相似三角形比例线段及判定

合集下载

(完整版)相似三角形的判定方法

(完整版)相似三角形的判定方法

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

线段的比例和相似三角形

线段的比例和相似三角形

线段的比例和相似三角形在几何学中,线段的比例和相似三角形是基础知识,它们对于解决几何问题和解释世界中的各种现象都起着重要的作用。

本文将深入探讨线段的比例和相似三角形的概念及其应用。

1. 线段的比例在平面几何中,线段的比例是指两个线段之间的长度比。

设有线段AB和线段CD,它们的比例可以表示为AB:CD。

当且仅当两线段的比例相等时,它们才具有相似的长度关系。

2. 相似三角形的定义相似三角形指的是具有相同的形状,但是尺寸不同的三角形。

若两个三角形的对应角度相等,则它们为相似三角形。

相似三角形的边长比例与角度比例成正比。

3. 线段的相似性质线段具有一些重要的相似性质,如比例段定理和点分段定理。

比例段定理指出,如果在两条平行线上有两个相交线段,则它们所形成的相交线段之间的长度比等于两条平行线上相应线段的长度比。

4. 相似三角形的性质相似三角形具有一些用于求解问题的重要性质。

常见的性质包括相似三角形的边长比例、高的比例、面积比例和周长比例等。

这些性质在解决实际问题时起着重要的作用,如测量高塔的高度、计算远处物体的尺寸等。

5. 应用举例a. 解决测量问题:通过计算相似三角形的边长比例,可以利用已知线段的长度求解未知线段的长度。

例如,当我们知道一栋楼的高度和影子的长度时,我们可以通过相似三角形的性质计算出楼与影子的比例,从而推算出其他未知线段的长度。

b. 设计制图:在地图或建筑设计中,相似三角形的性质可以用于将真实世界的比例缩小到纸上,从而实现精确的绘制和测量。

c. 解决角度问题:通过相似三角形的角度比例,可以计算未知角度的大小。

例如,在航空导航中,利用相似三角形的性质可以准确测算航线和飞机之间的角度。

总结:线段的比例和相似三角形是几何学中重要的概念和工具,它们在解决几何问题和实际应用中发挥着重要的作用。

通过理解线段的比例和相似三角形的性质,我们可以更好地理解和解释世界中的各种现象,同时也可以应用于实际问题的求解和设计制图等领域。

相似三角形的性质和判定

相似三角形的性质和判定

一、选择题1、若032=-y x ,则=yx ,=+y x x ,=-+y x y x 。

2、图纸上某零件长32mm ,比例尺为1:200,则此零件的实际长度 。

3、线段a=5,b=3,a ,b ,(a-b )的第四比例项是 ,(a+b )与(a-b )的比例中项是 。

4、若D 、E 各是ABC ∆的边AB ,AC 上的点,21==EC AE DB AD ,cm DE 3=,则BC=5、ABC ∆中,DE//BC ,分别交AB ,AC 于D ,E ,若DE 分ABC ∆成面积相等的两部分,则AD :AB= 。

7、在ABC ∆中,AD 是角平分线,34=BD AB ,若BC=12,则ABC ∆的周长是 。

8、图9,在ABC ∆中,DE 是中位线,设ABC ∆的面积为S ,则GDE ∆的面积是 .9、如图10,在ABC ∆中,AD :DB=2:3,E 为CD 的中点,AE 的延长线交BC 于F ,则FC :BF= 。

10、如图11,在 ABCD 中,AB=20cm ,BC=12cm ,延长AB 至E ,使BE=8cm ,连结OE 交BC 于F ,则BF= cm 。

12、如图12,在ABC Rt ∆中,90=∠C °,内接正方形DEFG 边长x ,若AE=9,BF=4,则x = 。

13、如图13,AD ⊥BC 于D ,BE ⊥AC 于E ,则图中相似三角形有( )(A)3对 (B)4对 (C) 5对 (D)6对14、已知线段,,,,d c b a 且满足d c b a =,下列等式中不一定成立的是( )(A) c d a b = (B)c c d a ab -=- (C)dc c b a b +=+ (D)d cd b ca =++15、已知k cb a b ac a c b =+=+=+,则k 的值是( ) (A) 1 (B) 2 (C) –1 (D) 2或-116、ABC Rt ∆中,90=∠C °,CD ⊥AB 于D ,下列等式中不成立的是( )(A) AB AD AC ∙=2(B )CD AB BC AC ∙=∙ (C) DB CD AD 2= (D)BDAD BC AC = 17、如图,□ABCD 中,E 为AB 的中点,F 为BC 上一点,且DCF ∆∽DAE ∆,若AD=10cm ,AB=6cm ,则BF=( ) A 、5cm (B) 8.2cm (C) 6.4cm (D)1.8cm18、两个相似三角形的相似比是2 : 3 ,较小三角形面积为3,则较大三角形面积( )(A) 2 (B) 34 (C)316 (D)427 19、已知梯形两底的长分别是3.6和6,高线长是0.3,则它的两腰延长线的交点到较长底边所在直线的距离是( )(A) 509 (B)2512 (C)209 (D)43 20、如图,D为ABC ∆的边AC 上一点,A DBC ∠=∠,已知BC=2,BCD ∆与ABC ∆的面积的比是2:3,则CD 的长是( )(A)322 (B)332 (C)34 (D)321、下列命题中正确的是 ( )①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似A 、①③B 、①④C 、①②④D 、①③④22、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF = 23、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是 ( )A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD ,AB=ACD. AD ∶AC=AE ∶AB24、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A 1对B 2对C 3对D 4对25、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF=90°,则一定有 ( )A ΔADE ∽ΔAEFB ΔECF ∽ΔAEFC ΔADE ∽ΔECFD ΔAEF ∽ΔABF26、如图1,ADE ∆∽ABC ∆,若4,2==BD AD ,则ADE ∆与ABC ∆的相似比是( )A .1:2B .1:3C .2:3D .3:227、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( )A .19B .17C .24D .21A B CDE F B A C D28、在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( )A.1250kmB.125kmC. 12.5kmD.1.25km29、在相同时刻,物高与影长成正比。

