)如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .(1)求证:△ABE ≌△DF A ;(2)如果AD =10,AB =6,求sin ∠EDF 的值.各种型号种子图2图1三种型号种子数百分比AE O FB DC23.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,过点D 作DF ⊥AB 于点E ,交⊙O 于点F ,已知OE =1cm ,DF =4cm . (1)求⊙O 的半径;(2)求切线CD 的长.24.(10分)如图,一次函数y =a x +b 的图象与反比例函数y = kx的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,点B 的坐标为(m ,-2),t a n ∠AOC = 13.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)在y 轴上存在一点P ,使△PDC 与△CDO 相似,求P 点的坐标.25.(10分)已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n,.(1)求抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH参考答案一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)--14.90°15.3-16.1 17.503 18.①②③13.2a b三、解答题:(本大题共7小题,共60分)19.(本题满分8分)下列图形供参考,每画对一个得2分.20.(本题满分8分) 解:解不等式①,得 3x >-; ……………………………………………………2分 解不等式②,得 3x ≤. ………………………………………………………………5分不等式①、②的解集在数轴上表示如下:………………………………7分 ∴不等式组的解集为33x -<≤. ………………………………………………8分 21.(本题满分8分)(1)480.……………………………………………………………………………2分 (2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%. …3分 B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%. ……4分C 型号种子发芽率是80%.∴选A 型号种子进行推广.………………………………………………5分 (3)取到C 型号发芽种子的概率=480370420480++=12748.…………………8分22.(本题满分8分)(1)在矩形ABCD 中,90BC AD AD BC B =∠=,∥,°, D A F A E B ∴∠=∠. …………………………………………………………2分 DF AE AE BC ⊥=,,90AFD B ∴∠=∠°=,AE AD =. ABE DFA ∴△≌△. …………………………………………………4分 (2)由(1),知 ABE DFA △≌△.A CB E F DA CB (E ) FA CB ED(F ) A C B EF D A C B (D ) (F ) E A C B(E ) FD。

山东省枣庄市中考数学试题(版,含解析)

山东省枣庄市中考数学试题(版,含解析)

山东省枣庄市中考数学试题(版,含解析)山东省枣庄市中考数学试题(版,含解析)一、选择题1. 某数学竞赛中,有10道选择题和5道填空题。

小明选择并回答了其中的6道题目。

他的回答情况是:做对了1道选择题,对于另外5道题目没有回答正确的人总数大于对于1道选择题以及对于5道填空题都没有回答正确的人总数。

求小明对于填空题的回答情况。

【解析】设对于5道填空题,小明做对的题数为a,对于剩下的未作答的题目,做对的题数为b。

根据题意可得到以下两个不等式:a +b > 1b > 0解得 a > 1因此,小明所回答正确的填空题的数量至少为2。

2. 某等差数列的前6项为1,3,5,7,9,11,如果它的第100项是奇数,则这个等差数列的公差是多少?【解析】首先,可以计算出这个等差数列的公差为2。

由已知条件可得:$ a_{100} = a_1 + 99d = 1 + 99 \cdot 2 = 199$因此,这个等差数列的公差为2。

二、填空题1. 某种动物生长迅速。

刚出生时体重为1.5千克,到了5天时增长到2千克,然后每天增重量都是前一天增重量的1.2倍。

求出这种动物在第30天的体重。

【解析】设第n天的体重为$w_n$千克,第n-1天的体重为$w_{n-1}$千克。

由题意可得:$w_n = w_{n-1} + 1.2w_{n-1} = 2.2w_{n-1}$初始条件为:$w_1 = 2$代入递推式可得:$w_2 = 2.2w_1 = 2.2 \cdot 2 = 4.4$$w_3 = 2.2w_2 = 2.2 \cdot 4.4 = 9.68$依此类推可得,第30天的体重为:$w_{30} = 2.2^{29} \cdot 2 = 6618.44$千克。

