流体力学第六章
流体力学 第六章 流体波动

由上式可见,波群中包含两个波动的乘积。
其中:
sinkx t
称为高频载波,其波数k和圆频率ω都分别接近 各个单波的波数和圆频率。即
k
k1 k2 2
k1
k2,
1 2
2
1
2
载波的波速也接近于各个单波的波速,即
c 1 2
k k1 k2
Q* 2Qcos kx t
称为低频包络,它是载波的包络线,或称波包,
1
界面波传播速度是有相同厚度H的重力表面
波速度的十分之一。
§3 群速度
单波(单色波,单纯波):具有一定振幅、一 定频率和一定波长在时间和空间都是无限的波 动。
群波(group wave):由各种单色波叠加而成 的波动。叠加结果,有些振幅是相抵消的,有 些是加强的。所以群波的振幅随时间和空间改 变。群波 混合波
设其形式解为:
u(x,t) B sin k(x ct) (6.2.21)
代入原方程,
u t
g
h x
h
t
H
u x
0
(6.2.22)
有:
B g A H
(6.2.23)
说明u和h位相相同(c>0),或位相相差180(0 c 0).
若取 1波速 1 对于海洋若取H=4km, 0.01, c 20m / s,
kx ly mz t (x, y, z,t)
其中:
/ t k / x l / y m / z
圆频率 x 方向的波数 y 方向的波数 z 方向的波数
全波数的概念
定义波数矢量为:
K ki lj mk
波数矢量垂直于等位相面(波阵面) (波数矢量即为波动传播的方向) 定义其模称为全波数
流体力学-第六章 旋转流体力学

da A
da Ax
i
da Ay
j
d
a
Az
k
dt dr A
dt dA
dAx
dt
i
dAy
dt
j
dAz
k
dt dt dt
dt
dt
Chen Haishan NIM NUIST
da A da Axi Ay j Azk
dt
dt
展开
dA
dAx
i
dAy
j
dAz
k
dt dt
dt
dt
Chen Haishan NIM NUIST
假定流体运动满足: RO 1 或者RO 0(即 Rossby 数很小);
Ek
R0 Re
0
同时要求: RO L/UT 0 (即要求T很大,1/T 0,即 对应缓慢运动或者准定常流动)。
L R0 UT
V t
(V
•
)V
1 R0
1 p
1 Fr
g
Ek
一致,是衡量旋转效应的一个重要量。
Chen Haishan NIM NUIST
由Rossby数的定义可知: RO 1 ,偏向力的作用大,旋转效应重要; RO 1,偏向力的作用小,可不考虑地球的旋转效应。
另外的角度来考虑:
大尺度运动(L大),流速缓慢(U小)偏差大 RO 1,旋转效应重要,采用旋转流体运动方程;
普鲁德曼--泰勒定理:不可压或正压流体,在有 势力作用下的准定常缓慢运动,由于强旋转效应 ,其速度将与垂直坐标无关,流动趋于两维化( 流动是水平、二维的)。
普鲁德曼--泰勒定理的检验: 泰勒流体柱实验(P221)。
Chen Haishan NIM NUIST
第六章流体力学10.8

第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
流体力学

2008年真题:盛水容器a 和b 的上方密封,测压管水面位置如 图所示,其底部压强分别为pa与pb若两容器内水深相等, 则pa与pb的关系为: (A) pa pb (B) pa pb (C) pa pb (D)不能确定 答案:A
等压面的概念
由压强相等的点连成的面,称为等压面。等压面 可以是平面,也可以是曲面。
第六章 流 体 力 学
6.1流体的主要物性与流体静力学
6.1.1 流体的连续介质模型 1.假设液体是一种连续充满其所占据空间的毫无空隙的连 续体。流体力学所研究的液体运动是连续介质的连续流动。 意义:使描述液体运动的一切物理量在空间和时间上连续, 故可利用连续函数的分析方法来研究液体运动。 2.流体质点:指微观充分大(其中包含大量分子),宏观
连通容器
连通容器
连通器被隔断
2009年真题 : 1.静止的流体中,任一点的压强的大小与下列哪一项无关? (A) 当地重力加速度 (B) 受压面的方向
(C) 该点的位置
答案:B 2009年真题:
(D) 流体的种类
静止油面(油面上为大气)下3m深度处的绝对压强为下列哪一 项?(油的密度为800kg/m3,当地大气压为100kPa)
充满以流管为边界的一束液流,称为微小流束,也叫元流。
性质:微小流束内外液体不会发生交换;恒定流微小流束的 形状和位置不会随时间而改变,非恒定流时将随时间改变; 横断面上各点的流速和压强可看作是相等的。 任何一个实际水流都具有一定规模的边界,这种有一 定大小
尺寸的实际水流称为总流。总流可以看作是由无限多个微小
1.渐变流过流断面近似为平面 2.恒定渐变流过流断面上流体动压近似按静压分布,同一 过流断面:z+p/(ρg)=c
流体力学第六章明渠恒定均匀流

