自动控制原理 第二章 梅森公式-信号流图

合集下载

25信号流图与梅森公式 共31页

25信号流图与梅森公式 共31页
Li L1L2L3L4
i1
G 1 G 2 G 3 G 4 G 5 G 6 H 1 G 2 G 3 H 2 G 4 G 5 H 3 G 3 G 4 H 4
L iL j L 2 L 3 ( G 2 G 3 H 2 ) G ( 4 G 5 H 3 )
G 2G 3G 4G 5H 2H 3
2-5 信号流图及梅森公式
是表示复杂系统的又一种图示方法。
重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x 2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
作业:
2-11 求C(s)/R(s) 2-12 (a) (d)
30
谢谢!
xiexie!
8
Σ Li:所有各回路的“回路传递函数”之和; Σ LiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; Σ LiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
9
注意事项:
“回路传递函数”是指反馈回路的前 向通路和反馈回路的传递函数的乘积, 并且包含代表反馈极性的正、负号。
11
所以
C (G s P ) 1 Δ 1
1
R(s) Δ R 1 R 2 C 1 C 2 s2 R 1 C 1 s R 1 C 2 s 1
28
练习eBiblioteka g1ab
c
d
R(s) f
C(s) h
四个单独回路,两个回路互不接触

2.4 梅森公式

2.4 梅森公式

(该通道所有传递函数的乘积) (回路传输之和) (两两不接触回路传输之和)
(特征式中,去掉与第k条通道相接触的 回路增益,剩下的部分
[例2.20] 用梅逊增益公式求图所示的传递函数。
G4
R
1
G1
G2
H
G3
C
回路与两个前向通道接触, 解 : 前向通道: △1=1, △ 2=1
P1=G1G2G3 P2=G4G3
L2 L5 G1G2G4G7 H 2 H3
特征式:
1 La Lb Lc
1 ( L1 L2 L3 L4 L5 ) (L1L2 L1L4 L2 L5 )
1 G2 H1 G4 H 2 G1G2G3G4G5 H3 G6G4G5 H3 G1G2G7 H 3 G2G4 H1H 2 G2G4G5G6 H1H3 G1G2G4G7 H 2 H3

C ( s) Gr ( s ) R( s) Gn ( s ) N (s) R( s) N ( s) 1 s
3 1 求出:a1 1, a2 , a3 2 2

8 1 s 1 C ( s) 2 2 s 6s 8 s s 6s 8 s
1
G2 ( s)
反馈通道: G2 (s)G3 (s)G1 ( s)
Y ( s) 1 D1 ( s ) D1 ( s) 1 G1G2G3
G1G3 Y (s) D2 ( s ) D2 ( s ) 1 G1G2G3
例[2.24] 系统结构如图,求 r (t ) n(t ) 1 时的输出。
1.给定输入作用下的闭环传递函数 令D(s)=0
C (s) ( s) R( s)

自动控制原理第二章梅森公式-信号流图课件

自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。

信号流图与梅森公式

信号流图与梅森公式

2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。

信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。

有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。

而且这两个回路无公共节点,是不接触回路。

图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。

2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。

控制工程基础6-第2章 (数学模型-4:信号流图及梅逊公式)

控制工程基础6-第2章 (数学模型-4:信号流图及梅逊公式)
N 1
1 R E
G1
Q
G2
O
1
C
R(s ) 1 R( s )
1
×G
G5
H
1
G6 G3 -H 1 G4 1 C (s )
G2 -H2
三个回路
梅森公式

C ( s) 1 n pk k R( s) k 1
△为特征式,其计算公式为
D= 1 - 邋 1 + L
其中:
L2 -
L3 +
n 为从输入节点到输出节点间前向通路的条数;
R(s)
E ( s) B( s)
G1 ( s )
G2 ( s )
C (s)
1 R E
N 1
G1
Q
G2
O
1
C
H (s)
H
信号流图常用的名词术语
(1)输入节点(源节点):只有输出支路而没有输入支路 的节点,称为源节点。它一般表示系统的输入变量,亦称 输入节点,如图中的节点R和N。 (2)输出节点(阱节点):只有输入支路而没有输出支 路的节点,称为阱节点。它一般表示系统的输出变量,亦 称输出节点,如图中的节点C (3)混合节点:既有输入支路又有输出支路的节点, 称为混合节点,如图中的节点E,Q,O
6
R(s) 1
G1 2
G2 3
G3 4
G4 H1 5
G5 6
C(s)
解:前向通路有3个
1 2 3 4 5 6
1 2 4 5 6来自H2P1 G1G2 G3G4 G5
2 1
1 1
P2 G1G6 G4 G5
1 2 3 6
P3 G1G2 G7