三、解答题1. 已知函数f(x)的定义域为实数集R,f(x)满足$f(x) + f(2-x) = 2x^2 - 1$。

求f(x)的表达式。

【解析】将x替换为2-x,得:f(2-x) + f(x) = 2(2-x)^2 - 1。

山东省枣庄市中考数学试题目及word答案纯word制图

山东省枣庄市中考数学试题目及word答案纯word制图

2011年山东省枣庄市中考数学试题一、选择题:1.下列计算正确的是( ) A .a 6÷a 2=a 3 B .a 2+a 3=a 5 C .(a 2)3=a 6D .(a +b )2=a 2+b 22.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ) A .30° B .40° C .60°D .70°3.下列图形中,既是轴对称图形,又是中心对称图形的是( )4.在平面直角坐标系中,点P (-2,x 2+1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是( )6.已知52是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .37.如图,P A 是O ⊙的切线,切点为A ,P A =23,∠APO =30°,则O ⊙的半径为( ) A .1B .3C .2D .4A. B. C. D.A. B. C. D. (第5题)ABD CE(第2题)O AP(第7题)8.已知反比例函数1y x=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限 C .当1x >时,01y <<D .当0x <时,y 随着x 的增大而增大9.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +610.如图所示,函数1y x =和21433y x =+的图象相交于 (-1,1),(2,2)两点.当12y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D .x <-1或x >211.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗12.如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是( ) A .(2,0)B .(4,0)C .(-22,0)D .(3,0)二、填空题13.若226m n -=,且m -n =2,则m +n =__________. 14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__________.(第14题)xy2y 1y (-1,1)(2,2) O(第10题)m +3m3(第9题)1 2 3 4-1 1 2 xy AO(第12题)15.将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.16.对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =a b a b +-,如3※2=32532+=-.那么8※12=__________.17.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是__________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y的对应值如下表:x … -2 -1 0 1 2 … y…0 4664…从上表可知,下列说法中正确的是__________.(填写序号) ①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =;④在对称轴左侧,y 随x 增大而增大.三、解答题19.先化简,再求值:22121(1)24x x x x -++÷--其中x =-5.O xy(a ,0)o3 5(第17题)(第15题)ABC DE45°30° F20.某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.21.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题: (1)画线段AD ∥BC 且使AD =BC ,连接CD ; (2)线段AC 的长为__________,CD 的长为__________,AD 的长为__________;(3)△ACD 为__________三角形,四边形ABCD 的面积为__________;(4)若E 为BC 中点,则tan ∠CAE 的值是__________.3号25%4号 1号30%4号25%(图2)3号 2号 1号 2号500株幼苗中各品种幼苗所占百分比统计图 各品种幼苗成活数统计图 (图1)品种成活数(株)50 100 150 11713585ABCE(第21题)22.某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.A OB DC(第23题)24.如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =AD =6,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF .(1)证明:EF =CF ;(2)当tan ADE ∠=13时,求EF 的长.25.如图,在平面直角坐标系xOy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)写出h 、k 的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.FDBA EC(第24题)ABDO C xy2011年枣庄市中考数学试题参考答案一、选择题二、填空题:13.3; 14.左视图; 15.492; 16.52-; 17.-2<a <2; 18.①③④;三、解答题19.解:22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-÷-- =21x x +-, 当5-=x 时,原式=21x x +-=521512-+=--. 20.解:(1)100;(2)500×25%×89.6%=112,如图所示: (3)1号果树幼苗成活率为135150×100%=90% 2号果树幼苗成活率为85100×100%=85%题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CABBBACDCDCD4号 3号 2号 1号 各品种幼苗成活数统计图 品种成活数(株)50 100 150 117135 851124号果树幼苗成活率为117125×100%=93.6% ∵93.6%>90%>89.6%>85%, ∴应选择4号苹果幼苗进行推广.21.(1)如图;(2)25,5,5; (3)直角,10;(4)12.22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得8030(30)19005060(30)1620x x x x +-⎧⎨+-⎩≤≤ 解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10. 故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书 角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. (2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元). 故方案一费用最低,最低费用是22320元.23.(1)证明:连结OC .∵AC =CD ,∠ACD =120°, ∴∠A =∠D =30°. ∵OA =OC , ∴∠2=∠A =30°.∴∠OCD =∠ACD -∠2=90°. ∴CD 是O 的切线.AOBDC 12 ABCE(第21题)D(2)解:∵∠A =30°,∴∠1=2∠A =60°.∴26022==3603OBC S ππ⨯扇形. 在Rt △OCD 中,CD =OC ·tan60°=23.∴Rt 112232322OCD S OC CD =⨯=⨯⨯=△. ∴图中阴影部分的面积为2233π-.24.解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG , ∴∠ADE =∠GD C .又∵∠A =∠DGC ,且AD =GD , ∴△ADE ≌△GD C . ∴DE =DC ,且AE =G C . 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF . ∴EF =CF . (2)∵tan ∠ADE =AD AE =31,∴AE =GC =2. 设EF =x ,则BF =8-CF =8-x ,BE =6-2=4. 由勾股定理,得222(8)4x x =-+. 解之,得x =5,即EF =5.25.解:(1)2()y x h k =-+的顶点坐标为D (-1,-4),∴h =-1,k =-4. (2)由(1)得2(1)4y x =+-.F DBA EC(第24题)G当y =0时,(x +1)2-4=0.解之,得123,1x x =-=. ∴A 点坐标为(-3,0),B 点坐标为(1,0)又当x =0时,y =(x +1)2-4=(0+1)2-4=-3, ∴C 点坐标为(0,-3).又抛物线顶点坐标为D (-1,-4),作抛物线的对称轴x =-1交x 轴于点E ,DF ⊥y 轴于点F .易知在Rt △AED 中,2222420AD =+=; 在Rt △AOC 中,2223318AC =+=; 在Rt △CFD 中,222112CD =+=; ∴222AC CD AD +=. ∴△ACD 是直角三角形.(3)存在.作OM ∥BC 交AC 于M ,M 点即为所求点.由(2)知,△AOC 为等腰直角三角形,∠BAC =45°,1832AC ==. 由△AOM ∽△ABC ,得AO AMAB AC=. 即3432AM =,3329244AM ⨯==. 过M 点作MG ⊥AB 于点G ,则AG =MG =29248192164⎛⎫⎪⎝⎭==,∴OG =AO -AG =3-94=34.又点M 在第三象限,所以M (39,44--).FMGE xyBACDO。

