流体力学第6章讲解

合集下载

流体力学第6章

流体力学第6章

第六章 不可压缩流体的平面势流§6-1 有势流动的速度势函数一、速度势函数ϕ对于无旋流动,有⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂=∂∂∂∂=∂∂∂∂=∂∂y u x x w z u z y w υυ (1) 根据数学分析可知:上式成立是z w y x u d d d ++υ成为某一函数),,,(t z y x ϕ的全微分的充要条件。

ϕ称为速度势函数,简称速度势。

即:z w y x u d d d d ++=υϕ 又有:z z y yx x d d d d ∂∂+∂∂+∂∂=ϕϕϕϕx u ∂∂=∴ϕ,y ∂∂=ϕυ,zw ∂∂=ϕ 又由矢量分析:k z i y i x k w i i u V v v v v vv v ∂∂+∂∂+∂∂=++=ϕϕϕυϕϕ∇==grad (2)即速度势的梯度等于流场的速度。

在柱坐标中:径向速度:rr ∂∂=ϕυ切向速度:θϕϕυθ∂∂=∂∂=r s 轴向速度:zz ∂∂=ϕυ由此可见,ϕ对任意方向的偏导数,就是速度V v在该方向的投影,这是ϕ的一个重要性质。

函数),,,(t z y x ϕ称为速度势函数,简称速度势,对无旋流动)0rot (=V v,总有速度势存在,所以,无旋流动也称为有势流动。

在有势流动中,Γ和ϕ的关系为:()∫∫++=⋅=B ABAAB z w y x u s V Γd d d d υv v A B BAϕϕϕ−==∫d (3)即在有势流动中,沿AB 曲线的切向速度线积分(速度环量)等于终点B 与起点A 的速度势之差。

又:在有势流动中,沿任一封闭周线K 的速度环量()∫∫++=⋅=KKz w y x u s V Γd d d d υvv ∫Kϕd =若ϕ是单值或由斯托克斯定理,则0d =∫Kϕ二、势函数方程将x u ∂∂=ϕ,y ∂∂=ϕυ,zw ∂∂=ϕ代入不可压流体连续方程: 0=∂∂+∂∂+∂∂zwy x u υ 则有:02222222=∇=∂∂+∂∂+∂∂ϕϕϕϕz y x (4)(其中2222222zy x ∂∂+∂∂+∂∂=Δ=∇称为拉普拉斯算子)即在不可压流体的有势流动中,速度势ϕ满足拉普拉斯方程。

工程流体力学课件 第06章 孔口、管嘴出流及有压管流讲解

工程流体力学课件 第06章 孔口、管嘴出流及有压管流讲解

流量 系数
H 23
h O
23
c
1
1 l
d
淹没与自 由出流相 比,作用水 头不同,管 系流量系数 相同,局部 损失中不包 含 2-2 断 面 出 口损失。
简单管道水力计算特例——虹吸管及水泵
安装高度
提水高度
压水管
1
Zs
Z
安装高度
吸水管
Z 1
2 Zs
虹吸管是一种压力管,顶部2 弯 曲且其高程高于上游供水水面。其 顶部的真空值一般不大于7~8m水柱 高。虹吸管安装高度Zs越大,顶部真 空值越大。
圆柱形外管嘴的正常工作条件
H0

7m 0.75

9m
管嘴长度为(3-4)d
P121
§6—3 有压管道恒定流动的水力计算
z1
p1
g
1v12
2g

z2

p2
g
2v22
2g
hw12
实际流体恒 定总流能量
方程
hw12

hf 12 hj
沿程损失 局部损失
已能定量分析,原则上 解决了恒定总流能量方程 中的粘性损失项。
P119
一、管嘴出流的计算
计算特点: hf 0 出流特点:
1
H
0
d
在C-C断面形成收缩,然后再扩大,逐步充满
整个断面。
1
l (3 ~ 4)d
c2 0
c2
从 1→2 建立伯努利方程,有
H