系统的信号流图与梅森公式

系统的信号流图与梅森公式

6-5 系统的信号流图与梅森公式一、信号流图的定义由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图,简称信号流图或流图。

例如,图6-29(a)所示的系统框图,可用图6-29(b)来表示,图(b)即为图(a)的信号流图。

图(b)中的小圆圈“o”代表变量,有向支路代表一个子系统及信号传输(或流动)方向,支路上标注的H(s)代表支路(子系统)的传输函数。

这样,根据图6-29(b),同样可写出系统各变量之间的关系,即图6-29二、三种运算器的信号流图表示三种运算器:加法器、数乘器、积分器的信号流图表示如表6-3中所列。

由该表中看出:在信号流图中,节点“o”除代表变量外,它还对流入节点的信号具有相加(求和)的作用,如表中第一行中的节点Y(s)即是。

三、模拟图与信号流图的相互转换规则模拟图与信号流图都可用来表示系统,它们两者之间可以相互转换,其规则是:(1) 在转换中,信号流动的方向(即支路方向)及正、负号不能改变。

(2) 模拟图(或框图)中先是“和点”后是“分点”的地方,在信号流图中应画成一个“混合”节点,如图6-30所示。

根据此两图写出的各变量之间的关系式是相同的,即。

(3) 模拟图(或框图)中先是“分点”后是“和点”的地方,在信号流图中应在“分点”与“和点”之间,增加一条传输函数为1的支路,如图6-31所示。

(4) 模拟图(或框图)中的两个“和点”之间,在信号流图中有时要增加一条传输函数为1的支路(若不增加,就会出现环路的接触,此时就必须增加),但有时则不需增加(若不增加,也不会出现环路的接触,此时即可以不增加。

见例6-17)。

(5) 在模拟图(或框图)中,若激励节点上有反馈信号与输入信号叠加时,在信号流图中,应在激励节点与此“和点”之间增加一条传输函数为1的支路(见例6-17)。

(6) 在模拟图(或框图)中,若响应节点上有反馈信号流出时,在信号流图中,可从响应节点上增加引出一条传输函数为1的支路(也可以不增加,见例6-17)。

信号流图的绘制及梅森公式

信号流图的绘制及梅森公式

第二章 数学模型
例3.试用梅逊公式确定如图所示系统的传递函数。
P2 P1 P3
解:由图可知,系统有3条前向通路,其增益分别为
P1 G1G2G3G4G5
P2 G1G6G4G5
P3 G1G2G7
例3(续)
第二章 数学模型
L1
L2
L4
L3
有4个单独的回路,各回路增益分别为
L1 G4 H1
L2 G2G7 H2
信号流图续由系统微分方程绘制信号流图任何线性数学方程都可以用信号流图表示但含有微分或积分的线性方程一般应通过拉氏变换将微分或积分变换为关于的代数方程后再画信号流图
第二章 数学模型
§2-5 信号流图与梅逊公式
方框图虽对于分析系统很有用处,但遇到结构复杂 的系统时,其简化和变换过程往往显得烦琐,还得分 清比较点和引出点,一般二者不交换。因此可采用信 号流图,简单易绘制。
(1)信号流图是表达线性方程组的一种数学图形。 当系统由微方(或差方)描述时,应先变换成 代数方程并整理成因果关系形式。
(2)节点标志系统的变量。每个节点标志的变量是 所有流向该节点的信号之代数和,而从同一节 点流向各支路的信号均用该节点的变量表示。
(3)支路相当于乘法器,信号流经支路时,被乘以 支路增益而变换为另一信号。
信号流图(续)
第二章 数学模型
(11)前向通路——若从源节点到汇节点的通路上,通 过任何节点不多过一次,则称为前向通路。
(12)前向通路传输——前向通路中各支路传输的乘积 称为前向通路传输或增益。
(13)回路传输——闭通路(回路)上各支路传输的乘积 称为回路传输或增益。
第二章 数学模型
3.性质:
直接写出从输入节点到输出节点的总传输——系统总