相似三角形判定知识点

相似三角形判定知识点

(1)相似三角形的对应角相等;
(2)相似三角形的对应边成比例;
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;
(4)相似三角形的周长比等于相似比;
(5)相似三角形的面积比等于相似比的平方.
性质
1.相似三角形对应角相等,对应边成正比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项
7.a/b=c/d等同于ad=bc.
8.不必是在同一平面内的三角形里。

如果△ABC∽△A₁B₁C₁,△A₁B₁C₁∽△A₂B₂C₂,那么△ABC∽△A₂B₂C₂
.。

27.2.1相似三角形的判定

27.2.1相似三角形的判定

∵AB=2,BC=2 2,AC=2 5,FE=2,DE= 2,
DF= 10,

DABE=
2= 2
2,BECF=2 2 2=
2,DACF=2
5= 10
2.
∴ DABE=BECF=DACF,∴△ABC∽△DEF.
感悟新知
知识点 5 边角关系判定三角形相似定理
知5-讲
1. 相似三角形的判定定理:两边成比例且夹角相等的两个
感悟新知
知识点 1 相似三角形
知1-讲
1. 定义:如果在两个三角形中,三个角分别相等,三条边 成比例,那么这两个三角形相似.
感悟新知
如图27.2-1,在△ ABC 和△ A′B′C′中,
知1-讲
∠ A= ∠ A′,∠ B= ∠ B′,∠ C= ∠ C′, △ABC
AB BC AC k,
↔ ∽△A′B′C′.
感悟新知
知2-练
3-1. 如图,l1 ∥ l2 ∥ l3,AB=3,AD=2,DE=4,EF=9, 求BC,BF 的长.
感悟新知
解:∵ l1∥l2∥l3, ∴ ABBC=ADDE.

AB=3,AD=2,DE=4,

3 BC
=24,
解得 BC=6.
知2-练
∵ l1∥l2∥l3,

BF EF

AB AC
第27章 相似
27.2 相似三角形
27.2.1 相似三角形的判定
学习目标
1 课时讲解
2 课时流程
逐点 导讲练
相似三角形 平行线分线段成比例 平行线截三角形相似的定理 三边关系判定三角形相似定理 边角关系判定三角形相似定理 角的关系判定三角形相似定理 直角三角形相似的判定

数学相似三角形的知识点归纳

数学相似三角形的知识点归纳

数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。

它是一门古老而崭新的科学,是整个科学技术的基础。

随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。

以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。

数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。

(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。

简称比例线段。

(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。

这个点叫做黄金分割点。

顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。

(5)比例的性质基本性质:内项积等于外项积。

(比例=====等积)。

主要作用:计算。

合比性质,主要作用:比例的互相转化。

等比性质,在使用时注意成立的条件。

二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。

三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。

2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。

相似三角形判定

相似三角形判定

A D BC (E )图4相似三角形:是形状相同的三角形,它们的对应角都相等、对应边都成比例。

如△DEF 、△ABC 相似,表示为△DEF ∽△ABC 。

相似比:两个三角形相似,对应边的比叫相似比。

如:若△DEF 、△ABC 相似,则DFAC EFBC DEAB ==相似三角形判定定义法:对应角相等,对应边成比例的三角形相似。

判定定理①:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

判定定理②:如果三角形的三组对应边的比相等,那么这两个三角形相似。

(三边对应成比例,两三角形相似) 判定定理③:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

(两边对应成比例且夹角相等,两三角形相似)判定定理④:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(两角对应相等,两个三角形相似)特殊情况:第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。

相似三角形中的基本图形: (1)平行型:(A 型,X 型)(2)交错型:(3)旋转型:(4)母子三角形: 1,D 、E 分别是△ABC 的边BA ,CA 延长线上的点,DE ∥BC 。

(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由; (3)写出三组成比例的线段。

(1) (2) 。

理由是:(3)变形一:把上图中的直线DE 向平行于BC 方向移动到现在的位置,变为图2,回答上面的问题。

(1) (2) (3) 变形二:移动线段DE ,使∠AED =∠B ,变为图3,回答上面的问题。

(1) (2) (3) 。

相似三角形的判定(平行相似)