0

0

0

0

v 2
2g
n
v2 2g
v

流体力学第六章 势流理论

流体力学第六章  势流理论

2 r2 2
r2
Q ln(1 x cos1 )
2
r2
是个小量,利用泰劳展开得:
Q x cos1 2 r2
当δx→0时,Qδx→M, θ1 →θ,r2→r
利用泰劳展开: ln(1 z) z z2 z3
23
令 z x cos1
r2
展开后并略去δx 二阶以上小量,可得:
Q x cos1 2 r2
极坐标下: M cos
2 r
(6-10)
直角坐标下:
M
2
x x2 y2
(6-11)
对于流函数:
1
2
Q
2
(1
2)
Q
2
( )
这里:r2= x Sinθ1
所以
x sin 1
r2
代入上式得: Q x sin1
2 r2
当δx→0时,Qδx→M,r2→r,θ1→θ
等势线:圆心在x轴上,与y轴相切的一组圆。
这些圆与ψ=const正交
注意:
偶极子的轴线和方向
轴线:源和汇所在的直线
方向:由汇指向源的方向
图6-8(b)
偶极子的方向
为x轴负向
四、点涡(环流)
点涡:无界流场中坐标原点处一无穷长直线涡,
方向垂直于x0y平面,与xoy平面的交点 诱导速度沿点涡为中心的圆周切线方向,大小
第六章 势流理论
课堂提问:为什么上、下弧旋乒乓球的应对方法不同?
势流:理想流体绕物体的流动,或为无旋流动。 像波浪、机翼升力等问题用势流理论进行
研究可获得满意结果。
求解势流问题的思路如下: 1.流体力学最终目的是求流体作用于物体上的
力和力矩; 2.为求力和力矩,须知物面上压力分布,即

流体力学第六章 气体射流

流体力学第六章 气体射流

6.1 无限空间淹没紊流射流的特征
2.运动特征:速度分布具有相似性。 特留彼尔在轴对称射流主体段的实验结果,以及阿勃拉莫 维奇在起始段内的测定结果,见图6-2(a)及图6-3(a)。
6.1 无限空间淹没紊流射流的特征
6.1 无限空间淹没紊流射流的特征
3.动力特征 射流中的压强与周围流体中的压强相等。 可得各横截面上轴向动量相等——动量守恒,动量守 恒方程式为:
6.4 温差或浓度差射流
6.4 温差或浓度差射流
三.射流弯曲 温差射流或浓差射流由于密度与周围密度不同, 所受的重力与浮力不相平衡,使整个射流将发生向下或向上弯 曲。通过推导可得出无因次轨迹方程为
6.4 温差或浓度差射流
[例6-3]工作地点质量平均风速要求3m/s,工作面直径D=2.5m 送风温度为15℃,车间空气温度30 ℃,要求工作地点的质量 平均温度降到25 ℃ ,采用带导叶的轴流风机,紊流系数 = 0.12。求(1)风口的直径及速度;(2)风口到工作面的距离。 [解]温差 =15-30=-15 ℃
6 气体射流
6.1 无限空间淹没紊流射流的特征
一.射流结构 出流到无限大空间中,流动不受固体边壁的限制,为无限 空间射流,又称自由射流。射流的流动特性及结构图:
6.1 无限空间淹没紊流射流的特征
二.射流的特性 1. 几何特性: 外边界线为一直线。tan a 紊流系数 a 是表征射流流动结构的特征系数。它与出口断 面上紊流强度有关,紊流强度越大。各种不同形状喷嘴的紊 流系数和扩散角的实测值列于表6-1。
一.特点:1.温度边界层与速度边界层不重合。 2.射流发生弯曲。
6.4 温差或浓度差射流
二.特性: 1.温差特性: 试验得出,截面上温差(浓度差分布)分布具有相 似性。 与速度分布关系如下:

流体力学第六章流体节流与缝隙流动

流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。

掌握气蚀现象。

) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。

一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。

缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。

§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。

l d≤。

薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。

液压和润滑系统中的导油管。

细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。

齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。

结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。

§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。

结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。

§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。

结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。

§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。

类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。

2)压差流动液体的运动,在缝隙两端的压差作用下实现。

3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。

流体力学 第6章

流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v

8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数

《工程流体力学》 第六章 管内流动及水力计算

《工程流体力学》 第六章 管内流动及水力计算

r02
4
d dl
(p
gh)
l
vl max
vl
r0
ro2
4
d dl
(p
gh)
粘性流体在圆管中作层
所以,vl
2020/6/11
ro2 r 2
4
d dl
( p gh)
流流动时,流速的分布为
一旋转抛物面。
12
《工程流体力学》 第六章 管内流动和水力计算
§6.4 圆管中的层流流动
三、平均速度和流量
qV
0
0
H
h1 9m;h2 0.7m; hw 13m 求: H
2 h1
h2
2
解 : 由 伯努 利方 程( 地面 为0位 势)
(H
h1
)
pa
g
0
h2
pa
g
2
22
2g
hw
紊流流动: 1.0
得H
2 2
2g
hw
h2
h1
42 2 9.806
13 0.7 9
5.52
(m)
2020/6/11
4
《工程流体力学》 第六章 管内流动和水力计算
持前种情况下的流速不变,流动又为何状态?
解:(1) v
qV A
4qV d 2
4 0.01 1.27m / 0.12
s
Re vd 1.27 0.1 1.27 105 2000
1106
所以水为紊流状态。
(2)
Re
vd
1.27 0.1
1.14 104
1114
2000
2020/6/11
μt —流 体 的 脉 动 粘 度 ;

流体力学第六章 流动阻力及能量损失

流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。

对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。

对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。

对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。

本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。

第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:(1)有序性。

水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循牛顿内摩擦定律。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且雷诺数Re较小时发生。

2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的1.75~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。

《高等流体力学》第6章 不可压理想流体平面无旋流动

《高等流体力学》第6章 不可压理想流体平面无旋流动

两者平行
ψ = const ,上式变为一个泊松方程,即沿 沿流线, 流线有 Ω =const ,沿流线的涡量为常数。 三、不可压理想流体平面无旋流动的流函数方程 2 Ω = −∇ ψ= 0 无旋时: 0 对定常与非定常都适用 故流函数方程: ∇ 2ψ =
四、流函数的物面边界条件 对应流函数方程,物面边界 条件也应以流函数的形式表 示出来。 物面上:
(
)
(
)
(
)
(
)
( )
2、等流函数线就是流线。 v × dr = 0 流线方程:
∇ψ × k × dr = v × dr = ( dr ⋅∇ψ ) ⋅ k − dr ⋅ k ⋅∇ψ = dψ k
故沿流线方向 dψ = 0 ,即 ψ = const 3、两点的流函数值之差等于过此两点连线的流量。
( )
(
)
这就是理想的不可压流体(或正压流体)质量力有 势条件下平面流动的流函数方程。
二、不可压理想流体定常平面流动的流函数方程
∂ 2 ∇ ψ ) k + ∇ ( ∇ 2ψ ) × ∇ψ = 0 ( ∂t
∇ ( ∇ 2ψ ) = − f ′ (ψ ) ∇ψ = −∇ 令: f (ψ ) 则: ∇ 2ψ = − f (ψ ) + const 无意义,可取0
x
4、流函数可以是多值函数。 过内边界L0的总流量不为零(如 水下爆炸、水下气泡运动等) = dl ×1 L域内无源无汇,视 dA 0 则沿封闭曲线积分: ∫ L ( n ⋅V ) dl =
L1
L0 P0
P
n ⋅ V dl = mQ0 于是: ∫ L1 n ⋅V dl = ∫ L0 P P 故 ψ P −ψ P0 = ∫ n ⋅V dl + ∫ n ⋅V dl = mQ0 + ∫ n ⋅V dl

流体力学第6章气体的一维定常流动

流体力学第6章气体的一维定常流动

声速时, 产生激波,使出口截面为临界截面。
2021/4/10
21
已知:空气从 T0=30的0贮K 气罐进入一根直径为d=10mm的绝热光滑管入
口处 T1=298.3K,p1 9经8k过P有a(摩ab擦);的流动到达截面2时,
Ma2=0.4
求:(1)入口处 Ma1; (2)截面2处 T2 , p2 , 2 ,V2;(3)入口处到截面2的长度L .
由一维定常绝热流的能量方程
h v2 2
hT
常数
可得: T
c2 2c p
TT
对应于滞止 温度,有一 滞止声速:
cT (RTT )1/ 2
2021/4/10
10
当比热容这定值,并利用定压热容与气体常数、绝热指数之 间的关系,以及定熵过程的过程方程,可得
TT T
cT2 c2
1 1 Ma2
2
2021/4/10
7
由于微弱扰动波的传播过程进行得很迅速,与外界来 不及进行热交换,而且其中的压强、密度和温度变化极为 微小,所以这个传播过程可以近似地认为是一个可逆的绝 热过程,即等熵过程。
假定气体是热力学中的完全气体,则根据等熵过程关系式可

dp p RT d
为热力学
c p RT
( p2
/
p1
1)(2 2 / 1
/
1
1) 1/ 2
c1
激波行进速度总是大于当地声速
激波后的熵增加
2021/4/10
18
6.4 等截面摩擦管流
一、范诺线
基本方程:
一维等截面连续性方程 v qm / A 常数
完全气体一维定常绝热方程
T
v2 2c p