2.6信号流图与梅森公式

2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:

25控制系统的信号流图和梅森公式

25控制系统的信号流图和梅森公式

15
例 绘制RLC电路的信号流图,设电容初始电压为uo(0), 回路中电流的初始值为i(0)。
16.04.2019
16
1 列写网络微分方程式如下:
d it () L R it () u t- u () t + = i() o d t
C
duo (t ) =i(t ) dt
2 方程两边进行拉氏变换:
d x5 f
x1
a
x2
b x3
c
x4
e
16.04.2019
13
2 对于一个给定的系统,由于描述同一个系统的方 程可以表示为不同的形式,因此信号流图不是唯一 的。 3 混合节点可以通过增加一个增益为 1 的支路变成 为输出节点,且两节点的变量相同。
x5 1
x1
a
x2
d
b x3
c
x4
e
16.04.2019
互不接触的回路L1 L2。所以,特征式
= 1 ( L + L + L + L ) + L L 1 2 3 4 1 2
33
16.04.2019
G6 R(s) G1 G2 G3
G7 G4 G5 C(s)
a
b
c
-H1
d
-H2

前向通道有三个:
P G G G G G 1= 1 2 3 4 5
1 1
16.04.2019 27
例1 利用梅森公式,求:C(s)/R(s)。
16.04.2019
28
G6
R(s)
G7
G3
G1 a
G2 b
G4 c
-H1 -H2
G5
d

2-5_信号流图与梅森公式

2-5_信号流图与梅森公式

G (s) C ( s ) 2
H(s)
H (s)
N(s)
R(s) +
4
E(s)
_
G(s)
+
+
N(s)
R( s)
C(s)
1 E (s)
G (s)
1
1 C (s)
C ( s)
H (s)
H ( s)
+ +
R1 ( s )
G11 ( s )
C1 ( s)
R1 ( s )
G11 ( s )
C1 ( s )
2. 求 Pk , k
P1 G1G2G3G4G5G6
1 ?
23
求余子式1
H4 R(s)
-
G1
-
4
-
G2 H2
G3
2
G4 H3
G5
3
G6
C(s)
1
H1
将第一条前向通道从图上除掉后的图,再用特 征式 的求法,计算 1
24
求余式1
H4 R(s)
-
G1
-
4 G4
-
G2 H2
G3
2
G5 H3
-
G1
-
G2 H2
G3
-
G4 H3
G5
G6
C(s)
H1

前向通路数:n=1
15
P1 G1G2G3G4G5G6
求解步骤之二(例1)

确定系统中的反馈回路数
H4
-
R(s) G1
-
G2 H2
G3
-
G4 H3
G5
G6
C(s)

信号流图梅森公式市公开课一等奖省赛课获奖PPT课件

信号流图梅森公式市公开课一等奖省赛课获奖PPT课件

R1C2 )s 1
2/18/2024
16 第16页
梅逊公式||例2-14
例2-14:使用Mason公式计算下述结构图传递函数
G4
R
E
-
G1Βιβλιοθήκη G2+ -
G3
C
+
H1
H2
C(s) R(s)
解:在结构图上标出节点,如上图。然后画出信号流图,以下:
G4
R
E G1 G2 H1
G3 H2
C
H1H2
2/18/2024
u1 ( s)
u2 (s)
ua (s)
(s)
G1
G2
G3
Gu
u f (s)
Gf
图以下先列在图结所构1 表图示上G。标1 出节点G 2,如上G 3图所表GMu示c 。G m然1 后画出信号流
ug ue
u1
u2
ua
2/18/2024
G f
第9页
9
例2: 已知结构图以下,可在结构图上标出节点,如上图所表示。 然后画出信号流图以下列图所表示。
G3
1
H2
G8
H1
G7
G3
+
++
+
G4
C
G8
为节点
注意:①信号流
G4
1
图与结构图对应
C 关系;②仔细确
定前向通道和回
路个数。
2/18/2024
20 第20页
小结
小结
信号流图组成;术语; 信号流图绘制和等效变换; 梅逊公式极其应用; 信号流图和结构图之间关系。
2/18/2024
21 第21页