山东省17市2011年中考数学试题分类解析汇编 专题2 代数式和因式分解

山东省17市2011年中考数学试题分类解析汇编 专题2 代数式和因式分解

山东17市2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (日照3分)下列等式一定成立的是()A、a2+a3=a5B、(a+b)2=a2+b2C、(2a b2)3=6a3b6D、(x﹣a)(x﹣b)=x2﹣(a+b)x+a b【答案】D。

【考点】合并同类项,完全平方公式,幂的乘方与积的乘方,多项式乘多项式。

【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则得:A、不是同类项,不能合并,故本选项错误;B、(a+b)2=a2+2a b+b2,故本选项错误;C、(2a b2)3=8a3b6,故本选项错误;D、(x﹣a)(x﹣b)=x2﹣(a+b)x+a b,故本选项正确。

故选D。

2.(烟台4分)下列计算正确的是A.a2+a3=a5B. a6÷a3=a2C. 4x2-3x2=1D.(-2x2y)3=-8 x6y3【答案】D【考点】合并同类项,同底幂除法,积和幂的乘方。

【分析】根据合并同类项,同底幂除法,积和幂的乘方运算法则,逐一分析:A a2和a3不是同类项,不能合并,选项错误;B a6÷a3=a3,选项错误;C 4x2-3x2=x2,选项错误;D(-2x2y)3=-8 x6y3,选项正确. 故选D 。

3.(烟台4分)12a-,则A.a<12B. a≤12C. a>12D. a≥12【答案】B。

【考点】二次根式的性质及其应用,解一元一次不等式。

【分析】根据二次根式的性质:当a≥0=a;当a<0=-a.12a-在实数范围内有成立,即要120a-≥,即a≤12。

故选B。

4.(东营3分)下列运算正确的是A .336x x x +=B .824x x x ÷=C .m n mn x x x ⋅=D .5420()x x -= 【答案】D 。

【考点】合并同类项,同底幂除法和乘法,幂的乘方。

【分析】根据合并同类项,同底幂除法和乘法,幂的乘方运算法则,直接得出结论:A .3332x x x +=,选项错误; B .82826==x x x x -÷,选项错误; C .m n m n x x x +⋅= ,选项错误;D .5420()x x -=,选项正确。

枣庄市中考数学试题解析(4)

枣庄市中考数学试题解析(4)

枣庄市中考数学试题解析(4)(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.令﹣2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,∴S△AOB=S△AOD﹣S△BOD= ×4×6﹣×4×2=8.点评:此题考查了反比例函数与一次函数的交点问题:先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,表达了数形结合的思想.23.(8分)(xx枣庄)如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)假设EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形..分析: (1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后等腰直角三角形的性质即可求得.解答: (1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG= =DO,∴在等腰RT△ADB 中,DB=2DO=2 =AD∴AD=2 ,点评:此题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.24.(10分)(xx枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=CD2OE;(3)假设cos∠BAD= ,BE=6,求OE的长.考点:切线的判定;相似三角形的判定与性质..分析: (1)连接OD,BD,由AB为圆O的直径,得到∠ADB为直角,可得出三角形BCD为直角三角形,E为斜边BC的中点,利用斜边上的中线等于斜边的一半,得到CE=DE,利用等边对等角得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,由直角三角形ABC中两锐角互余,利用等角的余角相等得到∠ADO与∠CDE 互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为圆O的切线;(2)证明OE是△ABC的中位线,那么AC=2OE,然后证明△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.解答: (1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△B DC中,E为斜边BC的中点,∴CE=DE=BE= BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠AD O+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)证明:∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴ = ,即BC2=ACCD.∴BC2=2CDOE;(3)解:∵cos∠BAD= ,∴sin∠BAC= = ,又∵BE=6,E是BC的中点,即BC=12,∴AC=15.又∵AC=2OE,∴OE= AC= .点评:此题考查了切线的判定,垂径定理以及相似三角形的判定与性质等知识点.要证某线是圆的切线,此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(10分)(xx枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?假设存在,求出这个最大值;假设不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.考点:二次函数综合题..专题:几何综合题;压轴题.分析: (1)B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.解答:解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A( , )、B(4,6)在抛物线y=ax2+bx+6上,∴ ,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),那么C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣ )2+ ,∵PC>0,∴当n= 时,线段PC最大且为 .(3)∵△PAC为直角三角形,i)假设点P为直角顶点,那么∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)假设点A为直角顶点,那么∠PAC=90°.如答图3﹣1,过点A( , )作AN⊥x轴于点N,那么ON= ,AN= .过点A作AM⊥直线AB,交x轴于点M,那么由题意易知,△AMN为等腰直角三角形,∴MN=AN= ,∴OM=ON+MN= + =3,∴M(3,0).设直线AM的解析式为:y=kx+b,那么:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x= (与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)假设点C为直角顶点,那么∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A( , )关于对称轴x=2的对称点C,那么点C在抛物线上,且C( , ).当x= 时,y=x+2= .∴P2( , ).∵点P1(3,5)、P2( , )均在线段AB上,∴综上所述,△P AC为直角三角形时,点P的坐标为(3,5)或( , ).点评:此题主要考查了二次函数解析式确实定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识.。