工程流体力学 第6章明渠均匀流与渠流

工程流体力学 第6章明渠均匀流与渠流

(6.16)
明渠紊流速度分布表达式
v Q 1
udA 1
h
5.57
ghi lg(30 y )dy
A hA
h0

5.57 ghi lg(30 h ) 2.5 ghi
v u f 2.5 ghi
(6.18)
§6.2 明渠定常均匀流的水力计算
上2式相减得
u v 5.75 ghi lg(30 y ) 5.57 ghi lg(30 h ) 2.5 ghi
1.按明渠的断面形状和尺寸是否变化分: 棱柱形渠道(prismatic channel):断面形状和尺寸沿程不
变的长直明渠称为棱柱形渠道,h=f(i)。
非棱柱形渠道(non-prismatic channel):断面形状和尺寸
沿程不断变化的明渠称为非棱柱形渠道,h=f(i,s) 2.底坡( i )渠道底部沿程单位长度的降低值
有重要影响,下面将阐述明渠的几何要素和类型。 过流断面: 指与流向相垂直的断面, 除了包括渠道轮廓外还包括水面轮廓。 一般来讲,过流断面与渠底平面 相垂直,与铅直面之间形成夹角θ。
明渠流断面形式及水力要素计算公式
§6.1明渠流的概念
现以工程中应用最广的梯形断面为例,说明计算中 常用到的过流断面的水力要素。 (1) 水深—过流断面上渠底最低点到水面的距离,用h表
d dh


A h2
m2
1 m2


(b
mh)h h2

m

2
1 m2
Ab 2m 2 1 m2
(b)
h
再求二阶导数
d2 b 0 dh 2 h 2
(c)

流体力学第六章 边界层理论 (附面层理论)

流体力学第六章 边界层理论 (附面层理论)
整理ppt
流体力学第六章
1921年起,层流边界层的近似算法大量出现,这些算 法大多数以流体力学中的一般积分原理为基础:如卡门-波 尔豪森积分、列宾森的能量积分等.
整理ppt
流体力学第六章
整理ppt
流体力学第六章
第一节 普朗特边界层微分方程式 6.1.1普朗特理论
整理ppt
流体力学第六章
一、普朗特关于对边界层的定义:
整理ppt
6.2.3附加边界条件
流体力学第六章
以下三个方程均只有两个未知量: u(y),(x)
U(x),p(x)为已知 一.哥氏积分
k1x0uk2dyU kk11 x0udypx0ukdyk0uk1uy2dy
二.卡氏积分
x
0
u2dy
U
x
0
udy
p x
u y
0.
三.列氏积分
流体力学第六章
[u
v x
v
v y
]
(
p y
)
2v x2
2v y 2
U
(U L
)
1 L
(U
L
)2
1
(
p ) y
(U
L
)
1
2
U U 1 (U )2 1 ( p ) (U )2
LL L
y
L
p y
U2 L2
U2 U
L
2
整理ppt
流体力学第六章
比较
p x
U2 L
0
u
kdy
k
0
u
k 1
u y
2
dy
(6-2-3)
x
u 2dy
0

6工程流体力学 第六章理想不可压缩流体的定常流动

6工程流体力学 第六章理想不可压缩流体的定常流动

§6-1 理想不可压缩流体的一元流动(续41)
分别取进口截面与喉部截面为1、2计算截面, 利用伯努利方程可得:
gz——重力场中单位质量流体从z=0上升至z克服重
力所做的功,因此具有的重力势能。
p
——单位质量流体从 p=0至状态p克服压力所做
功,也可以理解为流体相对于p=0的状态所
蕴含的能量,这种能量称为压力能。
§6-1 理想不可压缩流体的一元流动(续9)
引入压力能的概念后,伯努利方程就 可理解为:
在重力场中,当理想不可压缩流体定常 流动时,单位质量流体沿流线的重力势能、 压力能和动能之和为常数,该定理反映了机 械能转化和守恒定理。
表示理论出流射流速度。
上述分析中,忽略了粘性和表面张力的影响。
§6-1 理想不可压缩流体的一元流动(续30)
速度系数定义为:
CV
实 际 平 均 速 度——速度系数 理论速度
Cd