第七节 信号流图与梅森公式

第七节 信号流图与梅森公式

23

例2:用梅森公式求如图所示系统的传递函数。
24

例3:用梅森公式求如图所示系统的传递函数。
25

例3:用梅森公式求如图所示系统的传递函数。
26

例3:用梅森公式求如图所示系统的传递函数。
27

例3:用梅森公式求如图所示系统的传递函数。
28

例3:用梅森公式求如图所示系统的传递函数。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
29

例4:用梅森公式求如下2图所示系统的传递函数。
30
所 有 单 个 回 路 增 益 之 和
触取所 回其有 路中单 增不个 益同回 乘的路 积两中 之个, 和不每 。接次
20
2、有关定义
(1)前 向 通 路——信号从输入节点到输出节点传递时, 每个流经节点只通过一次的通路。 (2)回 路——起点与终点为同一节点,而中间混合 节点最多通过一次的闭合通路。

第2章 第4讲 信号流图及其梅逊公式

第2章 第4讲 信号流图及其梅逊公式
X
4
输入节点 输出节点 混合节点
混 合 节 点
X a X
输入节点 d 源点) (源点)
X
5
1
2
b
X
3
输入节点 源点) (源点)
c
输出节点 汇点) (汇点)
4
支路
连接两个节点的定向线段,用支路增益(传递函数)表示方 连接两个节点的定向线段,用支路增益(传递函数) 程式中两个变量的因果关系。支路相当于乘法器。信号在支 程式中两个变量的因果关系。支路相当于乘法器。 路上沿箭头单向传递。 路上沿箭头单向传递。
-1 Ui 1
1/R1
I1
1/sC1
UA
1
1/R2
I2 1/sC 2
1 Uo
-1
-1
23
(Mason)公式 6 梅逊 (Mason)公式
G —系统总传递函数或增益
1 n G ( s) = ∑ Pk k k =1
条前向通路的传递函数(通路增益) Pk—第k条前向通路的传递函数(通路增益) —特征式
自动控制原理
第4讲 信号流图及梅 逊公式
杨金显
yangjinxian@
河南理工大学电气工程与自动化学院
1
本节内容
信号流图及其术语 信号代数运算法则 根据微分方程绘制信号流图 根据结构图绘制信号流图 梅逊公式 根据梅逊闭环传递函数
2
1 信号流图概念 信号流图起源于梅逊( MASON) 信号流图起源于梅逊(S.J. MASON)利用图示法来 描述一个和一组线性代数方程, 描述一个和一组线性代数方程,是由节点和支路组成 的一种信号传递网络。 的一种信号传递网络。
步骤: 、画出前向通路(可能有多个 可能有多个); 步骤:1、画出前向通路 可能有多个 ; 2、确定节点(多画一个没有关系 ; 、确定节点 多画一个没有关系 多画一个没有关系); 3、连接各支路、回路 、连接各支路、

控制系统的信号流图和梅森公式.

控制系统的信号流图和梅森公式.
闭环系统有关传函的一些基本概念
11:29
电子信息工程学院
一 信号流图的组成和绘制
对于复杂的控制系统,结构图的简化过程 仍较复杂,且易出错。
信号流图:对系统的结构和信号(变量)传
递过程的数学关系的图解描述。
优点:用梅森公式可以直接写出系统的传递函 数,无需对信号流图进行化简和变换。
11:29 电子信息工程学院
G1 R G2 C
11:29
电子信息工程学院
解:由结构图绘制出信号流图。
x2 R(s) 1 x1 1 1 1 x6
基本组成: 由节点、支路组成
x
G
y
x
G
y
节点:节点表示信号。输入节点表示输入信号,输出 节点表示输出信号。
支路:连接节点之间的线段为支路。支路上箭头方向 表示信号传送方向。传递函数标在支路上箭头的旁边, 称支路增益。
11:29
电子信息工程学院
x5
f
x1
a
x2
b x3
c
x4
d
有关术语
e
输入节点:源节点。只有输出支路。 输出节点:阱节点。只有输入支路。 混合节点:既有输入支路又有输出支路的节点。相 当于结构图中的信号比较点和引出点。它上面的信 号是所有输入支路引进信号的叠加。
电子信息工程学院
P 3 = G1G2G7
11:29
Δ=1-(L1+L2+L3+L4)+L1L2

G1= G1G2G3G4G5 G2= G1G6G4G5 G3= G1G2G7
Δ1=1 Δ2=1 Δ3=1-L1
1 N Gk Δ k 代入 G kΣ Δ 1
得系统的传递函数C(s)/R(s)为

