信号流图的绘制及梅森公式(精选)

合集下载

2-5_信号流图与梅森公式

2-5_信号流图与梅森公式
5 不接触回路:指相互间没有公共节点的回路。图中无。
二、信流图的性质 1、每一个节点表示一个变量。 2、支路表示了一个信号对另一个信号的函数关 系。支路上的箭头方向表示信号的流向。 3、混合节点可以通过增加一个增益为1的支路变 成为输出节点,且两节点的变量相同。
三、信号流图的绘制 根据方框图绘制
6

梅森公式的一般式为:
n
G( s)
P
K 1 K
K

9
梅森公式参数解释:
G(s):待求的总传递函数;
Δ 称为特征式, 且Δ =1-Σ Li+Σ LiLj-Σ LiLjLk+„
Pk:从输入端到输出端第k条前向通路的总 增益; Δ k:在Δ 中,将与第k条前向通路相接触的 回路所在项除去后所余下的部分,称余子式;
P1 1 R 1R 2
PΔ C(s) 1 G 1 1 R(s) Δ R 1R 2 C1C 2 s 2 R 1C1s R 1C 2 s 1
30
练习
1 R(s) f
e g
a
b
c h
d C(s)
四个单独回路,两个回路互不接触
-
G1
-
G2 H2
G3
-
G4 H3
G5
G6
C(s)
H1

前向通路数:n=1
15
P1 G1G2G3G4G5G6
求解步骤之二(例1)

确定系统中的反馈回路数
H4
-
R(s) G1
-
G2 H2
G3
-
G4 H3
G5
G6
C(s)
H1
16
1.寻找反馈回路之一

信号流 图与梅逊增益公式

信号流 图与梅逊增益公式

【例 2-17】已知某系统的信号流图如图所示,试求其传递函数。
【解】由图可知,此系统有两条前向通路,即 n 2 ,其增益各为 p1 abcd 和 p2 fd ;
有三个回路,即 L1 be ,L2 abcdg ,L3 fdg ,因此 La L1 L2 L3 。上述三个 回路中只有 L1 与 L3 互不接触,L2 与 L1 及 L3都接触,因此 LbLc L1L3 。由此得系统的
(1)源点:也称输入节点,指只有输出支路的节点,如图中的 x1 。它一般表 示系统的输入量。
(2)汇点:也称输出节点,指只有输入支路的节点,如图中的 x6 。它一般表
示系统的输出量。
(3)混合节点:既有输入支路又有输 出支路的节点称为混合节点,如图中
的 x2 ,x3 ,x4 。它一般表示系统的中间
变量。
数。由于信号流图和结构图之间存在相应的联系,因此梅逊增益公式同样也
适用于结构图。
梅逊增益公式给出了系统信号流图中任意输入节点与输出节点
之间的增益(即传递函数),其公式为
式中
P
1
n k 1
pk k
n ——从输入节点到输出节点的前向通路的总条数;
pk ——从输入节点到输出节点的第 k 条前向通路总增益;
(5)回路:单独回路的简称,即起点和终点在同一节点且信号通过每一个节点不多于
一次的闭合通路。从一个节点开始,只经过一条支路又回到该节点的回路,称为自回
路。回路中所有支路增益的乘积称为回路增益,用 La 表示。在图中共有三条回路,一 条是起始于节点 x2 ,经过节点 x3 最后回到节点 x2 的回路,其回路增益为 L1 bc ;第二 条是起始于节点 x,2 经过节点 x,3 ,x4 x最5 后又回到节点 x的2 回路,其回路增益 为 L2 cegh ;第三个是起始于节点 x4 并回到节点 x4的自回路,其回路增益为 L3 f 。