§6-1 明渠恒定均匀流的特性及其计算公式
明渠水流: 渠槽或河槽中液流具有与大气相 通的自由表面 恒定流:运动要素不随时间变化。
均匀流: 流线为平行直线,运动要素沿程不变。
棱柱形渠道:横断面形状、尺寸均沿程不变 的长直渠道,A=f(h)。
梯形断面:
过水断面面积 A (b mh)h
一断面,然后分别对这些断面进行水力
计算,最后进行叠加。
2 n 1 3 Ri i Ai Ri i i 1 ni
Q Ai C i
i 1
n
Q,求i。
确定渠道的断面尺寸:已知Q、i、n、m,
求断面尺寸b和h。
确定渠道的断面尺寸: (1)b一定,求h 假定若干不同的h值,绘出Q=f(h)曲线, 找出对应的h。 (2)h一定,求b 假定若干不同的b值,绘出Q=f(b)曲线, 找出对应的b。
(3)按梯形水力最佳断面条件,确定b和h。 确定边坡系数m,计算宽深比β m,根据 h=f(β m)得出h。 (4)已知 Q、v、i、n、m,求断面尺寸b和h。
V 2
明渠均匀流的计算公式: 谢才公式:v C RJ C Ri
1 y 巴甫洛夫斯基公式:C R , y f (n, R) n Q AV AC Ri K i (K:流量模数)
1 曼宁公式: C R n
1 6
粗糙系数n反映河、渠壁面对水流阻力的
大小,与渠道壁面材料、水位高低、施工质
量及渠道修成后的运行管理等有关。
设计n值偏大,设计阻力偏大,断面尺寸
偏大,实际流速>设计流速;
设计n值偏小,设计阻力偏小,断面尺寸
偏小,实际流速<设计流速;
水力最佳断面:流量一定时过水断面最小
流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。
掌握气蚀现象。
) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。
一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。
缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。
§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。
l d≤。
薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。
液压和润滑系统中的导油管。
细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。
齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。
结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。
§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。
结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。
§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。
结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。
§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。
类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。
2)压差流动液体的运动,在缝隙两端的压差作用下实现。
3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。
《流体力学》第六章气体射流

.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a
体
段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流
起
流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0
始
v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0
流体力学第六章

积分常数C1、C2由边界条件确定。
C1 exp( h) C2 exp( h) 0
消去一个常数
C C1 exp(h) C 2 exp(h) 2 C exp ( z h) exp ( z h) Cch ( z h) 2 Cch ( z h)sin x cos t 在 z0
t x x y y z
自由面上的运动边界条件
波浪问题的基本方程和边界条件:
2φ
2φ x
2
2φ y
2
1 t 2
n 0
z p pa
2
2
0
运动学方程 动力学方程
gz 0
=+
pa C (t ) dt
1 p pa gz 0 t 2
在自由面上: z , p pa
1 g 0 t 2
在自由面上:
z ( x, y, t ) , z z ( x x, y y, t t )
流体质点的速度 :
Ach ( z h) u cos x cos t x shh
w Ash ( z h) sin x cos t z shh
波数和频率之间的关系
Ach ( z h) sin x cos t shh
z0
0 在 z h z g 0 在 z 0 t
Ach ( z h) sin x cos t shh
2 gthh
流体质点的运动轨迹(有限水深):
u w
Ach ( z h) sh h Ash ( z h) sh h
流体力学(刘鹤年)第六章-