梅森定律-信号流图

梅森定律-信号流图
信号流图的绘制
由系统结构图绘制信号流图
1) 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。 ➢ 注意信号流图的节点只表示变量的相加。
R(s)
C(s)
G(s)
D(s)
R(s) E(s) (-) G1(s)
V(s)G2(s) C(s)
H(s)
(a) 结构图
a45 x5
X 5 (s) X1(s)
(b)
x1
a52
x2
x3
x4
P1 a12a23a34a45 x5
1 1
(c)
x1
x2
x3
x5 P1 a12a23a35
2 1 a44
(a) x1
a12 x2
a42
a44
a23 a32 x3
a34 x4
a35
a45 x5
a52 (d) x2
(e) x2 (f) x2 (g) x2
x3
互不接触
L1 a23a32
L12 a23a32a44
x4 x3
x4 x5
L2 a23a34a42
L3 a44 互不接触 L22 a23a35a52a44
L4 a23a34a45a52
x5 L5 a23a35a52
P
a12 a23a34 a45 (1 a44 )a12 a23a35
G3(s)
梅逊公式求E(s)
R(s)
E(SG)GG3(33s(()ss))
RRR(s(()ss)) EEE(S((S)S))
P2= - G3G2H3
GGG1(11s(()ss))
△2= 1 P2△2=?
HHH1(11s(()ss))

自动控制原理03信号流图,梅逊公式

自动控制原理03信号流图,梅逊公式
1 1
2 1 P2 2

abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)

解:首先进行分析
G1
X2
X3
G2 H1
G3
X4
G4
C(s)
R
1
X1
G1
X2
G2 X3 -1 -H1
G3
X4
G4
C
2.4 信号流图与梅森公式
2.4.2 梅逊增益公式
P G (s) 1
n

k 1
Pk
--特征式
k
1

La

Lb Lc

Ld Le L f
{
例题1:已知系统的信号流图,求系统的传递函数
C (s) R (s)

h a b -1 c d -1 e f -1
g
R(s)
C(s)
解:首先对信号流图进行分析,找到梅逊公式中的相关信息 系统有:2条前向通道,3个闭合回路,3组两两互不接触回 路, 1组三三互不接触回路 然后写出各项的取值:
2.4.2 梅逊增益公式 例题1:P1
3 1
,找到梅逊公式中 的相关信息
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H

第二章part-II典型环节结构图梅森公式wmx

第二章part-II典型环节结构图梅森公式wmx

因为v2 v1 0, 所以K 趋向于无穷大。
输出 反相输入 同相输入
补充例4 倒相放大器
解:∵在理想情况下,
i1 0
v2 v1
∴关于节点 v1 的节点方程为:
v1 vin v1 v0 0 R1 R2
输入电流=输出电流
v2 0
v1 v2 0
vin v0 0 R1 R2 即 v0 R 2 vin R1
G(S ) G1 (S ) G2 (S ) .... Gn (S )
(3)反馈回路传递函数的求取 前向通道:由偏差信号至输出信号的通道; 反馈通道:由输出信号至反馈信号的通道。
Y (S ) G(S ) E (S ) E (S) X(S) - F(S) F(S) H(S)Y(S)
从节点方程中可以得到:
在特殊的情况下, 如果:R2 R1 , 则:v0 vin 这时,图中的倒相放大器只起到反相的作用。
解: 输入电压与输出电压间的关系为:
按传递函数的定义,可以得到
从图2.11中可以看出,比例环节的特点是:输出信号y(t)和输入信号
x(t)的形状相同。只是比例环节将原信号放大了K倍。
U y ( s)
惯性环节的阶跃响应曲线是 一条指数函数的上升曲线。 从图中可以看出在初始时, 速度的变化最大
惯性环节的阶跃响应曲线
惯性环节的动态方程为一阶微分方程: 将阶跃函数输入 代入方程,求解得到:
y(t ) Kx0 (1 et / T )
在t=0时刻,初始上升速度为:
Kx0 t / T dy y (0) e dx t 0 T
几个基本概念及术语
R(s)
N(s)
+ -

