高二数学上学期第二次(10月)月考试题 理

合集下载

2024-2025学年重庆市高二上学期10月月考数学质量检测试题(含解析)

2024-2025学年重庆市高二上学期10月月考数学质量检测试题(含解析)

2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C. D. 290x y ++=290x y +-=2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)133. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于()1,,AB a AD b AA c ===BM A. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 4. 已知空间三点O (0,0,0),A (12),B -1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P率k 的取值范围是( )A. 或B. 4k ≤-34k ≥1354k -≤≤C .或 D.或34k ≤-4k ≥15k ≤-34k ≥6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CN ND=MN =A .D. 27. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N分别为直线BC ,AD 上两个动点,则最小值为()MN二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 13.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO14.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===AC M l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u r u u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O P D O Q =l 理由.2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C .D. 290x y ++=290x y +-=【正确答案】B【分析】根据题意,得到,结合直线的点斜式方程,即可求解.12l k =-【详解】直线的斜截式方程为,则其斜率为,2l24y x =-+2-因为直线过点,且与直线平行,所以,1l()2,5A 2l12l k =-则直线的点斜式方程为,即为.1l()522y x -=--290x y +-=故选:B.2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)13【正确答案】C【分析】根据向量在向量上的投影向量的概念求解即可.【详解】向量在向量上的投影向量为,b a 22224035(2,2,1)22(1)9||||b aaa a a →→→→→→⋅⨯+-⋅=⋅=-++-故选:C3. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于( )1,,AB a AD b AA c ===BMA. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 【正确答案】D【分析】根据空间向量的线性运算即可得到答案.【详解】因为为与的交点,M 11A C 11B D 所以111111()22BM BB B M AA BD AA AD AB =+=+=+-.111112222AB AD A ca b A =-++=-++故选:D.4. 已知空间三点O (0,0,0),A (12),B-1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 【正确答案】D【分析】先求出OA ,OB 的长度和夹角,再用面积公式求出的面积进而求得四边形OAB △的面积.【详解】因为O (0,0,0),A (12),B-1,2),所以,OA ==OB ==2),1,2),OA OB ==-,1cos ,2OA OB ==所以sin ,OA OB =以OA ,OB 为邻边的平行四边形的面积为1222ABC S =⨯⨯= 故选:D.5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P 率k 的取值范围是()A. 或B. 4k ≤-34k ≥1354k -≤≤C.或 D.