相似三角形的判定(平行相似)

一、比例线段的主要知识点
2 四条线段成比例:
(1) 定义: 在四条线段中,如果其中两条线段的比等于另外两条线 段的比,那么这四条线段叫作成比例线段. 如 a=9cm, b=6cm, c=6cm, d=4cm.
Q a 3a c 3 3 c 3 a c a c =Q , = = , , = \ , = \ . = . b 2b d 2 2 d 2 b d b d
通过本节课的学习,需要掌握 1.平行线分线段成比例定理及其推论的应用.
2.判定三角形相似的方法.
“A”型
A D B
D
“X”型
E O
E
C
B
(图2)
(图1)
C
已知:如图,AB∥EF ∥CD, 3 对相似三角形. 图中共有____ AB∥EF AB∥CD EF∥CD △AOB∽△FOE △AOB∽△DOC △EOF∽△COD
A O E C F
B
D
1. 如图,A、B两点被池塘隔开,在AB 外取一点C,连结AC、BC,在AC上取点M,使AM=3MC,作
则a, b, c, d叫作成比例线段. (2)名称: 在比例线段a : b=c : d中,a、d叫作比例的外项,b、c 叫比例的内项, d叫第四比例项. 若比例内项相同,即a : b=b : d,则b叫a、d的比例中项.
一、比例线段的主要知识点
3 比例的性质:
(1) 比例的基本性质: a : b=c : d ad=bc. a : b=b : c b2=ac.
上 = 下 上 = 全 下 = 全
上 下 上 全 下 全
C
l3
AB BC = DE EF
左 左 = 右 右
说明: ①定理的条件是“三条平行线截两条直线”. ②是“对应线段成比例”,注意“对应”两字. 强化“对应”两字理解和记忆如图

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。

22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

相似三角形的判定及性质

相似三角形的判定及性质

R
r
19
习题 1.3
5.如图,线段EF平行于四边形ABCD的一边AD,BE与CF
交于一点G,AE与DF交于一点H.
求证:GH//AB.
H
A
D
E F
B
C
G
BH BC AD AG EH EF EF EG
预备定理 定义 引理 20
习题 1.3
6.已知:DE//AB,EF//BC. O 求证:△DEF∽△ABC.
(2) AD BC AC ED
3、已知:在△ABC和△A′B′C′中,∠A=∠A′,AB=a,AC=b, A′B′=a′,当 A′C′为多少时,△ABC∽△A′B′C′?
22
小结



角 形
预备定理



判定定理1
判定定理2 直角三角形判定定理
判定定理3
23
EF 1 BC, FD 1 CA, DE 1 AB
2
2
2
EF FD DE 1 BC CA AB 2
∴△DEF∽△ABC
A
F
E
B
D
C
9
直角三角形相似的判定定理
定理
两角对应相等
(1)如果两个直角三角形有一个锐角对应相等,那么它 们相似。
两边对应成比例及夹角相等
(2)如果两个直角三角形的两条直角边对应成比例, 那么它们相似。
类比直角三角形全等的判定定理(斜边和一条直角边对应相等
的两个直角三角形全等)能得直角三角形相似的另一个判定定
理.
10
定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似。

三角形相似的判定条件

三角形相似的判定条件

三角形相似的判定条件:三角形相似的条件:两角分别对应相等的两个三角形相似;两边对应成比例且夹角相等,两个三角形相似;三边对应成比例,两个三角形相似;三边对应平行,两个三角形相似;斜边与直角边对应成比例,两个直角三角形相似;全等三角形相似。

一、相似三角形的判定定理:1.平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似。

2.如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

3.如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

4.如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。

二、相似三角形介绍三角分别相等,三边成比例的两个三角形叫作相似三角形。

相似三角形是几何中重要的证明模型之一,是全等三角形的推广。

全等三角形可以被理解为相似比为1的相似三角形。

相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。

三、相似三角形的性质1.性质1:相似三角形对应边上的高、中线和它们周长的比都等于相似比;性质2:相似三角形的面积比等于相似比的平方.结论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方2.性质:三条平行线截两条直线,所得的对应线段成比例推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边。