自动控制原理 ch 2-5_2 信号流图、梅森公式

自动控制原理 ch 2-5_2 信号流图、梅森公式
1
① 用小圆圈表示各 变量对应的节点;
G2
1
1 ② 根据方程连接各节点。
e
G1
1
e1
H
e2
G3
1
e4
1
C s
R s
1
e
G1
1
e1
e2
G3 G4
C s
e6 H
G4 G4
② 根据方程连接各节点。
返回
e5
H
前页
四、梅森增益公式
P
1 n pk k k 1
前页
例:求信号流图的传递函数 X 5 s X 1 s
前向通路:开始于输入节点,沿支路箭头方向,每个 节点只经过一次,最终到达输出节点的通路。 前向通路总增益:前向通路上各支路增益之乘积。 p k
x2 , x3 , x4 , x5
1
9/10/2013
i
i
c a
x1
x2
f
b
g
h
x5
c
1
a
x6 x1
x2
f
b
g
h
x5
1
x3 d x4 e j
x3 d x4 e j
c
1
a
x6 x1
x2
f
b
g
h
x5
1
x3 d x4 e j
x3 d x4 e j
x6
不接触回路:没有公共节点的回路。 可以有两个以上不接触回路。
c
去掉一条,另 一条仍完整!
f
不接触回路:没有公共节点的回路。 可以有两个以上不接触回路。
去掉一条,另 一条仍完整!
x 2 x3 x 2 和 x3 x4 x3

信号流图及梅逊公式

信号流图及梅逊公式

R(s) 1 + G1 (s)G2 (s) H (s)
(2)扰动信号下的闭环 传函:R(s)=0
N(s)
1
R(s) 1
G1(s) G2(s) -H(s)
E(s)
N (s) = C (s) =
G2 (s)
N (s) 1 + G1 (s)G2 (s) H (s)
1
C(s)
所以当输入信号和扰动信号同时作用时, 系统输出为:
C (s) =(s) R(s) + N (s) N (s) = G1 (s)G2 (s) R(s) + G2 (s) N (s) 1 + G1 (s)G2 (s) H (s)
(3)闭环系统的误差传递函数(以E(s)为输
出的传递函数):
N(s)
1
R(s) 1
G1(s) G2(s) -H(s)
1
C(s)
+ [G1G2 + G1G3 + G2G3 + G1G2G3 ] [ G1G2G3 ]
例4:利用梅森公式求如图所示系统闭环传递函数
P = C (s)= p1 1 + p2 2 + p3 3 + p4 4 R(s)
=
G1G3 K (1 + G1 ) + G2G3 K (1 + G2 )
1 + G1 + G2 + G3 + 2G1G2 + G1G3 + G2G3 + 2G1G2G3
L(1) —— 所有单独回路增益之和; L(2) —— 两个互不接触回路增益乘积之和; L( m ) —— m个不接触回路增益乘积之和。
例3:利用梅森公式求如图所示系统闭环传递函数

自动控制原理 第二章 梅森公式信号流图

自动控制原理 第二章 梅森公式信号流图

Uo(s)
-1
Ui ( s )
1/R1
IC(s)
1/C1s
1/R2
1/C2s
I2(s)
Uo ( s ) Uo ( s )
U(s)
-1
-1
例3 已知系统信号流图,求传递函数。
L1 G 2 H 2 解:三个回路:
-H1 R G1 G2 G3 C -H2 G4
L 2 G 1G 2 H 2
L 3 G 2G 3 H1
信号流图的绘制
由系统结构图绘制信号流图 1) 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。
注意信号流图的节点只表示变量的相加。
R(s) C(s) R(s) G(s) C(s)
(节点)
G ( s)
(节点) (支路)
D ( s) R(s) E(s) G ( s) (- ) 1 V(s)G (s) 2 H ( s)
ab c d + e d (1 – b g) C(s) = R(s) 1 – a f – b g – ch– e h g f + af c h
信号流图
• 信号流图是由节点和支路组成的一种信号传递网络。 信号流图的基本性质: 1) 节点标志系统的变量,节点标志的变量是所有流向该节点信 号的代数和,用“O”表示; 2) 信号在支路上沿箭头单向传递; 3) 支路相当于乘法器,信号流经支路时,被乘以支路增益而变 成另一信号; 4) 对一个给定系统,信号流图不是唯一的。 x6 信号流图中常用的名词术语: x5 x1 • 源节点(输入节点): x3 x7 I(s) x4 x2 o在源节点上,只有信号输出 1/R1 1+R1C1s R2 支路而没有信号输入的支路, 它一般代表系统的输入变量。 -1 •阱节点(输出节点): 在阱节点上,只有信号输入的支路而没有信号输出的支路,它 一般代表系统的输出变量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知系统信号流图, 例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。 。
∑L