同理可得: 所以圆管均匀流切应力分布为 或
0
表明有压圆管均匀流过流断面上切应力呈直线分布。
二、沿程损失的普遍表达式——达西公式
h
f
l v d 2g
适用于圆形管路
2
适用于 层流与 紊 流。
1 v h f 4R 2g 适用于非圆形管路
2
§6—4 圆管中的层流运动
一、流动特征
由于层流各流层质点互不掺混,对于圆管来说,各层质点沿平行管 轴线方向运动。与管壁接触的一层速度为零,管轴线上速度最大,整个 管流如同无数薄壁圆筒一个套着一个滑动。
u dA
3 A r0 0
v3 A
gJ 2 3 ( r r ) 2rdr 4 0 2 3 gJ 2 8 r0 A
3
α——动能修正系数。层流α=2.0,紊流α=1.05~1.1,一般工程计算中常取α=1.0 。
5、动量修正系数
本节只对简单均匀流作分析,找出 hf 与τ 的关系。
一、均匀流基本方程 1、沿程损失: 因为流体的流动是恒定、均匀流, 以圆管为例
所以有:
1v12
2g
2 2 v2
2g
故有:
h f ( z1
p1
) ( z2
p2
)
2、均匀流基本方程: 如果流体的流动为均匀流,则流体的受力应平衡。
lg hf
D C
E A lg vcr
B
lg vcr‘
lg v
分析: 1> AE 段: 层流
v < vcr ,为直线段,
直线的斜率 m1=1.0, hf = kv.
E A lg vcr lg vcr‘ lg hf D C
流体力学第6章气体的一维定常流动

ccr ,Tcr , pcr , cr 在等熵流气动函数中令Ma =1可得
Tcr 2
TT 1
pcr pT
2 1
1
1
cr T
2
1
1
三、 最大速度vmax
在等熵条件下温度降到绝对零度时的速度。
vm a x
2R 1
TT
1/ 2
2021/4/10
为了得到定常流动可以设想观察者随波面mn一起以速度c向右运气体相对于观察者定常地从右向左流动经过波面速度由c降为cdv而压强由p升高到pdp密度和温度分别由加到rdr在dt时间内流入和流出该控制面的气体质量应该相等即化简后得由于压缩波很薄作用在该波上的摩擦力可以忽略不计
第六章 气体的一维定常
流动
1
第五章讨论的是不可压缩流体的流动,例如对于液体,即 使在较高的压强下密度的变化也很微小,所以在一般情况下, 可以把液体看成是不可压缩流体。对于气体来说,可压缩的程 度比液体要大得多。但是当气体流动的速度远小于在该气体中 声音传播的速度(即声速)时,密度的变化也很小。例如空气 的速度等于50m/s,这数值比常温20℃下空气中的声速343m/s 要小得多,这时空气密度的相对变化仅百分之一。所以为简化 问题起见,通常也可忽略密度的变化,将密度近似地看作是常 数,即在理论上把气体按不可压缩流体处理。当气体流动的速 度或物体在气体中运动的速度接近甚至超过声速时,如果气体 受到扰动,必然会引起很大的压强变化,以致密度和温度也会 发生显著的变化,气体的流动状态和流动图形都会有根本性的 变化,这时就必须考虑压缩性的影响。气体动力学就是研究可 压缩流体运动规律以及在工程实际中应用的一门科学。本章中 仅主要讨论气体动力学中一些最基本的知识。
《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2
、
2 y
p
2
、 2
流体力学第六章边界层理论(附面层理论)

通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。
流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
流体力学第六章PPT课件