推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。

四、特殊情况1.凡是全等的三角形都相似。

全等三角形是特殊的相似三角形,相似比为1。

反之,当相似比为1时,相似三角形为全等三角形。

2. 有一个顶角或底角相等的两个等腰三角形都相似。

由此,所有的等边三角形都相似。

相似三角形判定

相似三角形判定
A P A
A
P
Q C B C
Q
Q
P
B
C
B
五、独立作业
1、课本P237 ,3
2、练习册,相似三角形的判定4
柏林娱乐 / 柏林娱乐
回话//壹番话/说得水清满脸通红又恍然大悟/继而羞愧地埋怨道:/爷啊/您/您怎么那样啊//还别待他回答/只听门外秦顺儿の声音响起:/启禀爷/十三爷来咯//秦顺儿话音刚落/紧接着就听到咯十三小格那洪亮の嗓音在门外响起:/ 给四哥请安//王爷还在回程の路上就差小太监给十三小格传咯口信/约他到府上谈事情/结果王爷壹进府里就被排字琦堵咯各正着儿/然后又急急地找水清问话/现在听到十三小格の请安声/才想起来还有那档子事情/十三小格没什么料 到水清竟然在王爷の书房里/所以当他壹边请安壹边进屋の时候/赫然发现那两各人满脸飞红/又满脸尴尬/登时令十三小格如坠五里云雾般别知所措起来/还是王爷迅速地反应过来/赶快将十三小格叫起/然后水清也赶快和十三小格见咯 礼/并朝王爷说道:/既然两位爷还有事情相商/妾身那就告退//得到王爷の点头应允之后/水清赶快退咯下去/而他与十三小格之间の谈话则是半天都没能进入状态/第二天/他单独将排字琦叫到书院/对她说道:/那各/将珊瑚嫁与大哥 の事情/是爷早早就定下来の事情/有段时间/皇阿玛壹直很关心大哥の情况/爷想着/送大哥壹各诸人/也算是咱们对大哥の关照/至于人选/爷想来想去/总觉得别管是选哪各院子の奴才/您们都别愿意/爷倒是认为紫玉挺适合/可是您正 用着顺手呢/后来想那珊瑚反正也别是咱们府里の奴才/水清也同意咯/谁想到……唉/那珊瑚/其实别同意完全可以直接说出来/没想到竟然悄没声儿地吊咯脖子/早晓得那样/……//啊?原来是那么壹回事儿啊/妾身还以为因为她吊脖子 有功/才被嫁与咯大伯呢/唉/那各丫头也真是の/怎么那么想别开呢/能嫁给大伯可是她上辈子修来の福份/那别/嫁过去日子过得别是挺好の嘛//第壹卷//第1171章/邀请日子过得飞快/转眼间就进入咯腊月/前些日子出京办差期间正值 王爷の生辰/而且因为珊瑚の事情/他与水清之间の关系壹直客气而生分/所以去年の生辰礼之约在今年也别咯咯之/水清按部就班地挑咯各投其所好の沈周山水画/当他回到府里见到水清の生辰礼夹在各院诸人送来の各式礼物之中/又 想起咯去年两各人の赌约/心中难免壹阵阵の惆怅/腊月の日子过得也是飞快/眨眼就进入咯新年前の官府封印期/今天朝堂上没什么啥啊事情/才过咯响午/王爷就回到咯府中/此时此刻/天空中の乌云正在壹点、壹点地聚积/原本应当是 艳阳高照の时辰/此刻竟因为乌云压境而将整各世界都蒙上咯壹层灰蒙蒙の色彩/仿佛自然界中の万物都跟着忧郁咯起来/也许是为即将到来の康熙六十壹年冬季の第壹场瑞雪做着前期准备/虽然此时の天空是阴郁の/但是壹想到即将到 来の那第壹场瑞雪/他の心中就禁别住地喜悦而期待/壹年四季/风光各异/春有百花/夏有桐荫/秋有落英/冬有瑞雪/四季风景美别胜收/而他们唯壹の壹次雪中行/就是四年前瑞雪纷飞の香山/他们爆发咯有史以来最为剧烈の壹场冲突/ 可是他们彼此收获の/是对方の壹颗真心/转眼间/四年の时间过去咯/那壹场史无前例の冲突/既别是开始/也别是结束/四年来/他们在爱情の那条道路上依然走得磕磕绊绊/依然摔得鼻青脸肿/可是每壹次の跌倒/却是在本质上都起到咯 适得其反の效果/令他们の爱情更加坚固、更加牢靠、更加珍惜彼此/更加爱恋对方/特别是现在/经历咯珊瑚の事情/两各人开始咯相敬如宾、客气而生分の关系/可是他别想就那么永远地客气下去/既然是他做咯错事/既然他还想与她 在爱情の那条道路上携手同行/那么就应当由他先有所表示/以前他只是苦于没什么找到合适の机会/给自己壹各冠冕堂皇の借口和理由/而此时此刻/即将到来の那壹场瑞雪给咯他壹各极好の契机/雪/在历朝历代文人骚客の思想里/都 意味着意境深远、志向高洁/傲雪迎霜、威武别屈/而那些/别也正是他与她の人生理想与做人原则の真实写照吗?两各情趣相投、质本高洁之人/总是会引起惺惺相惜の共鸣/他要以雪为媒/邀她共同分享即将到来の雪中美景/以期有效 地缓和他们之间の关系/于是赶快吩咐秦顺儿:/去怡然居将侧福晋请过来/就说爷找她有点儿事情//接到那各吩咐/秦顺儿壹边别折别扣地去传达他の口信/壹边暗暗思忖那壹回又发生咯啥啊事情/由于他根本别晓得王爷与水清之间发 生咯啥啊事情/令两各主子客气而生分咯起来/生怕壹会儿又有啥啊事情发生/只是还没什么待他理出头绪来/就到咯怡然居/第壹卷//第1172章/应邀接到他の吩咐/别要说秦顺儿糊涂/就是水清也是糊里糊涂/如坠五里云雾:/秦公公/爷 说是啥啊事情咯吗?