或34k ≤-4k ≥15k ≤-34k ≥【正确答案】B【分析】画出图形,数形结合得到,求出,得到答案.BP BA k k k ≥≥,BP BA k k 【详解】如图所示:由题意得,所求直线l 的斜率k 满足,BP BA k k k ≥≥即且,所以.231325k -+≥=---123134k +≤=+1354k -≤≤故选:B .6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CNND =MN =A. D. 2【正确答案】B【分析】将用、、表示,利用空间向量数量积的运算性质可求得.MN AB AC AD MN【详解】因为,所以,,2AM MB = 23AM AB=又因为,则,所以,,2CN ND = ()2AN AC AD AN -=- 1233AN AC AD =+ 所以,,122333MN AN AM AC AD AB=-=+-由空间向量的数量积可得,293cos 602AB AC AB AD AC AD ⋅=⋅=⋅==因此,1223MN AC AD AB =+-=.==故选:B.7. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关【正确答案】B【分析】建立坐标系,利用向量的乘积计算出,即可求解''0D E B F ⋅=【详解】建立如图所示空间直角坐标系.则,,,,'(0,0,1)D (1,1,0)E a -'(1,1,1)B (0,1,0)F a -,'(1,1,1)D E a ∴=-- '(1,,1)B F a =---,''(1)(1)1()(1)(1)110D E B F a a a a ∴⋅=-⨯-+⨯-+-⨯-=--+=''D E B F∴⊥ 故选:B本题考查空间向量的垂直的定义,属于基础题8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N 分别为直线BC ,AD 上两个动点,则最小值为( )MN【正确答案】D【分析】将二面角放到长方体中,根据二面角的定义得到,根据C AB D --120CAF ∠=︒几何知识得到最小值为异面直线,的距离,然后将异面直线,的距离MNBC AD BC AD 转化为直线到平面的距离,即点到平面的距离,最后利用等体积求点BC ADE C ADE 到平面的距离即可.C ADE 【详解】如图,将二面角放到长方体中,取,过点作面交C AB D --4CE BD ==E ⊥EF ABD 面于点,ABD F 由题意可知,,所以为二面角的平面角,即AB AF ⊥CA AB ⊥CAF ∠C AB D --,120CAF ∠=︒因为,分别为直线,上的两个动点,所以最小值为异面直线,M N BC AD MNBC 的距离,AD 由题意知,,所以四边形为平行四边形,,CE BD ∥CE BD =CBDE CB DE ∥因为平面,平面,所以∥平面,则异面直线,的DE ⊂ADE CB ⊄ADE CB ADE BC AD 距离可转化为直线到平面的距离,即点到平面的距离,BC ADE C ADE 设点到平面的距离为,则,,C ADE d C ADED CAE V V --=1133ADE CAE S d S AB⋅⋅=⋅⋅ 在直角三角形中,,,所以,CAH 18012060CAH ∠=︒-︒=︒2CA =1HA=,CH EF ==3AF =AE ==直角梯形中,,ABDF FD ==AD ==,DE ==因为,,所以,,222AC AECE +=222AE DE AD +=CA AE ⊥AE DE ⊥,,122CAE S =⨯⨯=12ADE S =⨯= CAE ADE S AB d S ⋅===故选:D.方法点睛:求异面直线距离的方法:(1)找出异面直线的公垂线,然后求距离;(2)转化为过直线甲且与直线乙平行的平面与直线乙的距离.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )【正确答案】BC【分析】利用点与直线的位置关系可判断A选项;求出直线的斜率,可得出直线的倾斜l l 角,可判断B 选项;作出直线的图象可判断C 选项;求出直线的方向向量,可判断D 选l l 项.【详解】对于A 选项,,所以,点不在上,A 错;2210-++≠ (-l 对于B 选项,直线的斜率为,故的倾斜角为,B 对;lk =l 5π6对于C 选项,直线交轴于点,交轴于点,如下图所示:l x ()1,0-y 0,⎛ ⎝由图可知,直线不过第一象限,C 对;l对于D 选项,直线的一个方向向量为,而向量与这里不共线,Dl )1-)1-(错.故选:BC.10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c【正确答案】ACD【分析】根据平面向量的法向量垂直判断A ,根据直线与平面的关系判断B ,根据空间中共面基本定理判断C ,由空间向量基本定理判断D.