A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响不完善收缩的程度近于
一致的情况。
想一想:为什么不完善收缩、不完全收缩的流量系数较完善收缩、完全收缩的流量系
数大?
第10页/共117页
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损失项包括孔口的局部损 失和收缩断面c-c至2-2断面流束突然扩大局部损失。
则(1)式可写成:
H v02 vc2 vc2 (1 ) vc2
2g 2g 2g
2g
令
H0
H
,v0代2 入上式,整理得 2g
第5页/共117页
收缩断面流速为
1
vc 1
2gH0 2gH0
式中H0――作用水头,v0与vc相比,可忽略不计,则H=H0;
φ ――孔口的流速系数,
1 1
孔口出流的流量为
第19页/共117页
例: 某洒水车储水箱长l=3m,直径D=1.5m(如图所示)。底部设有泄水孔,孔口 面积A=100cm2,流量系数μ=0.62,试求泄空一箱水所需的时间。
解:水位由D降至0所需时间
t 1
0 dh
A 2g D h
式中水箱水面面积
lB l 2
D 2
2
h
D 2
2
2
(3)
将式(3)中圆括号的表达式按二项式分式展开,并取前四项
(a b)n an nan1b n(n 1) a b n2 2 n(n 1)(n 2) an3b3
2!
3!
流体力学第六章_伯努利积分和动量定理

m gΔh g ( z4 z3 ) ( m 1)gΔh ( c)
[例4.6] 文丘利流量计:沿总流的伯努利方程(3-3) 由连续性方程
V2 A1 V1 A2
( d)
将(d)式代入(c)式 ,整理后可得大管的平均速度为
V1 k 2 g h
上式中
( m / ) 1 k 2 ( A / A ) 1 1 2
动能 重力势能
2
(沿流线)
压强势能
b) 拉格朗日积分
rotv 0 , v grad
V grad P 0 2 t
2
V P F (t ) t 2
2
c) 伯努利-拉格朗日积分
V ~ V C 2
不可压缩重流体
2
V p C 2
2
可压缩均熵流体
V p C 2 1
2
说明1:
伯努利方程的限制条件 ①沿流线
1V12
2
条件的放宽
沿流束
gz1 p1
2V22
2
gz 2
p2
(沿流束)
②定常流
不定常流
(取α1=α2=1)
2 v V12 p1 V22 p2 gz1 gz2 ds 1 t 2 2
1/ 2
k称为流速系数,文丘利管的流量公式为
Q kA1 2 g h
沿流线伯努利方程的限制条件无粘性流体粘性流体gzgz无粘性流体粘性流体不可压缩流体可压缩流体常数62伯努利积分和拉格朗日积分的应用很大的容器表明自由面a静止不动从而这是个定常问题分析
流体力学第六章 边界层理论 (附面层理论)

流体力学第六章
1921年起,层流边界层的近似算法大量出现,这些算 法大多数以流体力学中的一般积分原理为基础:如卡门-波 尔豪森积分、列宾森的能量积分等.
整理ppt
流体力学第六章
整理ppt
流体力学第六章
第一节 普朗特边界层微分方程式 6.1.1普朗特理论
整理ppt
流体力学第六章
一、普朗特关于对边界层的定义:
整理ppt
6.2.3附加边界条件
流体力学第六章
以下三个方程均只有两个未知量: u(y),(x)
U(x),p(x)为已知 一.哥氏积分
k1x0uk2dyU kk11 x0udypx0ukdyk0uk1uy2dy
二.卡氏积分
x
0
u2dy
U
x
0
udy
p x
u y
0.
三.列氏积分
流体力学第六章
[u
v x
v
v y
]
(
p y
)
2v x2
2v y 2
U
(U L
)
1 L
(U
L
)2
1
(
p ) y
(U
L
)
1
2
U U 1 (U )2 1 ( p ) (U )2
LL L
y
L
p y
U2 L2
U2 U
L
2
整理ppt
流体力学第六章
比较
p x
U2 L
0
u
kdy
k
0
u
k 1
u y
2
dy
(6-2-3)
x
u 2dy
0
6工程流体力学 第六章理想不可压缩流体的定常流动