枣庄中考数学试题及答案

枣庄中考数学试题及答案

枣庄中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的值是:A. 正数B. 负数C. 零D. 无法确定答案:B3. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 下列哪个表达式的结果不是整数?A. 2^3B. 5 ÷ 2C. 3 × 4D. 8 - 4答案:B5. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A二、填空题(每题1分,共5分)6. 圆的周长公式为C = 2πr,如果半径r=5,则周长C=________。

答案:10π7. 一个数的立方根是3,那么这个数是________。

答案:278. 如果一个角的度数是45°,那么它的余角是________。

答案:45°9. 一个数的相反数是-5,那么这个数是________。

答案:510. 一个数的绝对值是5,那么这个数可以是________或________。

答案:5 或 -5三、解答题(共85分)11. 计算下列各题,并写出计算过程:a. (3x - 2y) - (5x + 4y)b. 2(4x - 3y) ÷ 4答案:a. (3x - 2y) - (5x + 4y) = 3x - 2y - 5x - 4y = -2x - 6yb. 2(4x - 3y) ÷ 4 = 8x - 6y ÷ 4 = 2x - 1.5y12. 解下列方程:a. 2x + 3 = 7b. 3x - 5 = 10答案:a. 2x + 3 = 7 → 2x = 4 → x = 2b. 3x - 5 = 10 → 3x = 15 → x = 513. 一个长方体的长、宽、高分别是10cm、8cm、6cm,求它的体积。

枣庄市中考数学真题试题(含解析)

枣庄市中考数学真题试题(含解析)

枣庄市中考数学真题试题一、选择题(本大题共12小题,每小题3分,共36分) 1.下列计算,正确的是( )A =B .13|2|22-=-C =D .11()22-=【答案】D . 【解析】考点:立方根;有理数的减法;算术平方根;负整数指数幂.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是( )A .96B .69C .66D .99 【答案】B . 【解析】试题分析:现将数字“69”旋转180°,得到的数字是:69.故选B . 考点:生活中的旋转现象.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 【答案】A .【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.4.实数a,b在数轴上对应点的位置如图所示,化简||a的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【答案】A.【解析】考点:二次根式的性质与化简;实数与数轴.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:由表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【答案】A.【解析】试题分析:∵ =>=,∴从甲和丙中选择一人参加比赛,∵ =<<,∴选择甲参赛,故选A.考点:方差;算术平均数.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【答案】C.【解析】考点:相似三角形的判定.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A 落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B C D.1【答案】B.【解析】试题分析:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM B.考点:翻折变换(折叠问题).8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60 【答案】B.【解析】考点:角平分线的性质.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数kyx=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36 【答案】C.【解析】试题分析:∵A (﹣3,4),∴OA ,∵四边形OABC 是菱形,∴AO =CB =OC =AB =5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x =得,4=8k-,解得:k =﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征.10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A .r <<B r <<C 5r <<D .5r <<【答案】B . 【解析】考点:点与圆的位置关系;勾股定理;推理填空题. 11.如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)【答案】C.【解析】试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴232k bb=-+⎧⎨-=⎩,解得:432kb⎧=-⎪⎨⎪=-⎩,∴直线CD′的解析式为423y x=--.令423y x=--中y=0,则0=423x--,解得:x=32-,∴点P的坐标为(32-,0).故选C.考点:一次函数图象上点的坐标特征;轴对称﹣最短路线问题;最值问题.12.已知函数221y ax ax =--(a 是常数,a ≠0),下列结论正确的是( ) A .当a =1时,函数图象经过点(﹣1,1) B .当a =﹣2时,函数图象与x 轴没有交点 C .若a <0,函数图象的顶点始终在x 轴的下方 D .若a >0,则当x ≥1时,y 随x 的增大而增大 【答案】D . 【解析】故选D .考点:抛物线与x 轴的交点;二次函数图象与系数的关系. 二、填空题(本大题共6小题,每小题4分,共24分)13.化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x. 【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x.考点:分式的乘除法.14.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则a 的取值范围是 .【答案】a>﹣1且a≠0.【解析】试题分析:由题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为:a>﹣1且a≠0.考点:根的判别式.15.已知23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,则22a b-= .【答案】1.【解析】考点:二元一次方程组的解;整体思想.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.【解析】试题分析:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,FE的长=306180π⋅=π.故答案为:π.考点:切线的性质;平行四边形的性质;弧长的计算.17.如图,反比例函数2yx=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.【答案】4.【解析】考点:反比例函数系数k的几何意义.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【答案】3.【解析】试题分析:延长EF和BC,交于点G.∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF.∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,∴122 CG CF CFDE DF CF===.设CG=x,DE=2x,则AD=9+2x=BC.∵BG=BC+CG,∴=9+2x+x,解得x=3,∴BC=9+2(3)=3.故答案为:3.考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质.三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与13222x x≤-都成立?【答案】﹣2、﹣1、0、1.【解析】考点:一元一次不等式的整数解.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【答案】(1)50,30%;(2)作图见解析;(3)35.【解析】(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)=1220=35.考点:列表法与树状图法;扇形统计图;条形统计图;应用题;数据的收集与整理.21.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4). (1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; (2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin ∠A 2C 2B 2=10. 【解析】(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD =2,CD =6,AC ,∴sin ∠ACB =ADAC ,即sin ∠A 2C 2B 2.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).【答案】(1)BC与⊙O相切;(2)23π.【解析】(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=12OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB=604360π⨯=23π,则阴影部分的面积为S△ODB﹣S扇形DOF=12×2×23π=23π.故阴影部分的面积为23π.考点:直线与圆的位置关系;扇形面积的计算;探究型.23.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.【解析】试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)=nn=1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159,∵34>35>213>137>159,∴所有“吉祥数”中,F(t)的最大值为34.考点:因式分解的应用;新定义;因式分解;阅读型.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【答案】(1)证明见解析;(2)△ACE是直角三角形;(31,45°.【解析】试题解析:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PA E=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;考点:四边形综合题;探究型;变式探究. 25.如图,抛物线212y x bx c =-++ 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【答案】(1)21262y x x =-++,D (2,8);(2)(﹣1,72)或(﹣3,﹣92);(3)(2,2-+或(2,2--. 【解析】试题分析:(1)由B 、C 的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D 即可;(2)过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FBG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;(3)由于M 、N 两点关于对称轴对称,可知点P 为对称轴与x 轴的交点,点Q 在对称轴上,可设出Q 点的坐标,则可表示出M 的坐标,代入抛物线解析式可求得Q 点的坐标.当点F 在x 轴下方时,有21261262x x x -++=--,解得x =﹣3或x =6(舍去),此时F 点的坐标为(﹣3,﹣92); 综上可知F 点的坐标为(﹣1,72)或(﹣3,﹣92);(3)如图2,设对称轴MN 、PQ 交于点O ′,∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q (2,2n ),则M 坐标为(2﹣n ,n ),∵点M 在抛物线21262y x x =-++的图象上,∴n =﹣12(2﹣n )2+2(2﹣n )+6,解得n=1-+n =1-Q 有两个,其坐标分别为(2,2-+2,2--.考点:二次函数综合题;分类讨论;动点型;压轴题.。