【详解】因为,所以,故A 正确;()()2,2,13,4,26820u v ⋅=-⋅-=-+-=αβ⊥因为直线的方向向量,平面的法向量,l ()0,3,0a =α()1,0,2u =不能确定直线是否在平面内,故B 不正确;因为,()0,4,82(2,1,4)(4,2,0)2AP AB AC→→=--=---=-所以,,共面,即点在平面内,故C 正确;AP AB ACP ABC 若是空间的一组基底,,,a b b c c a +++则对空间任意一个向量,存在唯一的实数组,d →(,,)x y z 使得,()()()d x a b y b c z c a =+++++于是,()()()d x z a x y b y z c =+++++ 所以也是空间一组基底,故D 正确.,,a b c故选:ACD.11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --【正确答案】ACD【分析】以A 为坐标原点建立空间直角坐标系,向量法证明线线垂直判断A 选项;向量法求异面直线所成的角判断选项B ;由,求体积最大值判断C 选项;向量法求Q AMN N AMQV V --=二面角余弦值的变化情况判断选项D.【详解】平面,四边形是正方形,SA ⊥ABCD ABCD 以A 为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,,,AB AD AS,,x y z由,22SA AB DE ===;()()()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,2,1,0,0,2,1,0,1,2,1,0A B C D E S N M ∴对于A ,假设存在点,使得,()(),2,002Q m m ≤≤NQ SB ⊥则,又,()1,2,1NQ m =--()2,0,2SB =-,解得:,()2120NQ SB m ∴⋅=-+=0m =即点与重合时,,A 选项正确;Q D NQ SB ⊥对于B ,假设存在点,使得异面直线与所成的角为,()(),2,002Q m m ≤≤NQ SA 60o,()()1,2,1,0,0,2NQ m SA =--=-,方程无解;1cos ,2NQ SA NQ SA NQ SA ⋅∴===⋅ 不存在点,使得异面直线与所成的角为,B 选项错误;∴Q NQ SA 60o对于C ,连接;,,AQ AMAN 设,()02DQ m m =≤≤,22AMQ ABCD ABM QCM ADQ mS S S S S =---=-当,即点与点重合时,取得最大值2;∴0m =Q D AMQ S △又点到平面的距离,N AMQ 112d SA ==,C 选项正确;()()maxmax 122133Q AMN N AMQ V V --∴==⨯⨯=对于D ,由上分析知:,()()1,2,1,1,1,1NQ m NM =--=-若是面的法向量,则,(),,m x y z =NMQ ()1200m NQ m x y z m NM x y z ⎧⋅=-+-=⎪⎨⋅=+-=⎪⎩ 令,则,1x =()1,2,3m m m =-- 而面的法向量,AMQ ()0,0,1n =所以,令,cos ,m nm n m n ⋅==[]31,3t m =-∈则,而,cos ,m n ==11,13t ⎡⎤∈⎢⎥⎣⎦由从到的过程,由小变大,则由大变小,即由小变大,Q D C m t 1t 所以先变大,后变小,由图知:二面角恒为锐角,cos ,m n故二面角先变小后变大,D 选项正确.故选:ACD.三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 【正确答案】π6【分析】根据已知两点的坐标求得直线的斜率,即可求得答案.AB 【详解】由于,)(),AB故直线的斜率为,AB k ==因为直线的倾斜角范围为,[0,π)故直线的倾斜角是,AB π6故π613.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO【正确答案】3【分析】说明两两垂直,从而建立空间直角坐标系,求得相关点坐标,根据空,,OO OC OP '间距离的向量求法,即可求得答案.【详解】取的中点为,连接,因为为的中点,所以AB O ',,PO OO AE ',PC PD O =CD ,PO CD ⊥又平面平面,平面平面,平面,PCD ⊥ABCD PCD ABCD CD =PO ⊂PCD 所以平面,平面,所以,⊥PO ABCD OO '⊂ABCD PO OO '⊥又底面是矩形,点是的中点,的中点为,所以,ABCD O CD AB O 'OO CD '⊥以点为原点,所在直线分别为轴建立空间直角坐标系如图所示,O ,,OO OC OP ',,x y z由,得,,,6PC PD PC PD CD ⊥==132PO CD ==所以,()()()3,3,0,3,3,0,0,0,3A B P -点为线段上靠近的三等分点,则,E PB B 22(3,3,3)33PE PB ==- 则,所以,,()2,2,1E ()1,5,1AE =-()3,3,0AO =-则,,||AE ==AO AE AO⋅== 因此点到直线的距离,E AO 3d =故314.