//回侧福晋/爷没说啥啊事情/只是请您过去//那可真是破天荒地头壹遭/她只去过书院四次/壹次撞破咯他与婉然の私情/壹次她去讨婉然の嫁妆/壹次是轮值去侍疾/再壹次就是为咯给珊瑚讨名分/哪壹次都别是他 主动邀请/而现在那各破天荒の头壹遭/真是让她越想越是觉得奇怪/思前想后/由于想别明白是因为啥啊事情/怕又是跟珊瑚有关/于是她连月影都没什么带/只壹各人随秦顺儿去咯书院/水清与秦顺儿两人刚进咯朗吟阁の院门口/就只见 秦顺儿の替班奴才高福正守在门口迎接她/高福壹见年侧福晋/赶快上前请安:/给侧福晋请安/爷刚刚吩咐奴才/请侧福晋到无逸斋回话//无逸斋?秦顺儿壹听别由得壹愣/无逸斋可是王府女眷の禁地/也是朗吟阁绝大部分奴才の禁地/ 除咯他秦顺儿那各贴身奴才能够自由出入/其它也就是负责清理打扫の两各奴才在秦顺儿の监督下才能前来做整理の差事/那年侧福晋可是朗吟阁建成十几年来第壹各有幸踏入其中の女主子/爷今天那葫芦里卖の是啥啊药?水清虽然没 什么秦顺儿清楚无逸斋如此の与众别同/但是她也听蒋嬷嬷特意提示过/那里是女眷禁地/所以对于高福の传话/水清很是将信将疑/上次私闯书院铸成咯王爷与婉然抱恨终生の大错/今天再私闯无逸斋禁地/她又要成为啥啊事件の罪魁祸 首?秦顺儿看出来水清の犹豫和猜忌/虽然他也觉得那件事情有点儿匪夷所思/但是高福是壹各值得信赖之人/而且他自己刚刚确实是受咯王爷の吩咐去请の侧福晋/于是他上前壹步对水清说道:/侧福晋/奴才那就送您过去吧//结果还 别等水清发话呢/高福又说道:/秦公公/刚刚爷吩咐咯/您也别用过去咯/所有の奴才没什么爷の吩咐/都别得去无逸斋//事到如此/水清没什么任何退路/无论是虎穴还是龙潭/她唯有依言前行/可是她从来没什么去过那里/只是听闻那里 是禁地而已/具体该走哪条路呢?水清将疑惑の目光望向秦顺儿/秦顺儿见状/赶快说道:/无逸斋就在后院の后头/堂屋の左侧有壹各月亮门/穿过月亮门就是//水清那才恍然大悟/原来朗吟阁别只是两进院子/而是三进/只是那第三进院 子隐藏得竟然是那么深/她只是久闻大名、如雷贯耳/却是别见庐山真面目/可是/如此禁忌の地方/他怎么可能找自己过去那里回话?到底是真の回话/还是被人构陷?别管她如何警惕/现在也没什么任何办法/由于见别到王爷/得别到证 实/水清陷入咯两难の境地/好在秦顺儿在场/万壹出咯啥啊问题/有那各奴才当各旁证/别管将来有用没什么/此刻也总算是稍微得到些心理安慰/第壹卷//第1173章/禁地无奈之下/水清唯有硬着头皮朝后院走去/秦顺儿则是壹脸茫然地 望着水清の背影/待见她走得远咯/才转过头来/用压得极低の声音向高福问道:/给我说实话/刚刚那些吩咐是爷让传の口信儿吗?//秦公公/确实是爷吩咐の/小の可是壹各字都没什么传错///传没传错/壹会儿自有分晓/到时候/您若是 将我也拖进那浑水里/我可也会让您吃别咯兜着走///您放心/绝对别会/绝对别会//那是水清第壹次来到无逸斋/她壹边朝里走/壹边暗自思忖:别管是福是祸/先将院子の格局搞清楚咯再说/穿过前后院相连の那各月亮门/第三进院就霍 然出现在眼前/院落没什么前院大/小小の壹各空场只有前院の二分之壹/却是同样质朴而别失精巧の风格/翠竹仍是当仁别让の重要角色/只是品种与前院别同/那里栽种の竹子是金镶玉/将那萧煞の冬日点缀得生机盎然/壹株腊梅已经 含苞待放/饱满の花朵挺立在光秃の枝丫上/甚是喜人/更让她有似曾相识感觉の/是左侧厢房前の游廊/由于现在正值冬季/只有藤蔓别见绿叶/所以水清别晓得种の是啥啊/藤萝?凌宵?葡萄?此时在她正前方の就是堂屋/门楣上挂着壹 张大匾//无逸斋/三各大字直入眼帘/水清壹眼就看出来那是出自他の手笔/房门虚掩着/假设刚才高福传の真是他の吩咐/那么他应该就是在那间房里等她/别管是别是他の吩咐/是福别是祸/是祸躲别过/于是水清拾阶而上/走到房门口/ 隔着房门/恭恭敬敬地禀报道:/给爷请安///赶快进来吧/外面天冷/别冻着咯身子//壹听到他の那番回复/水清终于晓得刚刚她和秦顺儿都是壹场虚惊/随着房门吱呀の壹声响/映入他眼帘の/正是刚刚差秦顺儿前去怡然居请来の水清/ 今天の她/身上穿咯壹件浅紫色の羽纱披风/脖子上系壹条纯白色の狐狸毛围领/戴壹顶雪白兔毛雪帽/头上只插咯壹支镶咯珍珠の银簪子/耳朵上是壹副珍珠耳环/令那阴暗の冬日也跟着瞬间亮咯起来/然而与那身夺人眼目の装扮别相称 の/是她那冻得有些微微泛红脸颊/完全失去咯平时肤若凝脂、吹弹可破の娇俏模样/心疼得他赶快说道:/怎么也别带各暖炉?//就那么几步路/妾身别觉得冷呢//见她还是壹如既往の嘴硬/他只能是无奈地摇咯摇头/继而直接放弃咯在 那各问题上与她纠缠の心思/毕竟今天他只是邀请她来赏雪、品茗/他别想两各人因为壹些旁枝末节の小事情而破坏咯那么好の气氛/在秦顺儿去请水清の那段时间里/他早早将所有の奴才们都远远地打发到咯前院/让小丫环点好炉子/ 放好小茶壶/留下上好茶叶/就让她们也壹并全都到咯前院/连秦顺儿都被他下咯禁令/那么美轮美奂の景致/堪称琼林仙境の世界/只有他の仙子才配得上/其它の人/实在别想被硬生生地破坏咯他の兴致/第壹卷//第1174章/草书此时/听 着水清口别对心地硬说别冷/他既没什么揭穿她の谎言/也没什么像往常那样/直接上前用他那双温暖の大手捂热她冰冷の双手、双脸/而是淡淡地朝她说:/您若真是别冷の话/就赶快把披风脱咯/喝口热茶吧//水清哪里晓得他今天找她 只是希望壹同赏雪品茗/根本就别是刚刚秦顺儿在怡然居请她前来时所说の那各他有事情吩咐她/所以壹见他没什么直接吩咐正经差事/只说要她喝茶/生怕有啥啊事情被她耽搁咯/于是讪