a
= − d − eg − bcg
有两个互不接触回路 ∑ Lb Lc = deg
∆ = 1 + d + eg + bcg + deg
f
1. X 1 → X 4 , p1 = aef , p2 = abcf ∆1 = 1 + d , ∆ 2 = 1
G4 G1 H1 G4 G1 H1 H1 G2 G2
作用分解
G3 H3
G3 H3 H3
梅逊公式介绍 R-C :
C(s) = R(s)
∑Pk△k △
其中: 其中
△称为系统特征式 △= 1 - ∑La + ∑LbLc -∑LdLeLf+…
所有单独回路增益之和 所有单独回路增益之和 回路增益 ∑LbLc—所有两两互不接触回路增益乘积之和 —所有两两互不接触回路增益乘积之和 ∑LdLeLf—所有三个互不接触回路增益乘积之和 所有三个互不接触回路增益乘积之和
R(s) 1
e
g
a f
b
c
h
d
C(s)
前向通路两条
四个单独回路, 四个单独回路,两个回路互不接触 ab c d + e d (1 – b g) C(s) = – a – bg – c – R(s) 1 f h e h g f + af c h
信号流图
• 信号流图是由节点和支路组成的一种信号传递网络。 信号流图是由节点和支路组成的一种信号传递网络 是由节点和支路组成的一种信号传递网络。 信号流图的基本性质 基本性质: 信号流图的基本性质: 1) 节点标志系统的变量,节点标志的变量是所有流向该节点信 节点标志系统的变量 标志系统的变量, 号的代数和, 表示; 号的代数和,用“O”表示; 表示 2) 信号在支路上沿箭头单向传递; 信号在支路上沿箭头单向传递 在支路上沿箭头单向传递; 3) 支路相当于乘法器,信号流经支路时,被乘以支路增益而变 支路相当于乘法器 信号流经支路时, 相当于乘法器, 成另一信号; 成另一信号; 4) 对一个给定系统,信号流图不是唯一的。 对一个给定系统,信号流图不是唯一的。 x6 信号流图中常用的名词术语: 信号流图中常用的名词术语: x5 x1 • 源节点(输入节点): 源节点(输入节点): x2 x3 x7 I(s) x4 o在源节点上,只有信号输出 在源节点上, 在源节点上 1/R1 1+R1C1s R2 支路而没有信号输入的支路, 支路而没有信号输入的支路, 它一般代表系统的输入变量。 它一般代表系统的输入变量。 -1 •阱节点(输出节点): 阱节点( 阱节点 输出节点): 在阱节点上,只有信号输入的支路而没有信号输出的支路, 在阱节点上,只有信号输入的支路而没有信号输出的支路,它 一般代表系统的输出变量。 一般代表系统的输出变量。
• 混合节点 : 在混合节点上 , 既有信号输出的支路而又有信号输 混合节点:在混合节点上, 入的支路。 入的支路。 • 前向通路:信号从输入节点到输出节点传递时,每个节点只通 前向通路:信号从输入节点到输出节点传递时, 过一次的通路,叫前向通路。前向通路上各支路增益之乘积称前 过一次的通路,叫前向通路。前向通路上各支路增益之乘积称前 向通路总增益,一般用Pk表示 表示。 向通路总增益,一般用 表示。 • 回路:起点和终点在同一节点,而且信号通过每一节点不多于 回路:起点和终点在同一节点, 一次的闭合通路称回路。回路上各支路增益之乘积称回路增益 回路增益, 一次的闭合通路称回路。回路上各支路增益之乘积称回路增益, 一般用La表示 表示。 一般用 表示。 • 不接触回路:回路之间没有公共节点时,称它们为不接触回路。 不接触回路:回路之间没有公共节点时,称它们为不接触回路。
例5
G2 A2 R A1 G1 B G4 H G3 C
解:①用小圆圈表示各变 ① A 量对应的节点 1 , A2 ②在比较点之后的引出点
系统方块图
G2 R 1 G1 1 e1 e2 G4 G3
e
只需在比较点后设置一个节 点便可。 点便可。也即可以与它前面 的比较点共用一个节点。 的比较点共用一个节点。 ③在比较点之前的引出点 ,需设 在比较点之前的引出点B, 在比较点之前的引出点 置两个节点, 置两个节点,分别表示引出点和 比较点, 比较点,注意图中的 e1 e2
1 1
梅逊公式求E(s) 梅逊公式求
N(s) N(s) N(s)
G2(s) G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2 C(s) C(s) C(s) C(s)