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===ACM l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN【分析】首先求出中边,角的正弦与余弦值,以底面点为空间原点建系(如ABC V AB B B 图1),设点,由,得,求出坐标,由(),,A x y z '(),0,0H x (,0,)A x z ',,A C M 得出满足的关系式,从而可得的范围也即的范围,翻折过程MC AM A M '==,x z z A H '中可得,设,,由向量的数量积为0从而得出关于MN AA '⊥1,,02N a a ⎛⎫⎪⎝⎭[)0,4a ∈x 的表达式,求得的范围,再由线面角的正弦值得出结论.a x 【详解】中,根据余弦定理,π,4C ABC =△,得AB ==sin sin ACABB C =,由知,则,sin B =AC AB <B C <cos B =如图1,以底面点为空间原点建系,根据底面几何关系,得点,设点B ()()4,2,0,6,0,0A C ,点的投影在轴上,即,由(),,A x y z 'A '(),0,0H x x ()(),0,,5,1,0A x z M ',根据两点间距离公式,MC AM A M '==.=22(5)1x z -+= 图1 图2如图2,在翻折过程中,作于点,则,AMN A MN '△≌△AE MN ⊥E A E MN '⊥并且平面,,,AE A E E AE A E ='⊂' A AE '所以平面平面,MN ⊥,A AE AA ''⊂A AE '所以,即,其中.MN AA '⊥0MN AA '⋅=()4,2,AA x z '=--又动点在线段上,设,所以,且.N AB 1,,02N a a ⎛⎫ ⎪⎝⎭15,1,02MN a a ⎛⎫=-- ⎪⎝⎭ [)0,4a ∈由,得,0MN AA '⋅= ()()132245210,52,255x a a x a ⎛⎫⎛⎤----==+∈ ⎪ ⎥-⎝⎭⎝⎦又因为,对应的的取值为,即,22(5)1x z -+=z 40,5⎛⎤ ⎥⎝⎦40,5A H ⎛⎤'∈ ⎥⎝⎦由已知斜线与平面所成角是,1A MBCMN A MH '∠所以.sin A H A MH A M ⎛∠=∈ ⎝'''故斜线与平面1A MBCMN 四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 【正确答案】(1); 380x y +-=(2)或y x =40x y +-=【分析】(1)由垂直斜率关系求得直线的斜率,再由点斜式写出方程;l (2)分别讨论截距为0、不为0,其中不为0时可设为,代入点P ,即可求得0x y m ++=参数m【小问1详解】直线的斜率为,则直线的斜率为,则直线的方程为360x y -+=3l 13-l ,即;()1223y x -=--380x y +-=【小问2详解】当截距为0时,直线的方程为;l y x =当截距不为0时,直线设为,代入解得,故直线的方程为l 0x y m ++=(2,2)P 4m =-l .40x y +-=综上,直线的方程为或l y x =40x y +-=16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +【正确答案】(1);1-(2)且不同时成立.13m n +<10m n =-⎧⎨=⎩【分析】(1)由向量的坐标表示确定、,再由三点共线,存在使,AB CBR λ∈AB CB λ= 进而求出m 、n ,即可得结果.(2)由向量夹角的坐标表示求,再根据钝角可得cos ,AB BC <>,讨论的情况,即可求范围.2(3)2(1)180m n -+--<,AB BC π<>=m n +【小问1详解】由题设,,又,,三点共线,(3,2,6)AB m =-- (2,1,3)CB n =--A B C 所以存在使,即,可得,R λ∈AB CB λ=322(1)63m n λλλ-=⎧⎪=-⎨⎪-=-⎩210m n λ=⎧⎪=-⎨⎪=⎩所以.1m n +=-【小问2详解】由,(2,1,3)BC n =--由(1)知:当时,有;,AB BC π<>=1m n +=-而,的夹角是钝cos ,||||AB BC AB BC AB BC ⋅<>==AB BC角,所以,可得;2(3)2(1)182()260m n m n -+--=+-<m n +13<综上,且不同时成立.13m n +<10m n =-⎧⎨=⎩17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u ru u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===【正确答案】(1)见解析 (2【分析】(1)设为的中点,连接,,利用中位线的性质证明四边形是平F PA BF EF EFBC 行四边形,则可得平面.//CE ABP (2)点为坐标原点建立合适的空间直角坐标系,求出平面的法向量,A BCE (0,1,2)n =利用点到平面的距离公式即可.【小问1详解】设为的中点,连接,,F PA BF EF是的中点,,E PD 1//,2EF AD EF AD ∴=,且,2,//AD BC AD BC =∴ 12BC AD=,//,EF BC EF BC ∴=四边形是平行四边形,,∴EFBC //CE BF ∴又平面平面,BF ⊂ ,ABP CE ⊂/ABP 平面.