25信号流图与梅森公式 共31页

25信号流图与梅森公式 共31页
Li L1L2L3L4
i1
G 1 G 2 G 3 G 4 G 5 G 6 H 1 G 2 G 3 H 2 G 4 G 5 H 3 G 3 G 4 H 4
L iL j L 2 L 3 ( G 2 G 3 H 2 ) G ( 4 G 5 H 3 )
G 2G 3G 4G 5H 2H 3
2-5 信号流图及梅森公式
是表示复杂系统的又一种图示方法。
重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x 2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
作业:
2-11 求C(s)/R(s) 2-12 (a) (d)
30
谢谢!
xiexie!
8
Σ Li:所有各回路的“回路传递函数”之和; Σ LiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; Σ LiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
9
注意事项:
“回路传递函数”是指反馈回路的前 向通路和反馈回路的传递函数的乘积, 并且包含代表反馈极性的正、负号。
11
所以
C (G s P ) 1 Δ 1
1
R(s) Δ R 1 R 2 C 1 C 2 s2 R 1 C 1 s R 1 C 2 s 1
28
练习eBiblioteka g1ab
c
d
R(s) f
C(s) h
四个单独回路,两个回路互不接触

第七节 信号流图与梅森公式

第七节 信号流图与梅森公式

的就是梅逊增益公式。
P
1

K 1
n
PK
K
18
P ——从输入到输出间的总增益。(系统传递函数)
n ——从输入节点到输出节点的前向通路总数。
PK ——从输入节点到输出节点的第K条前向通路的总增益。
(分支传递函数)
K ——余因子式(在 中令与第K条前向通路相接触的回 路增益为 0 所得到的 值)
节点为汇节点,分离前后变量相同。
6
7Hale Waihona Puke 二、由方块图到信号流图方块图 信号线 信号线上所传递的信号 引出点 比较点 节点 节点变量 出支路 入支路
信号流图
方块及传递函数,保持同向 支路传递方向及增益
8
例1:将如图方块图化为信号流图。
9
例1:将如图方块图化为信号流图。
10
例1:将如图方块图化为信号流图。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
①混合节点——既有输入信号又有输出信号的节点。

梅森公式-信号流图

梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b

信号流图梅森公式

信号流图梅森公式

回路传输(增益):回路上各支路传输的乘积称为回路传输或回
路增益。
2/5/2020
5
信号流图的等效变换
串联支路合并:
ab x1 x2 x3
并联支路的合并:
a
x1 b x2
ab
x1

x3
ab
x1
x2
回路的消除:
ab
x1
x2
x c
3
b
a 1 bc
x1 x2 x3
2/5/2020
6
信号流图的等效变换
P

1
n k1
Pkk
1 L a L b L c L d L e L f .(.正. 负号间隔)
式中: La 流图中所有不同回路的回路传输之和;
LbLc 所有互不接触回路中,每次取其中两个回
路传输乘积之和;
LdLeLf 所有互不接触回路中,每次取其中三个
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
ug ue
u1
u2
ua

G f
[解]:前向通道有一条;ug ,P 1G 1G 2G 3G u
有一个回路; L a G 1 G 2 G 3 G u G f

信号流图和梅森公式

信号流图和梅森公式
04:07 38
例2:求系统传递函数。
e
g
R(s)
1
a f
b
c
h
d
C(s)
四个单独回路,两个回路互不接触。
前向通路两条。
ab c d + e d (1 – b g) C(s) = R(s) 1 – a f – b g – ch– e h g f + af c h
04:07
39
例3:求系统的传递函数
G1 R G2 C
04:07
42
解:由结构图绘制出信号流图。
x2 R(s) 1 x1 1 1 1 x6
04:07
G1
x3
1x
4
C(s)
1
G2
-1
1 x5
43
单独回路有5条:
x1 x2 x3 x4 x1 : L1 G1
x2
G1
x3 x4
R(s)
x1 x6 G2 -1 x5
04:07
Δ1=1 Δ2=1 Δ3=1-L1
1 N Gk Δ k 代入 G kΣ Δ 1
得系统的传递函数C(s)/R(s)为
C(s) 1 G (p1Δ1 p 2Δ 2 p 3Δ 3 ) R(s) Δ G1G 2 G 3 G 4 G 5 G1G 6 G 4 G 3 G1G 2 G 7 (1 G 4 H1 ) 1 G 4 H1 G 2 G 7 H 2 G 6 G 4 G 5 H 2 G 2 G 3 G 4 G 5 H 2 G 4 H 1G 2 G 7 H 2
04:07
31
G6
R(s)
G7
G3
G1 a
G2 b
G4 c