2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》

2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》

1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .

2011年枣庄市中考数学试题及答案

2011年枣庄市中考数学试题及答案

绝密☆启用前二O ——年枣庄市2008级初中学业考试数学试题注意事项:1. 本试题分第I卷和第n 卷两部分.第I卷为选择题,36分;第n卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2. 答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3•第I卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4.第n卷必须用黑色(或蓝色)笔填写在答题纸的指定位置,否则不计分.第I卷(选择题共36分)、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1•下列计算正确的是6 2 3 2,3 5A. a 十a = a B . a + a = aC. ( a2) 3= a6 D . (a+ b) 2= a2+ b22.如图,直线AB// CD,/ A = 70,/ C = 40 ,则/ E等于A. 30 °B. 40 °C. 60°D. 70°3. 下列图形中,既是轴对称图形,又是中心对称图形的是试卷类型:A4. 在平面直角坐标系中,点P( —2, X2+ 1)所在的象限是A.第一象限B. 第二象限C. 第三象限D. 第四象限C ABC5•如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致•那么应该选择的拼木是11 •在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是 4 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率51是二元次方程组ax + bv = 7{ '的解,贝U a —b的值为C. 2 D• 37 .如图,PA是O O的切线,切点为A, PA=2'、3,/ APO=30。

2011年山东省圆中考专题(答案)

2011年山东省圆中考专题(答案)

2011山东中考数学分类------圆一、选择题1.(淄博 11,4分)如图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为( )A .4B .92C .112D .5 【答案】D 。

2.(临沂 6,3分)如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,OM :OD=3:5 .则AB 的长是( )A 、2cm B 、3cm C 、4cm D 、2cm 故选C .3,(•滨州3,3分)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在 y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( ) A 、(﹣4,5) B 、(﹣5,4)C 、(5,﹣4) D 、(4,﹣5) 故选D .4(济宁 5,3分).已知⊙O 1与⊙O 2相切,⊙O 1的半径为9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm5(济宁 9.3分)如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 ( ) A .6cm B .35cm C .8cm D .53cm6,(泰安 10,3分).如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6⊙O 的半径为 (A )2 (B )22 (C )22 (D )267(泰安 14,3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是(A )5π (B )4π (C )3π (D )2π 8 (日照 11.4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab的是(第9题)剪去9(莱芜 11,3分)将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系是【 D 】A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S 底 10(青岛 3,3分)已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是【 】 A .外离 B .外切 C .相交 D .内切11(青岛 7,3分)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【 】 A .17cm B .4cm C .15cm D .3cm12、(2011•潍坊9,3分)如图,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( ) A 、17π B 、32π C 、49π D 、80π 故选B .13(枣庄 7,3分)7.如图,PA 是O ⊙的切线,切点为A ,P A =23,∠APO =30°, 则O ⊙的半径为( ) A .1B .3C .2D .4二、填空 1、(济宁 13,3分)如图,在Rt △ABC 中,∠C=90°,BC=4cm ,以点C 为圆心,以3cm 长为半径作圆,则⊙C 与AB 的位置关系是 。