//CE ∴ABP 【小问2详解】由于侧棱平面,面,AP ⊥ABCD ,AB AD ⊂ABCD ,,则以点为坐标原点,以,,所在的直线,AP AB AP AD ∴⊥⊥AB AD ⊥ A AD AB AP 为轴,轴,轴建立如图空间直角坐标系,x y z,,2AD = 112BC AD ∴==,,,,(0,0,2)P ∴(0,2,0)B (1,2,0)C (1,0,1)E ,,,(1,0,0)BC ∴= (0,2,1)CE =- (0,2,2)PB =-设平面的法向量,BCE (,,)n x y z =则有,即,00n BC n CE ⎧⋅=⎪⎨⋅=⎪⎩ 020x y z =⎧⎨-+=⎩令,则,1y =(0,1,2)n =点到平面的距离.∴PBCE ||||||||||||PB n PB n d PB n PB n ⋅⋅=⋅===⋅18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ【正确答案】(1)证明见解析(2(3)存在,14λ=【分析】(1)由中位线和垂直关系得到,,从而得到线面垂直;PA AD ⊥PA AB ⊥(2)建立空间直角坐标系,求出平面的法向量,求出线面角的正弦值;(3)求出两平面的法向量,根据二面角的正弦值列出方程,求出,得到答案.14λ=【小问1详解】因为,分别为,的中点,所以.A D MB MC AD BC ∥因为,所以,所以.BM BC ⊥BM AD ⊥PA AD ⊥又,,平面,PA AB ⊥AB AD A ⋂=,AB AD ⊂ABCD 所以平面.PA ⊥ABCD 【小问2详解】因为,,,所以,,两两垂直.PA AB ⊥PA AD ⊥90DAB ∠=︒AP AB AD 以为坐标原点,所在直线分别为轴,A ,,AB AD AP ,,x y z 建立如图所示的空间直角坐标系,A xyz -依题意有,,,,,,A (0,0,0)()2,0,0B ()2,2,0C D (0,1,0)()0,0,2P ()1,1,1E 则,,,.(2,2,2)PC =- (1,0,1)DE = (2,1,0)BD =-(2,0,2)BP =- 设平面的法向量,PBD ()111,,n x y z =则有()()()()11111111112,1,0,,202,0,2,,220BD n x y z x y BP n x y z x z ⎧⋅=-⋅=-+=⎪⎨⋅=-⋅=-+=⎪⎩令,得,,所以是平面的一个法向量.12y =11x =11z =()1,2,1n = PBD 因为,cos ,DE n DE n DE n⋅〈〉====⋅所以直线与平面DE PBD 【小问3详解】假设存在,使二面角λG AD P --即使二面角G AD P --由(2)得,,(2,2,2)(01)PG PC λλλλλ==-≤≤所以,,.(2,2,22)G λλλ-(0,1,0)AD = (2,2,22)AG λλλ=-易得平面的一个法向量为.PAD ()11,0,0n =设平面的法向量,ADG ()2222,,n x y z =,()()()()()2222222222220,1,0,,02,2,22,,22220AD n x y z y AG n x y z x y z λλλλλλ⎧⋅=⋅==⎪⎨⋅=-⋅=++-=⎪⎩ 解得,令,得,20y =2z λ=21x λ=-则是平面的一个法向量.()21,0,n λλ=-ADG由图形可以看出二面角,G AD P --故二面角G AD P --则有,1cos ,n,解得,.=112λ=-214λ=又因为,所以.01λ≤≤14λ=故存在,使二面角14λ=G AD P --19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y ;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O PD O Q =l 理由.【正确答案】(1)145(2)1-(3)存在,和1y =y x=【分析】(1)代入和的公式,即可求解;(,)d A B (,)e A B (2)首先设,代入,求得点的轨迹,再利用数形结合,结合公式(),N x y (,)1d M N =N ,结合余弦值,即可求解;(),e A B (3)首先求的最小值,分和两种情况求的最小值,对比后,(),D O P 0k =0k ≠(),d O P 即可判断直线方程.【小问1详解】,348614(,)125555d A B +=--+-==,cos(,)cos ,OA OB A B OA OB OA OB⋅=〈〉===;()(),1cos ,1e A B A B =-=-=【小问2详解】设,由题意得:,(,)N x y (,)|2||1|1d M N x y =-+-=即,而表示的图形是正方形,|2||1|1x y -+-=|2||1|1x y -+-=ABCD 其中、、、.()2,0A ()3,1B ()2,2C ()1,1D 即点在正方形的边上运动,,,N ABCD (2,1)OM =(,)ON x y = 可知:当取到最小值时,最大,相应的cos(,)cos ,M N OM ON =<> ,OM ON <>有最大值.