自动控制原理第二章梅森公式-信号流图课件

自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。

信号流图与梅森公式

信号流图与梅森公式

2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。

信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。

有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。

而且这两个回路无公共节点,是不接触回路。

图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。

2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。

2.5-信号流图与梅逊公式

2.5-信号流图与梅逊公式
5)对于给定的系统,信号流图不唯一。
第4页,共19页。
三、信号流图的绘制
方法一:将系统微分方程作拉氏变换后,按所得代数方程作图。
例1 绘制二级RC滤波电路的信号流图。
R1
R2
u1
i1
C1 i3
i2
C2 u2
解(1)列写系统微分方程组
i1
u1 u3 R1
i2 i1 i3
u3
1 c1
i2dt
i3
第12页,共19页。
例1 用梅逊公式求下图中信号流图的传递函数。
解:(1)找出上图中所有的前向通路只有一条前向通路
P1 G1G2G3G4
(2)找出系统中存在的所有的回路共有三个回路,三个回路的传

L1 G2G3G6
L2 G3G4G5
L3 G1G2G3G4G7
La G2G3G6 G 3G4G5 G1G2G3G4 G7
(3)这三个回路都存在公共节点,即不存在不接触回路。故系统
的特征方程式为
第13页,共19页。
1 La
1 G2G3G6 G 3G4G5 G1G2G3G4 G7
(4)由于这三个回路都与前向通路相接触,故其余因子Δ1=1。 (5)故该系统的传递函数为:
Y (s) G(s) P11
R(s)
传输: 表示变量从一个沿箭头传输到另一端的函数关系,传递函数表示。
第2页,共19页。
输入节点(或源节点):只有输出支路的节点。 汇节点 : 只有输入量的节点,系统输出变量。 混合节点: 既有输入支路,又有输出支路的节点。
通路:从某一节点开始,沿着支路的箭头方向连续经过一些支路而终止在 另一节点的路径。用经过的支路传输的乘积来表示。
开通路:如果通道从某一节点开始,终止在另一节点上,而且通道 中的每个节点只经过一次。

2.6信号流图与梅森公式

2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:

(完整)系统的信号流图与梅森公式

(完整)系统的信号流图与梅森公式

6-5 系统的信号流图与梅森公式一、信号流图的定义由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图,简称信号流图或流图。

例如,图6—29(a)所示的系统框图,可用图6-29(b)来表示,图(b)即为图(a)的信号流图。

图(b)中的小圆圈“o”代表变量,有向支路代表一个子系统及信号传输(或流动)方向,支路上标注的H(s)代表支路(子系统)的传输函数.这样,根据图6—29(b),同样可写出系统各变量之间的关系,即图6—29二、三种运算器的信号流图表示三种运算器:加法器、数乘器、积分器的信号流图表示如表6-3中所列。

由该表中看出:在信号流图中,节点“o”除代表变量外,它还对流入节点的信号具有相加(求和)的作用,如表中第一行中的节点Y(s)即是。

三、模拟图与信号流图的相互转换规则模拟图与信号流图都可用来表示系统,它们两者之间可以相互转换,其规则是:(1) 在转换中,信号流动的方向(即支路方向)及正、负号不能改变。

(2) 模拟图(或框图)中先是“和点”后是“分点”的地方,在信号流图中应画成一个“混合”节点,如图6-30所示。

根据此两图写出的各变量之间的关系式是相同的,即。

(3) 模拟图(或框图)中先是“分点"后是“和点”的地方,在信号流图中应在“分点”与“和点”之间,增加一条传输函数为1的支路,如图6—31所示。

(4) 模拟图(或框图)中的两个“和点”之间,在信号流图中有时要增加一条传输函数为1的支路(若不增加,就会出现环路的接触,此时就必须增加),但有时则不需增加(若不增加,也不会出现环路的接触,此时即可以不增加。