《整式乘除与因式分解》历年中考难题

《整式乘除与因式分解》历年中考难题

39. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A .5nB .5n -1C .6n -1D .2n 2+1 【答案】C47. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .B .C .D .【答案】D61. (2011山东枣庄,9,3分)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6 【答案】C3. (2011山东济宁,12,3分)若代数式可化为,则的值是 . 【答案】55. (2011浙江省,14,3分)某计算程序编辑如图所示,当输入x= 时,输出的y=3.()1a +(0)a >22(25)cm a a +2(315)cm a +2(69)cm a +2(615)cm a+26x x b -+2()1x a --b a-【答案】12或 16. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是 ▲ .【答案】18. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)【答案】或43.(2011山东潍坊,13,3分)分解因式:=_________________【答案】55. (2011四川凉山州,14,4分)分解因式: 。

【答案】57. (2011湖北黄冈,2,3分)分解因式8a 2-2=____________________________.32-nn )2(+n n (1)4n n ++24n n ++321a a a +--2(1)(1)a a +-32214a ab ab -+-=212a a b ⎛⎫-- ⎪⎝⎭第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图【答案】2(2a +1)(2a -1)58. (2011湖北黄石,11,3分)分解因式:2x 2-8= 。

最新初中中考数学题库 2011年枣庄市中考数学试题及答案

最新初中中考数学题库 2011年枣庄市中考数学试题及答案

绝密☆启用前试卷类型:A二○一一年枣庄市2008级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均记零分.1.下列计算正确的是A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b )2=a 2+b 2 2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒, 则∠E 等于A .30° B.40° C .60° D.70° 3.下列图形中,既是轴对称图形,又是中心对称图形的是4.在平面直角坐标系中,点P (-2,2x +1)所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、 反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是AC BD E第2题图A B CD6.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为A .-1B .1C .2D .3 7.如图,PA 是O ⊙的切线,切点为A ,P A =23, ∠APO =30°,则O ⊙的半径为 A .1B .3C .2D .48.已知反比例函数xy 1=,下列结论中不正确的是A .图象经过点(-1,-1)B .图象在第一、三象限C .当1>x 时,10<<yD .当0<x 时,y 随着x 的增大而增大 9.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分 可剪拼成一个矩形(不重叠无 缝隙),若拼成的矩形一边长 为3,则另一边长是 A .m +3 B .m +6 C .2m +3D .2m +610.如图所示,函数x y =1和34312+=x y 的图象 相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是A .x <-1B .—1<x <2C .x >2D . x <-1或x >211.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率 是14,则原来盒中有白色棋子 A .8颗 B .6颗 C .4颗 D .2颗12.如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则 点P 的坐标不可能...是 OPA第7题图第9题图m +3m32 y AA B C D第5题图(-1,1)1y (2,2)2yx yO第10题图A .(2,0)B .(4,0)C .(-22,0)D .(3,0)第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分. 13.若622=-n m ,且2m n -=,则=+n m . 14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .15.将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.下:a ※b =ba ba -+, 16.对于任意不相等的两个实数a 、b ,定义运算※如如3※2=32532+=-.那么8※12= .17.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.(a ,0)xy O · 3 5 第17题图第15题图A CEDBF 30°45°第14题图19.(本题满分8分)先化简,再求值:⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5.20.(本题满分8分)某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.21.(本题满分8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题: (1)画线段AD ∥BC 且使AD =BC ,连接CD ;(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ;(3)△ACD 为 三角形,四边形ABCD 的面积为 ;(4)若E 为BC 中点,则tan ∠CAE 的值是 .22.(本题满分8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;∙4号25% 30%1号3号 25%2号 (图1) 500株幼苗中各品种幼苗所占百分比统计图成活数(株) 品种O1号 2号 3号 4号1358511750100 150 (图2)各品种幼苗成活数统计图AB CE 第21题图(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.(本题满分8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD , ∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.24. (本题满分10分)如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =;(2)当tan ADE ∠=31时,求EF 的长.25.(本题满分10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)写出h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.FDBA EC第24题图第23题图y绝密☆启用前二○一一年枣庄市2008级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分. 一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CABBBACDCDCD小题,每小题4分,共24分) 13.3 14.左视图 15.49216.-52 17.-2<a <2 18.①③④三、解答题:(本大题共7小题,共60分) 19.(本题满分8分)解:412)211(22-+-÷-+x x x x =)2)(2()1(2122-+-÷-+-x x x x x ……………………2分 =2)1()2)(2(21--+⋅--x x x x x =12-+x x , ………………………………………………5分 当5-=x 时,原式=12-+x x =211525=--+-. ………………………………………8分20.(本题满分8分)解:(1)100; …………………………………………………………2分 (2)11%6.89%25500=⨯⨯,如图所示; ……………………4分(3)1号果树幼苗成活率为%90%100150135=⨯ 2号果树幼苗成活率为%85%10010085=⨯ 4号果树幼苗成活率为%6.93%100125117=⨯ ∵93.6%90%89.6%85%>>>, ∴应选择4号苹果幼苗进行推广.………8分 21.(本题满分8分)(1)如图; ……………………………1分 (2)25,5,5; ………………4分(3)直角,10; ……………………6分(4)12. ……………………………8分22.(本题满分8分)解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得成活数(株)品种O1号 2号 3号 4号135 8511750100 150 第20题图各品种幼苗成活数统计图 ABCE第21题图D⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x ………………………2分 解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书 角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. …5分(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元. …………8分 23.(本题满分8分) (1)证明:连结O C .∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.…………………………2分 ∵ OC OA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线. ………………………………4分 (2)解:∵∠A=30o, ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. ……………………6分 在Rt △OCD 中, tan 6023CD OC =⋅︒=.∴Rt 112232322OCD S OC CD ∆=⨯=⨯⨯=. ∴ 图中阴影部分的面积为-3223π. ………………8分24.(本题满分10分)解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. …………1分 ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG ,∴∠ADE =∠GDC . ………………………3分DA E又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC .∴DE =DC ,且AE =GC . ……………………4分 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF .∴EF =CF . ……………………………………………6分 (2)∵tan ∠ADE =AD AE =31, ∴2A E G C ==. ………………………………………7分 设E F x =,则88B F C F x=-=-,BE =6-2=4. 由勾股定理,得 222(8)4x x =-+. 解之,得 5x =, 即5E F =. ……………………………10分 25.(本题满分10分)解:(1)2()y x h k=-+的顶点坐标为D(-1,-4), ∴ 1h k =-,=-4. …………………………………………2分 (2)由(1)得2(1)4y x =+-. 当0y =时,2(1)40x +-=. 解之,得 1231x x =-=,. ∴ (30)10A B -,,(,). 又当0x =时,22(1)4(01)43y x =+-=+-=-, ∴C 点坐标为()03,-.………………………………4分 又抛物线顶点坐标()14D --,,作抛物线的对称轴1x =-交x 轴于点E , D F y ⊥轴于点F .易知在R t A E D △中,2222420A D =+=; 在R t A O C △中,2223318A C =+=;在R t C F D △中,222112C D =+=; ∴ 222AC C DAD +=. ∴ △ACD 是直角三角形.…………………………6分 (3)存在.作OM ∥BC 交AC 于M ,M点即为所求点.ADCB O x yMFE G由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==. 由A O M A B C△∽△,得AO AMAB AC=. 即33329244432A M A M ⨯===,. …………………………8分 过M 点作M G A B⊥于点G ,则 29248192164A G M G ⎛⎫⎪⎝⎭∴====,93344O G A O A G =-=-=. 又点M 在第三象限,所以39--44M (,). …………………………10分。