P2= - G3G2H3 △ 2= 1 P2△2=?
HH (s) 1 (s) H(s) 1 1
H3(s) H3(s) H33(s) H (s)
∆2 = 1− a44
x3
a42 a12
a44 a34 a45 x4 a35 a52 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 = a23a32
L12 = a23a32a44 L2 = a23a34a42
(e) (f)
x2
x4 x4 x5 L3 = a44 互不接触 L22 = a23a35a52a44 L4 = a23a34a45a52
G1(s) R(s) E(S) P1= –G2H3 P1=1 H1(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
U(s)
-1
பைடு நூலகம்-1
已知系统信号流图,求传递函数。 例3 已知系统信号流图,求传递函数。
L 解:三个回路: 1 = − G 2 H 2 三个回路:
-H1 R G1 H2 G2 -H2 G4 G3 C
L 2 = G 1G 2 H 2
L 3 = −G 2 G 3 H 1
• 回路相互均接触,则: 回路相互均接触, • 前向通路有两条: 前向通路有两条:
∆ = 1 − ∑ L a = 1 + G 2 H 2 + G 2 G 3 H 1 − G 1G 2 H 2
没有与之不接触的回路: P1 = G 1G 2 G 3 ,没有与之不接触的回路: 1 ∆
=1
P2 = G 4 ,与所有回路不接触: 2 = ∆ ∆ 与所有回路不接触:
G 1G 2 G 3 1 n G(s ) = ∑ Pk ∆ k = + G4 1 + G 2 H 2 + G 2 G 3 H 1 − G 1G 2 H 2 ∆ k =1
X4 1 aef (1 + d ) + abcf = ( p1 ∆ 1 + p 2 ∆ 2 ) = X1 ∆ 1 + d + eg + bcg + deg
2. X 1 → X 2 , p1 = a , ∆ 1 = 1 + d
X2 1 a (1 + d ) = p1 ∆ 1 = X1 ∆ 1 + d + eg + bcg + deg
信号流图的绘制
由系统结构图绘制信号流图 1) 用小圆圈标出传递的信号,得到节点。 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。 用线段表示结构图中的方框,用传递函数代表支路增益。 注意信号流图的节点只表示变量的相加。 注意信号流图的节点只表示变量的相加。
互不接触 L1与L2
L12 = G4 G2 G7 H 1 H 2
∆ = 1 + G1 H 1 + G2 G7 H 2 + G6 G4 G5 H 2 + G2 G3 G4 G5 H 2 + G4 G5 G7 H 1 H 2
P2= G4G3
L4= – G4G3
P1=G1G2G3
L1= –G1 H1 L2= – G3 H3 L5 = – G1G2G3
L3= – G1G2G3H3H1
L1L2= (–G1H1) (–G3H3) = G1G3H1H3
L1L4=(–G1H1)(–G4G3)=G1G3G4H1
G3(s) R(s) R(s) R(s) R(s) G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
G4(s)
R(s)
梅逊公式例R-C 梅逊公式例
G22(s) G (s) G33(s) G (s)
H3(s)
C(s)
G11(s) G (s) H1(s)
△1=1
R(s)
C(s) G1(s) =?
G4(s)
△2=1+G1H1
G2(s) G3(s) (s) 请你写出答案,行吗? 请你写出答案,行吗? G3
— ∑L
a
Pk—从R(s)到C(s)的第 条前向通路传递函数 的第k条前向通路传递函数 从 到 的第
称为第k条前向通路的余子式 △k称为第 条前向通路的余子式
求法: 去掉第k条前向通路后所求的 △k求法 去掉第 条前向通路后所求的△ 条前向通路后所求的△
△k=1-∑LA+ ∑LBLC- ∑LDLELF+…
∆2 = 1
P2 = G1G6 G 4 G5
1→ 2 → 3→ 6
P3 = G1G 2 G7
∆ 3 = 1 + G4 H 1
4个单独回路
相关文档
最新文档