见例6—17)。

(5) 在模拟图(或框图)中,若激励节点上有反馈信号与输入信号叠加时,在信号流图中,应在激励节点与此“和点"之间增加一条传输函数为1的支路(见例6—17).(6) 在模拟图(或框图)中,若响应节点上有反馈信号流出时,在信号流图中,可从响应节点上增加引出一条传输函数为1的支路(也可以不增加,见例6—17)。

自动控制系统课件第六节信号流图和梅逊增益公式

自动控制系统课件第六节信号流图和梅逊增益公式
开环 确定输出/输入的闭环 特征方程
等效变换和梅逊公式的局部应用 开环传递函数、各种闭环传递函数、特征方程之间的关系 传递函数和微分方程之间的转换关系
单元练习
3、已知系统结构图如下,试 求系统的传递函数:
C(s) , E(s) R(s) R(s)
1、已知单位负反馈系统的开环传 递函数,求系统的单位脉冲响 应和单位阶跃响应。
• 特征方程 1G k( s1 )G 1( s2 )(G s) H 0( s)
E(s) R(s)
8
N(s)
1
1 C(s)
s
s
6s
1
C E
(s (s
) )
8
s2 1 6
8 s (s6)
s
C R
( (
s) s)
8
1 s2
1
6 s
1
8 s2
8 s2 6 s8
C N
( (
s) s )1
s 6 s
8 s2
利用梅逊增益公式求传递函数
• 基于信号流图
R(s) 1
E(s)
G1
x1(s)
-G4
• 基于方框图
G3
R(s)G1G2来自H1 H2G(s)
1
n k1
Pk
k
-1
G2
x2(s) G3
x3(s) 1 C(s)
1
-G5
Δ 1 G1G2G4 G2G3
P1 G1G2G3 Δ1 1
P2 G1G5 Δ 2 1
Gk
(s)
2s 1 s2
2、试绘制下图所示无源网络方框图并求 传递函数,其中R1=R2=1Ω,L=1H,C=1F。
c(t)1ette t (t0)

信号流图与梅森公式

信号流图与梅森公式

7
梅森公式参数解释:
G(s):待求的总传递函数;
Δ称为特征式, 且Δ=1-ΣLi+ΣLiLj-ΣLiLjLk+… Pk:从输入端到输出端第k条前向通路的总 增益; Δk:在Δ中,将与第k条前向通路相接触的 回路所在项除去后所余下的部分,称余子式;
8
ΣLi:所有各回路的“回路传递函数”之和; ΣLiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; ΣLiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
信号流图及梅森公式
❖ 是表示复杂系统的又一种图示方法。
❖ 重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
混x合3。节点:既有输出支路,又有输入支路的节点,如:x2、
传之间的输增:益两为个a节,点则之传间输的也增为益a。叫传输。如:x1→x2
前向通路:信号由输入节点到输出节点传递时,每个
节点只通过一次的通路称为前向通路。如
x1→x2→x3→x4 。
2
x5
前向通路总增益:前向通路 x1 a x2 b
上各支路增益的乘积 ,如:
R(s) +
E(s) G(s)
C(s)
2
_
H(s)
N(s)
R(s) + E(s)
++
C(s)
3
_ G1(s)