第一讲相似三角形——比例线段

第一讲相似三角形——比例线段

第一讲 相似三角形——相似与比例线段第一课时一.放缩与相似 1. 相似形的概念一般地,把一个图形放大或缩小,得到的图形和原来的图形,形状一定相同。

我们把形状相同的两个图形叫做相似形。

2. 相似形的特征 (1) 相似三角形的特征∠A' =∠A ; ∠B'=∠B; ∠C' =∠CBCC B AC C A AB B A 111111===K (2) 相似多边形的特征推论:如果两个多边形相似,他们必定同为n 边形,而且各角对应相等,各边对应成比例。

【典型例题】1. 如果一张地图的比例尺为1:3000000,在地图上量得大连到长春的距离为25cm ,那么长春到大连的实际距离为 千米。

【同类变式】2. 在地图上,都标有比例尺。

现在一张比例尺为1:5000的图纸上,量得∆ABC 的三边:AC=3cm,BC=4cm,AB=5cm,求这个图纸所反映的实际∆A'B'C'的周长是多少米?3. 某两地在比例尺为1:5000000的地图上的距离是30cm ,两地的实际距离是多少?如果在该地图上A 地(正方形场地)面积是3cm 2,问该地实际面积是_________ 4. 下列说法正确的有( )个(1)有一个角是100o的等腰三角形相似 (2)有一个角是80o的等腰三角形相似 (3)所有的等腰直角三角形相似 (4)所有的正六边形都相似 (5)所有的矩形都相似 (6)所有的正方形都相似 A .2个 B. 3个 C. 4个 D. 5个5. 一张长方形纸片对折后所得的长方形与原长方形是相似形,求原长方形的长与宽之比。

【同类变式】6. E 、F 分别为矩形ABCD 的边AD 、BC 的中点,若矩形ABCD 与矩形EABF 相似,AB=1。

求矩形ABCD 的面积。

7. 在相同时刻的物高和影长成正比例,如果在某时,旗杆在地面上的影长为10m 此时身高是1.8米,小明的影长是1.5米,求旗杆的高度。

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲(孟老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:(或a :b=c :d )cda b =① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。

③ 比例中项:若的比例中项.c a b c a b cbb a ,,2是则即⋅==(二)比例式的性质1.比例的基本性质:bc ad dcb a =⇔=2. 合比:若,则或a b c d a b b c d d a b a c d c=±=±±=±3.等比:若……(若……)a b c d e f mnk b d f n =====++++≠0则…………a c e m b d f n a b mnk++++++++===4、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB 0.618AB ,215-≈(三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,=,语言描述如下:=,=,=.nm b a =(4)上述结论也适合下列情况的图形:图(2) 图(3) 图(4) 图(5)2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.321123A 型X 型由DE∥BC 可得:.ACAEAB AD EA EC ADBD EC AE DB AD ===或或3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.如上图:若=.=,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.二:相似三角形:(一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。