2022中考数学专项五-动手操作

2022中考数学专项五-动手操作

2022中考数学专项五-动手操作1.(2011四川省乐山市)7、如图(4),直角三角板ABC 的斜边AB=12㎝,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A B C '''的位置后,再沿CB方向向左平移, 使点B '落在原三角板ABC 的斜边AB 上, 则三角板A B C '''平移的距离为( )(A) 6㎝ (B) 4㎝ (C ) (6-23 )㎝ (D )(436-)㎝解:C2.(2011广东省广州市)如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )考点:剪纸问题。

分析:严格按照图中的方法亲自动手操作一下,即可专门直观地出现出来,也可认真观看图形特点,利用对称性与排除法求解. 解答:解:∵第三个图形是三角形, ∴将第三个图形展开,可得,即可排除答案A ,∵再展开可知两个短边正对着, ∴选择答案D ,排除B 与C . 故选D .点评:本题要紧考查学生的动手能力及空间想象能力.关于此类问题,学生只要亲自动手操作,答案就会专门直观地出现.3..(2011黑龙江省鸡西市)如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全 等三角形 ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上④BD=BF ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个30°BA B'A'考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密☆启用前试卷类型:A二0一一年枣庄市2008级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.(2011山东枣庄,1,3分)如下列计算正确的是( )A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b )2=a 2+b 2 【答案】C 2.(2011山东枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70° 【答案】A 3.(2011山东枣庄,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )【答案】B4.(2011山东枣庄,4,3分)在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【 5.(2011山东枣庄,5,3分)如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是( )A CB D EA B CD【答案】B6.(2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a -b 的值为( )A .-1B .1C .2D .3【答案】A7.(2011山东枣庄,7,3分)如图,PA 是O ⊙的切线,切点为A ,PA=23,∠APO=30°,则O ⊙的半径为( )A .1B .3C .2D .4【答案】C8.(2011山东枣庄,8,3分)已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当1>x 时,10<<yD .当0<x 时,y 随着x 的增大而增大【答案】D 9.(2011山东枣庄,9,3分)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6 【答案】C10.(2011山东枣庄,10,3分)如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )m +3m3A B C DA .x <-1B .—1<x <2C .x >2D . x <-1或x >2 【答案】D 11.(2011山东枣庄,11,3分)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗 【答案】C12.(2011山东枣庄,12,3分)如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 【答案】D第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分. 13.(2011山东枣庄,13,4分)若622=-n m ,且2m n -=,则=+n m .【答案】314.(2011山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .【答案】左视图1 23 4-1 12 xy A(-1,1)1y (2,2)2yxyO15.(2011山东枣庄,15,4分)将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.【答案】49216.(2011山东枣庄,16,4分)对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =ba ba -+,如3※2=32532+=-.那么8※12= . 【答案】-5217.(2011山东枣庄,17,4分)如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________.【答案】-2<a <218.(2011山东枣庄,18,4分)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大. 【答案】①③④三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.AC EDB F 30°45°(a ,0) x y O · 3 519.(2011山东枣庄,19,8分)先化简,再求值:⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5. 解:412)211(22-+-÷-+x x x x =)2)(2()1(2122-+-÷-+-x x x x x =2)1()2)(2(21--+⋅--x x x x x =12-+x x , 当5-=x 时,原式=12-+x x =211525=--+-. 20.(2011山东枣庄,20,8分)某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由. 解:(1)100; (2)11%6.89%25500=⨯⨯,如图所示;(3)1号果树幼苗成活率为%90%100150135=⨯ 2号果树幼苗成活率为%85%10010085=⨯ 4号果树幼苗成活率为%6.93%100125117=⨯ ∵93.6%90%89.6%85%>>>, ∴应选择4号苹果幼苗进行推广.