际出流的体积流 理论体积流量
量——流量系数
CC
收 缩截 面 面积AC 孔 口 面 积A
——面积收缩系数
§6-1 理想不可压缩流体的一元流动(续31)
Cd
实际体积流量 理 论 体 积 流 量

缩 截 面 面 积 孔 口 面 积
实 理
际 论
平 速
均 度

度=CcCV
Q CdQth Cd A 2gH CcCV A 2gH
速度系数,体积收缩系数和流量系数均需由实 验确定。对于锐缘圆形孔口,
CV 0.97 0.99, Cc 0.61 0.66
§6-1 理想不可压缩流体的一元流动 一元流动: 所谓一元是指只有一个空间变量。
在流体力学中属于这种性质的流动是指沿流 线的流动。

流体力学第6章(1-6节)

流体力学第6章(1-6节)
x y z
全微分的充分必要条件。

d v x dx v y dy v z dz
d dx dy dz x y z
函数Φ的全微分为
比较两式,得到
vx , vy , vz x y z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有 势流动 。
复速度的三角函数 式和指数式:
dW v (cos i si n ) v e i dz
α O vx
V
vx-ivy
W(z)共轭复变数:
W i f ( z )
z x iy
dW i v x ivy V dz x x
dW dW 2 2 2 vx vy v dz dz
证明: 取微元线段 d s ,过微元线段的速度为 v ,
则单位厚度的微元流量dq的表达式为
dq v d s v x dy v y dx d
通过线段AB的流量为
q dq d B A
A A
B
B
q 2 1
特性3
证明:对于平面势流,有
v x v y 0 x y v y v x x y
由数学分析知,上式正是 v y dx v x dy 成为某一函 数Ψ(x, y)全微分的充分必要条件。

d v y dx v x dy
d dx dy x y
函数ψ的全微分为
比较两式,得到
证明:不可压缩流体的连续性方程为 v x v y v z 0 x y z 对于有势流动 得到
vx , vy , vz x y z
2 2 2 2 0 2 2 x y z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、射孔的形状,圆孔口和方孔显然其扩张的情况不会相同。不同的射口形状有 不
同的实验值。用φ表示这个影响因素, 对圆断面射流 φ=3.4,长条缝射孔 φ=2.44。
圆孔综口合射这流两:个t影g响因素K:x k=Kφα 3.4a
x
R 1 3.4 as 3.4( as 0.294)
r0
vm
vm r0 1
1
v0 R
2
1
[(11.5 )2 ]2d
0
9
第二节圆断面射流的运动分析
1
n
1
n
[(1 1.5 )2 ] d Bn; [(1 1.5 )2 ] d Cn
0
0
n
1
1.5
2
2.5
3
Bn
0.0985
0.064
0.0464
0.0359
0.0286
第一节无限空间淹没紊流射流特性
二、紊流系数a及几何特征
其斜率即:tga=常数=k。 对于不同的条件,k值是不同的常数,也叫实验常数。 通过实验发现,k值的影响因素有两个主要的因素:
1、射孔出口截面上气流的紊流强度。 紊流强度的大小用紊流系数a(A)来表示:a大紊流的强度就大,因此,紊
流 系数的大小可以反映出射流的扩张能力,所以,a也叫表征射流流动结构的 特征系数。另一方面,由于a反映的是射流混合能力的大小,因此,a还可以反 映孔口出口截面上的速度均匀程度。a越小,则混合能力越差,说明流速越均匀 。
二、断面流量Q
R
微环面的流量表达式 Q 2vydy Q0 r02v0
0
主体段:
R
Q
v r 0
y
y
2 ( )( )d( )
Q0
v0 r0
r0
v v vm ;
v0
vm v0
y yR
r0
R r0
Q 2( vm )( R )2 1 ( v )( y )d( y ) 2( vm )( R )2 1 [(1 1.5 )2 ]d
内边界:流速为v0的区域围起来可以看到又形成一个圆锥,圆锥内侧流速全为v0, 外侧小于v0,这个圆锥的侧面称为内边界,内边界到轴线的距离为r。
2)射流的过渡断面、核心区及边界层
过渡断面就是经过O的断面
在内圆锥中,其内部的流速均为v0,我们称这个区域为核心区。 核心区以外与外边界层以内的所有射流流动的区域叫射流的边界层。
3)射流的起始段和主体段
从射流的出口到转折面(过渡断面)之间的区域称为起始段。
过渡断面后的射流区为主体段,分布规律相对比较简单。
4)射流的极点、极角和核心收缩角
把外边界反向延长,其交点就是极点 外边界与射流轴线的交角a叫射流的极角(外圆锥的半角)。 内边界与轴线的交角叫核心收缩角(内圆锥的半角)。
5
第二节 圆断面射流的运动分析
三、断面平均流速v1 平均流速:v1=Q/A,无因次化 v0=Q0/A0
v1 v0