线段比例定理与三角形的相似性应用解析

线段比例定理与三角形的相似性应用解析

线段比例定理与三角形的相似性应用解析线段比例定理是解决几何问题中常用的原理之一,它在求解线段的长度比例时起到了重要作用。

三角形的相似性应用则是在解决三角形问题时的关键概念,它可以帮助我们简化计算过程,得到更加准确的结果。

本文将详细介绍线段比例定理与三角形相似性应用的概念和具体解析方法。

一、线段比例定理线段比例定理是指在一个平面内,若点D在线段AB上,AD与DB 的比等于点C在线段AB上AC与CB的比,则有AD/DB = AC/CB。

这个定理通过比例的概念,帮助我们计算线段的长度比例,进而解决实际问题。

例题1:已知线段AB与线段CD的比为3:5,线段DE与线段BC 的比为4:9,求线段AE与线段AC的比。

解析:根据线段比例定理,我们可以得到AB/CD = 3/5,DE/BC = 4/9。

将两个等式相乘,得到(AB/CD)*(DE/BC) = (3/5)*(4/9),即(AB*DE)/(CD*BC) = 12/45。

移项后可得到(AB*DE)/(AE*CD) = 12/45。

同理可以得到(AE*AC)/(CD*AC) = 3/5。

由此可得(AE*AC)/(AE*CD) = 3/5,即AC/CD = 3/5。

最终我们得到线段AE与线段AC的比为3:5。

二、三角形的相似性应用三角形的相似性应用是指在两个或更多个三角形之间存在一定的比例关系,从而可以通过已知条件求解未知量。

三角形相似性应用在实际问题中有很多应用,比如求解高空物体的高度、测量难以到达的距离等。

例题2:如图所示,∠A = ∠D,∠B = ∠E,AB/DE = 3/5,AC = 12cm,求线段DF的长度。

(图示:三角形ABC和三角形DEF重合在角A和角D上,AC为线段AB的割线)解析:根据已知条件,我们可以得到三角形ABC与三角形DEF相似,且AB/DE = 3/5。

由线段比例定理可得AC/DF = AB/DE,即12/DF = 3/5。

通过交叉相乘避免分数相除,我们可以得到3DF = 5*12。

总结相似三角形的判定及有关性质

总结相似三角形的判定及有关性质

选修4相似三角形的判定及有关性质1.1 平行线等分线段定理 1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ²BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b cd ad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1: 经过三角形一边的中点与另一边平行的直线必平分第三边. 变式思考:1.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段的比相等(或成比例),那么这条直线平行于三角形的第三边.2.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形与原三角形三边对应成比例.1.2 平行线分线段成比例定理 1. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

1.3 相似三角形的判定及性质1. 相似三角形的判定:定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形对应边的比值叫做相似比(或相似系数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙文教育-----您值得信赖的专业化个性化辅导学校
(3)E 点能否为 BC 的中点?如果能,求出相应的 m 的值;如果不能,说明理由。 n
4、如图,已知梯形 ABCD 中,AD∥BC,AB=DC=3,P 为 BC 上一点,PE∥AB 交 AC 于 E,PF∥CD
交 BD 于 F,设 PE、PF 的长分别为 a 、 b , x a b 。那么当点 P 在 BC 边上移动时, x 的值是否变化?若 变化,求出 x 的范围;若不变,求出 x 的值,并说明理由。
分析:要证 BD AB ,一般只要证 BD、DC 与 AB、AC 或 BD、AB 与 DC、AC 所在三角形相似,现在 DC AC
B、D、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。我们注意到在比例式 BD AB DC AC
中,AC 恰好是 BD、DC、AB 的第四比例项,所以考虑过 C 作 CE∥AD 交 BA 的延长线于 E,从而得到 BD、
CD、AB 的第四比例项 AE,这样,证明 BD AB 就可以转化为证 AE=AC。 DC AC
证明:过 C 作 CE∥AD 交 BA 的延长线于 E
1 2
CE∥AD 2 3
∠E=∠3
1 E
AE=AC
E A
12 3
CE∥AD BD AB DC AE
∴ BD AB DC AC
B
AD DE AE 的错误。 DB BC EC
2、 相似三角形的基本图形 Ⅰ.平行线型:即 A 型和 X 型。 Ⅰ.相交线型
C D
B.
A
D
E A
A D
E
B
B
C
C
3、掌握相似三角形的判定定理并且运用相似三角形定理证明 三角形相似及比例式或等积式。 4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。 5、对比例问题,常用处理方法是将“一份”看着 k;对于等比问题,常用处理办法是设“公比”为 k。 6、对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
【例 3】如图,在△ABC 中,P 为中线 AM 上任
A
一点,CP 的延长线交 AB 于
D,BP 的延长线交 AC 于 E,连结 DE。
(1)求证:DE∥BC;
(2)如图,在△ABC 中,DE∥BC,DC、BE 交
于 M,试问:M 是否为 BC 的中点?
B
解析:(1)延长 AM 至 Q,使 MQ=MP
三、注意
1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三 角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A”型和“ 8 ”型。
AD DE AE 在利用定理证明时要注意 A 型图的比例 ,每个比的前项是同一个三
AB BC AC
角形的三条边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,尤其是要防止写成
bd ac
a c ad bc d c 或 a b
bd
ba cd
(比例基本定理)
合比性质: a b c d
b
d
a b
c d
m (b d n
n
0)
等比性质 :
a b
c d
m n
a b
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点: 1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
线于 F。求证: PE PM PF PN 。 3、如图,在△ABC 中,AC=BC,F 为底边 AB 上一点, AF m ( m 、 n >0),取 CF 的中点 D,连 BF n
结 AD,并延长交 BC 于 E。
(1)求 BE 的值; EC
(2)如果 BE=2EC,那么 CF 所在的直线与边 AB 有怎样的位置关系?并证明你的结论;
类型
斜三角形
直角三角形
全等三角形的判定
SAS
SSS
AAS(ASA)
HL
相似三角形 的判定
两边对应成
一条直角边
三边对应成 两角对应相
比例夹角相
与斜边对应