成活数(株) 品种O1号 2号 3号 4号1358511750100 150 (图2)各品种幼苗成活数统计图∙4号25% 30%1号3号 25% 2号 (图1)500株幼苗中各品种幼苗所占百分比统计图21.(2011山东枣庄,21,8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD ∥BC 且使AD =BC ,连接CD ;(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ; (3)△ACD 为 三角形,四边形ABCD 的面积为 ; (4)若E 为BC 中点,则tan ∠CAE 的值是 .21.(2011山东枣庄,21,8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD ∥BC 且使AD =BC ,连接CD ;(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ; (3)△ACD 为 三角形,四边形ABCD 的面积为 ; (4)若E 为BC 中点,则tan ∠CAE 的值是 . 解:(1)如图; ……………………………1分(2)25,5,5;(3)直角,10; (4)12. 22.(2011山东枣庄,22,8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,ABCE第21题图D成活数(株) 品种O1号 2号 3号 4号1358511750100 150各品种幼苗成活数统计图ABCE决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书 角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. …5分 (2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元). 故方案一费用最低,最低费用是22320元.【思路分析】(1)由题意知⎩⎨⎧≤≤人文书总数小型图书角人文书数中型图书角人文书数+科技书总数小型图书角科技书数中型图书角科技书数+,据此列出不等式组,根据实际意义讨论;(2)根据(1)求得的不同方案两种图书的数量和题意中两种图书建一个的价格进行计算,再求出总费用=中型图书角的费用+小型图书角的费用,最后进行比较.【方法规律】(1)根据题意建立“不等式组模型”,通过不等式组的解集与实际相结合讨论; (2)根据“金额=数量×价格”求出每种图书角的费用,再求出所有方案的总费用比较.【易错点分析】不能通过题意建立合适的数学模型,导致不能分析方案与费用问题.【关键词】方案设计问题、二元一次方程组的应用 【难度】★★★☆☆ 【题型】常规题 23.(2011山东枣庄,23,8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD , ∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.【答案】(1)证明:连结O C .∵ CD AC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.∵ OC OA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线.(2)解:∵∠A=30o, ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. 在Rt △OCD 中, tan 6023CD OC =⋅︒=.∴Rt 112232322OCD S OC CD ∆=⨯=⨯⨯=. ∴ 图中阴影部分的面积为-3223π.24.(2011山东枣庄,24,10分)如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =;(2)当tan ADE ∠=31时,求EF 的长.解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG , ∴∠ADE =∠GDC . 又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC .∴DE =DC ,且AE =GC . 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF .FDBA EC∴EF =CF .(2)∵tan ∠ADE =AD AE =31, ∴2A E G C ==. 设E F x =,则88B F C F x=-=-,BE =6-2=4. 由勾股定理,得 222(8)4x x =-+. 解之,得 5x =, 即5E F =.25.(2011山东枣庄,25,10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)写出h k 、的值;(2)判断ACD △的形状,并说明理由; (3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.解:(1)2()y x h k=-+的顶点坐标为D(-1,-4), ∴ 1h k =-,=-4.(2)由(1)得2(1)4y x =+-. 当0y =时,2(1)40x +-=. 解之,得 1231x x =-=,. F DBA ECGADC B O xy∴ (30)10A B -,,(,).又当0x =时,22(1)4(01)43y x =+-=+-=-, ∴C 点坐标为()03,-.……………………………………………………………………4分 又抛物线顶点坐标()14D --,,作抛物线的对称轴1x =-交x 轴于点E , D F y ⊥轴于点F .易知在R t A E D △中,2222420A D =+=; 在R t A O C△中,2223318A C =+=; 在R t C F D△中,222112C D =+=; ∴222A C C DA D +=. ∴ △ACD 是直角三角形.(3)存在.作OM ∥BC 交AC 于M ,M点即为所求点.由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==.由A O M A B C△∽△,得AO AMAB AC=. 即33329244432A M A M ⨯===,. 过M 点作M G A B⊥于点G ,则 29248192164A G M G ⎛⎫⎪⎝⎭∴====,93344O G A O A G =-=-=.又点M 在第三象限,所以39--44M (,).ADC B O x yM FE G。

相关文档
最新文档