2-4-2信号流图及梅逊公式

2-4-2信号流图及梅逊公式

G2 (s)N (s)H (s)
(s)
(3)闭环系统的误差传递函数(以E(s)为输
出的传递函数):
N(s)
1 G1(s) G2(s)
R(s) 1
-H(s)
1
C(s)
E(s)
e (s)
E(s) R(s)
1
1 G1(s)G2 (s)H (s)
en (s)
E(s) N (s)
G2 (s)H (s) 1 G1(s)G2 (s)H (s)
• 对于一个给定的系统,信号流图不是唯一的, 由于描述同一个系统的方程可以表示为不同 的形式。
d
3.信号流图的有关术语
g
1
a
b
c
x1
x2
➢源节点(输入节点):
e x3 f
x4
x5
1
只有输出支路的节点。图中的x1。
x5
➢阱节点(输出节点):仅有输入支路的节点。有
时信号流图中没有一个节点是仅具有输入支路
1 G1 G2 G3 2G1G2 G1G3 G2G3 2G1G2G3
例5:利用梅森公式求如图所示系统闭环传递函数
f
1
a
bc
d
e1
R(s)
ghijk
C(s)
解:系统有单个回路 6 条,两两互不接触回路 7 组,三 个互不接触回路 1 组:
1[ag bh ci dj ek fghi] [agci agdj agek bhdj bhek
L(1)—— 所有单独回路增益之和; L(2) —— 两个互不接触回路增益乘积之和;
L(m) —— m个不接触回路增益乘积之和。
例3:利用梅森公式求如图所示系统闭环传递函数
G2

自动控制原理 ch 2-5_2 信号流图、梅森公式

自动控制原理 ch 2-5_2 信号流图、梅森公式
1
① 用小圆圈表示各 变量对应的节点;
G2
1
1 ② 根据方程连接各节点。
e
G1
1
e1
H
e2
G3
1
e4
1
C s
R s
1
e
G1
1
e1
e2
G3 G4
C s
e6 H
G4 G4
② 根据方程连接各节点。
返回
e5
H
前页
四、梅森增益公式
P
1 n pk k k 1
前页
例:求信号流图的传递函数 X 5 s X 1 s
前向通路:开始于输入节点,沿支路箭头方向,每个 节点只经过一次,最终到达输出节点的通路。 前向通路总增益:前向通路上各支路增益之乘积。 p k
x2 , x3 , x4 , x5
1
9/10/2013
i
i
c a
x1
x2
f
b
g
h
x5
c
1
a
x6 x1
x2
f
b
g
h
x5
1
x3 d x4 e j
x3 d x4 e j
c
1
a
x6 x1
x2
f
b
g
h
x5
1
x3 d x4 e j
x3 d x4 e j
x6
不接触回路:没有公共节点的回路。 可以有两个以上不接触回路。
c
去掉一条,另 一条仍完整!
f
不接触回路:没有公共节点的回路。 可以有两个以上不接触回路。
去掉一条,另 一条仍完整!
x 2 x3 x 2 和 x3 x4 x3

自动控制原理 第二章 梅森公式信号流图

自动控制原理 第二章 梅森公式信号流图

Uo(s)
-1
Ui ( s )
1/R1
IC(s)
1/C1s
1/R2
1/C2s
I2(s)
Uo ( s ) Uo ( s )
U(s)
-1
-1
例3 已知系统信号流图,求传递函数。
L1 G 2 H 2 解:三个回路:
-H1 R G1 G2 G3 C -H2 G4
L 2 G 1G 2 H 2
L 3 G 2G 3 H1
信号流图的绘制
由系统结构图绘制信号流图 1) 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。
注意信号流图的节点只表示变量的相加。
R(s) C(s) R(s) G(s) C(s)
(节点)
G ( s)
(节点) (支路)
D ( s) R(s) E(s) G ( s) (- ) 1 V(s)G (s) 2 H ( s)
ab c d + e d (1 – b g) C(s) = R(s) 1 – a f – b g – ch– e h g f + af c h
信号流图
• 信号流图是由节点和支路组成的一种信号传递网络。 信号流图的基本性质: 1) 节点标志系统的变量,节点标志的变量是所有流向该节点信 号的代数和,用“O”表示; 2) 信号在支路上沿箭头单向传递; 3) 支路相当于乘法器,信号流经支路时,被乘以支路增益而变 成另一信号; 4) 对一个给定系统,信号流图不是唯一的。 x6 信号流图中常用的名词术语: x5 x1 • 源节点(输入节点): x3 x7 I(s) x4 x2 o在源节点上,只有信号输出 1/R1 1+R1C1s R2 支路而没有信号输入的支路, 它一般代表系统的输入变量。 -1 •阱节点(输出节点): 在阱节点上,只有信号输入的支路而没有信号输出的支路,它 一般代表系统的输出变量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档