§6-1 理想不可压缩流体的一元流动(续41)
分别取进口截面与喉部截面为1、2计算截面, 利用伯努利方程可得:
gz——重力场中单位质量流体从z=0上升至z克服重
力所做的功,因此具有的重力势能。
p
——单位质量流体从 p=0至状态p克服压力所做
功,也可以理解为流体相对于p=0的状态所
蕴含的能量,这种能量称为压力能。
§6-1 理想不可压缩流体的一元流动(续9)
引入压力能的概念后,伯努利方程就 可理解为:
在重力场中,当理想不可压缩流体定常 流动时,单位质量流体沿流线的重力势能、 压力能和动能之和为常数,该定理反映了机 械能转化和守恒定理。
表示理论出流射流速度。
上述分析中,忽略了粘性和表面张力的影响。
§6-1 理想不可压缩流体的一元流动(续30)
速度系数定义为:
CV
实 际 平 均 速 度——速度系数 理论速度
Cd
实
际出流的体积流 理论体积流量
量——流量系数
CC
收 缩截 面 面积AC 孔 口 面 积A
——面积收缩系数
§6-1 理想不可压缩流体的一元流动(续31)
Cd
实际体积流量 理 论 体 积 流 量
收
缩 截 面 面 积 孔 口 面 积
实 理
际 论
平 速
均 度
速
度=CcCV
Q CdQth Cd A 2gH CcCV A 2gH
速度系数,体积收缩系数和流量系数均需由实 验确定。对于锐缘圆形孔口,
CV 0.97 0.99, Cc 0.61 0.66
§6-1 理想不可压缩流体的一元流动 一元流动: 所谓一元是指只有一个空间变量。
在流体力学中属于这种性质的流动是指沿流 线的流动。
流体力学第六章 气体射流

射流半径沿程的线形增长性。
R = 3.4a( x0 + s)
R
as
=ቤተ መጻሕፍቲ ባይዱ3.4( + 0.294)
r0
r0
2、运动特征
轴心速度 最大,从轴心 向边界层边缘, 速度逐渐减小 至零。
距喷嘴距 离越远边界层 厚度越大,而 轴心速度则越 小,也就是速 度分布曲线不 断地扁平化了。
在定义上根本不同,不可混淆。
矩形喷嘴运动参数
以上分析出圆断面射流主 体段内运动参数变化规律,这 些规律亦适用于矩形喷嘴。但 要将矩形换算成为流速当量直 径代人进行计算。换算公式按 第四章所述。
五、起始段核心长度 sn及核心 收缩角 θ
【例题6.3】圆射流以Q0=0.55m3/s,从d0=0.3m管嘴
BO 为圆断面射流截面的半径 R, R称为 ⑨ 射流半径。
三、紊流射流的特征
1、几何特征
射流半径和从极点起算的距离成正比, 即 BO =Kx。
扩散角α为一定值,其正切值
式中 K ― 试验系数,对圆断面射流 K = 3.4a 。
a ― 紊流系数,由实验决定,是表 示射流流动结构的特征系数。
紊流系数的影响因素
研究内容
浓度扩散与温度相似。在实 际应用中,为了简化起见,可以 认为,温度、浓度内外的边界与 速度内外的边界相同。于是参数 R 、 Q 、 vm 、 v1、 v2等可 使用前两节所述公式,仅对轴心 温差 △ Tm ,平均温差等沿射程 的变化规律进行讨论。
定义参数:以足标e表示周围气体的符号
截面上温差分布,浓差分布
第二节 圆断面射流的运动分析
一、轴心速度 vm
流体力学-势流理论(精品)