(,)e M N 因此,点有如下两种可能:N ①点为点,则,可得;N A (2,0)ON =cos(,)cos ,M N OM ON =<>==②点在线段上运动时,此时与同向,取,N CD ON (1,1)DC =(1,1)ON = 则cos(,)cos ,M N OM ON =<>==的最大值为.>(,)e M N 1【小问3详解】易知,则min (,)D O P (,1)P x kx k -+(,)()|||1|d O P h x x kx k ==+-+当时,,则,,满足题意;0k =(,)()|||1|d O P h x x ==+min (,)1d O P =min (,)1D O P =当时,,0k ≠1(,)()1k d O P h x x kx k x k x k -==+-+=+⋅-由分段函数性质可知,min 1(,)min (0),k d O P h h k ⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭又且时等号成(0)|1|h k =-≥11k k h k k --⎛⎫=≥ ⎪⎝⎭1k =立.综上,满足条件的直线有且只有两条,和.:1l y =y x =关键点点睛:本题第二问为代数问题,转化为几何问题,利用数形结合,易求解,第3问的关键是理解,同样是转化为代数与几何相结合的问题.min min (,)(,)d O P D O Q =。

江苏省泰州中学2024-2025学年高二上学期10月月考数学试题

江苏省泰州中学2024-2025学年高二上学期10月月考数学试题

江苏省泰州中学2024-2025学年高二上学期10月月考数学试题一、单选题1.经过两点(0,3),(P Q -的直线的倾斜角为( ) A .30︒B .60︒C .120︒D .150︒2.若方程2224240x y mx y m m ++-+-=表示圆,则实数m 的取值范围是( ) A .0m < B .12m <C .1m >-D .2m ≥3.平面内一点M 到两定点()10,3F -,()20,3F 的距离之和为10,则M 的轨迹方程是( )A .2212516x y +=B .2212516y x +=C .2212516y x -=D .2212516x y -=4.一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度为( )A .B .C .D .5.若直线y x m =+与曲线x m 的取值范围是( )A .m =B .m m ≤C .m D .11m -<≤或m =6.已知点P 在圆22:(2)(1)4O x y -+-=上,点()()1,2,2,2A B --,则满足6AP BP ⋅=u u u r u u u r的点P的个数为( ) A .3B .2C .1D .07.设直线 :10l x y +-=, 一束光线从原点 O 出发沿射线 ()0y kx x =≥ 向直线 l 射出, 经 l 反射后与 x 轴交于点 M , 再次经 x 轴反射后与 y 轴交于点 N . 若MN =, 则 k 的值为( )A .32B .23C .12D .138.已知圆22:16O x y +=,点12,2F ⎛- ⎝,点E 是:2160l x y -+=上的动点,过E 作圆O 的切线,切点分别为A ,B ,直线AB 与EO 交于点M ,则||MF 的最小值为( )A .32B C D二、多选题9.已知ABC V 中,()1,2A -,()1,0B ,()3,4C ,则关于ABC V 下列说法中正确的有( ) A .某一边上的中线所在直线的方程为2y = B .某一条角平分线所在直线的方程为2y = C .某一边上的高所在直线的方程为20x y += D .某一条中位线所在直线的方程为210x y -+= 10.下列说法正确的是( )A .直线sin 20x y α++=的倾斜角θ的取值范围是π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .“1a =-”是“直线210a x y -+=与直线20x ay --=互相垂直”的充要条件C .过点()1,2P 且在x 轴,y 轴截距相等的直线方程为30x y +-=D .设点()()2,3,3,2A B ---,若点P x ,y 在线段AB 上(含端点),则11y x --的取值范围是(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭11.已知圆O :224x y +=,过圆O 外一点(),P a b 作圆O 的切线,切点为A ,B ,直线OP 与直线AB 相交于点D ,则下列说法正确的是( )A .若点P 在直线40x y ++=上,则直线AB 过定点()1,1-- B .当PA PB ⋅u u u r u u u r取得最小值时,点P 在圆2232x y +=上C .直线PA ,PB 关于直线22ax by a b +=+对称D .OP 与OD 的乘积为定值4三、填空题12.