(
Q Q0
)
(Rr022)源自(Q Q0)
(
r0 R
)2
主体段: y:所求的点到轴心的距离 R:边界层的厚度 Vm:轴心速度
起始段: y:所求的点到内边界的距离 R:边界层的厚度 Vm:vm=v0
v [1 ( y )1.5 ]2 [1 1.5 ]2
vm
R
7
第一节无限空间淹没紊流射流特性
四、动力特征
动力特性:各断面上的动量均相等。
对于孔口的出口处:
0
8
第二节圆断面射流的运动分析
一、轴心速度vm
起始段vm=v0
主体段:
R
Q0v0 r02v02 2v 2 ydy
0
( r0 )2 ( v0 )2
1
2 (
v
)2 ( y )d (
y)
R vm
0 vm
R
R
y ( v )2 [(1 1.5 )2 ]2
R
Q0
v0 r0 0 vm R R
v0 r0 0
Q 2 0.966 3.42( as 0.294)2 0.0985
Q0
as 0.924
r0
r0
Q
as
as
2.2( 0.294) 4.4( 0.147)
Q0
r0
d0
结论:断面的体积流量与射程S成正比,即射流流动要吸入一些静止气体而使流量增11 加。
受限射流(有限空间射流):射流受到周围空间固定边界的 限制,射流的扩张运动受到影 响。这种射流就叫受限射流。 比如:室内送风。
3
第一节 无限空间淹没紊流射流特性
一、过渡断面起始段及主体段
起始段
主体段
C
B
A
M
a
核心区
o
D
x0
Sn
E
S
x
F
4
第一节无限空间淹没紊流射流特性
1) 射流的外边界和内边界
外边界:射流的流动区和周围静止气体的分界面称为射流的外边界。 即圆锥体的侧表面母线。边界面到轴心的距离为R。
r0
r0
6
第一节无限空间淹没紊流射流特性
三、运动特征
在处理主体段时
y 截面上任意一点至轴心的距离
y0.5vm

同截面上0.5v
点至轴心
m
的距离
v
截面上y点的速度
vm 同截面上轴心点的速度
在处理起始段时
yc
y y0.5v0
yb
y y 0.9v0
0.1v0
v
y点速度
v0 核心速度
1
2
动量为:
+y
dy
R
Q0v0


r02
v
2 0
R
M
a
核心区
o
r
y' yx
y
y
对于任意截面的动量可以取 一个微环进行积分:
x0 -y
S
x
1
2
R
v dQ v vdA v 2 2ydy 2v 2 ydy
0
R
Q0v0


r02
v
2 0

2v 2 ydy
流体力学
主讲:周传辉
暖通教研室
二00二年十一月
1
第六章 气 体 射 流
第一节 无限空间淹没紊流射流特性 第二节 圆断面射流的运动分析 第三节 平面射流 第四节 温差或浓差射流 第五节 有限空间射流
第一节 无限空间淹没紊流射流特性
气体射流依据其射入空间的大小可分为自由射流和受限射流
自由射流(无限空间射流):射入的空间足够大,空间的固 定边界对射流没有限制作用, 射流处于自由扩张状态。这种 射流就叫自由射流或无限空间 射流。比如:露天的管道放气
Cn
0.3845
0.3065
0.2585
0.2256
0.2015
vm
1
0.20797 0.966 0.483
v0 (as 0.294) 0.0464 as 0.294 as 0.147
r0
r0
d0
这就是射程s与vm的关系,射程越远vm越小。
10
第二节 圆断面射流的运动分析
相关文档
最新文档