第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。
这一近似方法在船舶流体力学领域内称为切片理论。
一、均匀流流体质点沿x轴平行的均匀速度V o ,如图6-5所示,V x=V o , V y =0平面流动速度势的全微分为dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4) 如图6-3 流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5) 如图6-4 由(6-4)和(6-5)可得:流线:y=const ,一组平行于x轴的直线,如图6-3中的实线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘性流体的流动大多数是有旋流动,而且有时是以明显的 旋涡形式出现的,如桥墩背流面的旋涡区,船只运动时船尾 后形成的旋涡,大气中形成的龙卷风等等。但在更多的情况 下,流体运动的有旋性并不是一眼就能看得出来的,如当流 体绕流物体时,在物体表面附近形成的速度梯度很大的薄层 内,每一点都有旋涡,而这些旋涡肉眼却是观察不到的。至 于工程中大量存在着的湍流运动,更是充满着尺度不同的大 小旋涡。
一、速度环量
速度环量Г:速度V沿封闭曲线L的 线积分。
L ds
α
V
Γ LV ds L V cos ds L (udx vdy wdz) L d
按照惯例,曲线积分的方向规定为逆时针方向为正, 顺时针方向为负。 例题6-2
二、漩涡(涡旋)强度
旋涡中某点涡量的大小是流体微团绕 该点旋转的平均角速度的2倍,方向 与微团的瞬时转动轴线重合。 漩涡强度就是面积A上涡量的通量, 简称为涡通量。
y
O
O
v xt x
u x t x
x
线变形速度:单位时间内某方向的微元长度在此方向的 相对变化量。
u x x t x u x x lim t , x 0 xt x
同理可得
y
v y
§6-1 流体微团运动分析
一.流体微团的旋转与变形
v yt y
u yt y
u A u, v A v u v u B u x, vB v x x x u v u D u y, vD v y y y u u uC u x y x y v v vC v x y x y
uB u
uC u
u dx x
vB v
vC v
v dx x
u u dx dy x y
v v dx dy x y
uD u
u dy y
vD v
v dy y
u u dx x v v dx x
u
u u dx dy x y v v v dx dy x y
A ωn ΔA
n
ω
I 2n A
I 2 n dA
A
三、斯托克斯定理
任意面积A上的漩涡强度I,等于该面积的边界L上的速度环 量Г,即:
u d x y dxdy 2 z dA dI
旋转角速度:流体微团单位时间内绕与平面垂直的轴所 转过的角度。
流体微团转过的角度为
90 45 2 2
z lim
1 1 v u ( ) t 0 2 t 2 x y
1 u w ) 2 z x
同理可得
x (
1 w v ) 2 y z
y (
旋转角速度大小
x 2 y 2 z 2
二.有旋流动与无旋流动
当流体微团具有绕自身轴作旋转运动时,则该点的运动 是有旋的,否则称无旋运动。无旋运动必定存在势函数, 故称势流。
无旋运动示意如下: 有旋运动示意如下:
斯托克斯定理是研究有旋流动的一个重要定理。它将涡 量的研究从面积分转变为线积分,使计算方便。 通常求 Г比求 I 要容易。
斯托克斯定律证明:
以平面流动为例来证明,如图6-2所示,在平面XOY上 取一微元矩形封闭曲线,其面积dA=dxdy,流体在A点 的速度分量为u和v,则B、C和D点的速度分量分别为:
z
w z
角变形速度:单位时间内在坐标平面内的两条微元边的 夹角的减小量的一半。
u yt u y t y y
v xt v x t x x
z lim t 0
同理可得
1 1 v u 2 t 2 x y 1 u w 1 w v y x 2 z x 2 y z
园盘绕流 尾流场中 的旋涡
机翼绕流(LES)
流体的无旋流动虽然在工程上出现得较少,但无旋流动比有 旋流动在数学处理上简单得多,因此,对二维平面势流在理论研 究方面较成熟。 对工程中的某些问题,在特定条件下对粘性较小的流体运动 进行无旋处理,用势流理论去研究其运动规律,特别是绕流物体 的流动规律,对工程实践具有指导意义和应用价值。因此,本章 先阐述有旋流动的基本概念及基本性质,然后再介绍二维平面势 流理论。
第六章 平面势流和漩涡运动
讨论理想不可压流体的二元运动: 平面势流和漩涡运动问题
意义:①研究理想流体二元运动规律;
②历史上发挥过重要作用,(如机翼绕流、升力 等问题); ③基本解与运动叠加原理对研究粘性流体运动有 指导作用。
刚体的一般运动可以分解为移动和转动两部分。流体与 刚体的主要不同在于它具有流动性,极易变形。因此,任一 流体微团在运动过程中不但与刚体一样可以移动和转动,而 且还会发生变形运动。所以,在一般情况下流体微团的运动 可以分解为移动、转动和变形运动三部分。
无旋流动的充要条件
x y z 0
或
r i r V x u v j y v
r 1 V 0 2 v k 0 (旋度=0) z w r
或
w v u w v u , , y z y x x y
§6-2
速度环量和漩涡强度