求过点(1,4)P -且与圆()()22231x y -+-=相切的直线方程为.13.已知方程22112x y m m+=--表示焦点在y 轴上的椭圆,则实数m 的取值范围是14.已知P 为圆22(1)(1)1x y -+-=上任意一点,()()0,0,2,0O B ,则P O B 的最小值为.四、解答题15.已知点()()1,3,5,7A B --和直线:34200l x y +-=. (1)求过点A 与直线l 平行的直线1l 的方程; (2)求过AB 的中点与l 垂直的直线2l 的方程.16.已知以点()1,2A -为圆心的圆与______,过点()2,0B -的动直线l 与圆A 相交于M ,N 两点.从①直线270x y ++=相切;②圆()22320x y -+=关于直线210x y --=对称.这2个条件中任选一个,补充在上面问题的横线上并回答下列问题. (1)求圆A 的方程;(2)当MN =l 的方程.17.如图,将一块直角三角形木板ABO 置于平面直角坐标系中,已知1AB OB ==,AB OB ⊥,点11,24P ⎛⎫⎪⎝⎭是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P 的任一直线MN 将三角形木板锯成AMN V ,设直线MN 的斜率为k .(1)用k 表示出直线MN 的方程,并求出M 、N 的坐标;(2)求锯成的AMN V 的面积的最小值.18.如图,圆()22:10C x a x y ay a -++-+=.(1)若圆C 与y 轴相切,求圆C 的方程;(2)当4a =时,圆C 与x 轴相交于两点,M N (点M 在点N 的左侧).问:是否存在圆222:O x y r +=,使得过点M 的任一条直线与该圆的交点,A B ,都有ANM BNM ∠=∠?若存在,求出圆方程,若不存在,请说明理由.19.已知()0,3A 、B 、C 为圆O :222x y r +=(0r >)上三点.(1)若直线BC 过点()0,2,求ABC V 面积的最大值;(2)若D 为曲线()()22143x y y ++=≠-上的动点,且AD AB AC =+u u u r u u u r u u u r ,试问直线AB 和直线AC的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.。

山西省部分学校2024-2025学年高二上学期10月月考数学试题

山西省部分学校2024-2025学年高二上学期10月月考数学试题

山西省部分学校2024-2025学年高二上学期10月月考数学试题一、单选题1.已知直线l 经过A ,B 两点,则l 的倾斜角为( ) A .6π B .3π C .23π D .56π 2.已知圆C 的方程是2242110x y x y ++--=,则圆心C 的坐标是( ) A .()2,1-B .()2,1-C .()4,2-D .()4,2-3.在长方体1111ABCD A B C D -中,M 为棱1CC 的中点.若1,,AB a AD b AA c ===u u u r r u u u r r u u u r r ,则AM u u u u r等于( )A .12a b c ++r r rB .12a b c -+r r rC .111222a b c ++r r rD .111222a b c -+r r r4.两平行直线1l :20x y -=,2l :240x y -+=之间的距离为( )AB .3C D .5.曲线y =x 轴围成区域的面积为( ) A .4πB .2πC .πD .π26.已知平面α的一个法向量(1,1,2)n =-r,(0,1,2)A 是平面α内一点,(2,1,4)P 是平面α外一点,则点P 到平面α的距离是( )A .B .CD .37.在平面直角坐标系xOy 中,圆C 的方程为22430x y y +-+=,若直线1y kx =-上存在点P ,使以P 点为圆心,1为半径的圆与圆C 有公共点,则实数k 的取值范围是( )A .11,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭C .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U8.在正三棱柱111ABC A B C -中,2AB =,1AA 2BC BO =u u u r u u u r,M 为棱11B C 上的动点,N为线段AM 上的动点,且MN MOMO MA=,则线段MN 长度的最小值为( )A .2BC D二、多选题9.下列关于空间向量的命题中,是真命题的是( )A .若三个非零向量能构成空间的一个基底,则它们一定不共面B .若0a b ⋅>r r ,则a r ,b r 的夹角是锐角C .不相等的两个空间向量的模可能相等D .若a r,b r 是两个不共线的向量,且(,c a b λμλμ=+∈R r r r 且0)λμ⋅≠,则{},,a b c r r r 构成空间的一个基底10.已知直线1:30l ax y a +-=,直线2:2(1)60l x a y +--=,则( )A .