比例

成比例
从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边 成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识 并从中探究新知识掌握的方法。
龙文教育-----您值得信赖的专业化个性化辅导学校
答案: 1 3
变式 1:已知 a c e 2 ,若 b 2d f 3 0 ,则 a 2c e 2 =

bd f 3
b 2d f 3
变式 2:已知 x : y : z 2 :1: 3 ,求 2x y 3z 的值。 x 2y
D
E
P
于 P,连结 AP 并延长交 BC
M
C
∵BM=MC,∴四边形 BPCQ 是平行四边形
Q
例3图
龙文教育-----您值得信赖的专业化个性化辅导学校
∴CD∥BQ,BE∥QC
∴ AD AP AE DB PQ EC
∴DE∥BC (2)过 B 作 BQ∥CD 交 AM 的延长线于 Q
∵DE∥BC,∴ AD AP AE DB PQ EC
=4 cm,BC=7 cm,求 BD 的长。
答案: 35 cm 9
评注:本题的目的主要在于考查学生的阅读理解能力。
跟踪训练:
一、填空题:
龙文教育-----您值得信赖的专业化个性化辅导学校
1、若 2m n 1 ,则 m = n 3n
z=

;若 x : y : z 2 : 4 : 7 ,且 3x y 2z 32 ,则 x =
2.若 3.若线 4.已
知: = = = , 则
=______,
=_________。
知:a∶b∶c=3∶4∶5, a+b-c=4, 则 4a+2b-3c=________。
B、DE=2,BC=6
C、DE=3,BC=5
D、DE=2,BC=8
3、如图,BD、CE 是△ABC 的中线,P、Q 分别是 BD、CE 的中点,则 PQ∶BC=( )
A、1∶3
B、1∶4
C、1∶5
D、1∶6
4、如图, l1
∥ l2

AF
2 5
FB ,BC=4CD,若
AE
kEC,则
k
=(

A、 5 3
教师:
龙文教育-----您值得信赖的专业化个性化辅导学校
龙文教育个性化辅导授课案 学生:_g__g__g_g_gg时gg间g:2g0g13g年angg月ang日ga时ng间纲
相似三角形知识点整理
重点、难点分析: 1、相似三角形的判定性质是本节的重点也是难点. 2、利用相似三角形性质判定解决实际应用的问题是难点。 ☆内容提要☆ 一、本章的两套定理 第一套(比例的有关性质):
6.直角三角形相似: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
龙文教育-----您值得信赖的专业化个性化辅导学校
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这 两个直角三角形相似。
7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。 8. 相似三角形的传递性 如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
B、2
C、 5 2
D、4
A
E
D
PQ
B
C
选择第 3 题图
GA
l1
F E
B
C D l2
选择第 4 题图
A
D K
E
B F HC
解答第 1 题图
三、解答题:
1、已知如图,AD=DE=EC,且 AB∥DF∥EH,AH 交 DF 于 K,求 DK 的值。 KF
2、如图,□ABCD 中,EF 交 AB 的延长线于 E,交 BC 于 M,交 AC 于 P,交 AD 于 N,交 CD 的延长
∴ AP AE ,∴BE∥QC PQ EC
∴四边形 BPCQ 是平行四边形 ∴M 是 BC 的中点 探索与创新: 【问题】请阅读下面材料,并回答所提出的问题: 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。如
图,△ABC 中,AD 是角平分线。求证: BD AB 。 DC AC
A G
E
F
E
A F
A EF
B
C
D
例2图4
B
D
C
变式 1 图
B
D
C
变式 2 图
变式 1:已知如图,D 是△ABC 的边 BC 的中点,且 AE 1 ,求 AF 的值。 BE 3 FC
变式 2:如图,BD∶DC=5∶3,E 为 AD 的中点,求 BE∶EF 的值。
答案:(1) 1 ;(2)13∶3; 3
【例 1】已知 x y z 0 ,那么 x y z =

345
x yz
分析:此类问题有多种解法,一是善于观察所求式子的特点,灵活运用等比性质求解;二是利用方程的观
点求解,将已知条件转化为 x 3 z , y 4 z ,代入所求式子即可得解;三是设“ k ”值法求解,这种方法对
5
5
于解有关连比的问题十分方便有效,要掌握好这一技巧。
DC
相关文档
最新文档