当3a =时,1l 与2l 的交点为(3,0)B .直线1l 恒过点(3,0)C .若12l l ⊥,则13a =D .存在a ∈R ,使12l l ∥11.“太极图”是中国传统文化之一,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形2216x y +=,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.则下列命题正确的是( )A .黑色阴影区域在y 轴右侧部分的边界所在圆的方程为()2224x y +-= B .直线780x y -+=与白色部分有公共点C .点(),P x y 是黑色阴影部分(包括黑白交界处)中一点,则3x y -的最大值为4D .过点()3,1M 作互相垂直的直线1l 、2l ,其中1l 与圆2216x y +=交于点A 、C ,2l 与圆2216x y +=交于点B 、D ,则四边形ABCD 面积的最大值是22三、填空题12.若直线l 与直线122y x =-+垂直,且它在y 轴上的截距为4,则直线l 的方程为. 13.圆222:1O x y +=和圆()()222:4316C x y -+-=的公切线的方程为. 14.如图所示,在四棱锥P -ABCD 中,AB CD ∥,且==90BAP CDP ∠∠︒,若PA PD AB DC ===,=90APD ∠︒,则平面APB 与平面PBC 夹角的余弦值为.四、解答题15.已知直线:210l x y -+=与22:420C x y x y a +-++=e 交于A ,B 两点. (1)求线段AB 的垂直平分线的方程; (2)若AB 4=,求a 的值.16.如图所示的几何体是圆锥的一部分,其中PO 是圆锥的高,AB 是圆锥底面的一条直径,2PO =,1OA =,C 是»AB 的中点.(1)求直线BC 与PA 所成角的余弦值; (2)求直线PA 与平面PBC 所成角的正弦值.17.在平行四边形ABCD 中,()1,1A --,()1,3B ,()7,5D . (1)若圆E 过A ,B ,D 三点,求圆E 的方程; (2)过点C 作圆E 的切线,切点为M ,N ,求MN .18.如图,四边形ABCD 是直角梯形,//,,22,AB CD AB BC AB BC CD E ⊥===为BC 的中点,P 是平面ABCD 外一点,1,,PA PB PE BD M ==⊥是线段PB 上一点,三棱锥M BDE -的体积是19.(1)求证:PA ⊥平面ABCD ; (2)求二面角M DE A --的余弦值.19.已知圆C 的圆心在直线30x y -=上,与y 轴正半轴相切,且截直线:20l x y -=所得的弦长为4.(1)求圆C 的方程;(2)设点A 在圆C 上运动,点()5,1B -,M 为线段AB 上一点且满足3AM MB=,记点M 的轨迹为曲线E.①求曲线E的方程,并说明曲线E的形状;②在直线l上是否存在异于原点的定点T,使得对于E上任意一点P,PTPO为定值,若存在,求出所有满足条件的点T的坐标,若不存在,说明理由.。

河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

高二数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:北师大版选择性必修第一册第一章,第二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A .B .C .D .2.已知双曲线的虚轴长是实轴长的3倍,则实数的值为( )A .B .C .D .3.已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为( )A .B .C .D .4.直线被圆截得的弦长为( )ABCD .5.已知抛物线的焦点为,点为抛物线上任意一点,则的最小值为( )A .1B .C .D .6.已知椭圆的离心率为,双曲线的离心率为,则( )A .B .C .D .:80l x -+=αα=120︒60︒30︒150︒221(0)1x y a a a -=>+a 1214131822124x y m m+=--y m ()2,3()3,4()()2,33,4⋃()2,426y x =+22(2)4x y ++=23y x =F P PF 43323422122:1(0)x y C a b a b +=>>1e 22222:1x y C a b-=2e 22122e e +=112e e +=22211e e =+212e e =7.在平面直角坐标系中,已知圆,若圆上存在点,使得,则正数的取值范围为( )A .B .C .D .8.已知双曲线的左、右焦点分别为,过点的直线与双曲线的右支相交于两点,,且的周长为10,则双曲线的焦距为( )A .3BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭圆的标准方程可能为( )A .B .C .D .10.如图,抛物线的焦点为,过抛物线上一点(点在第一象限)作准线的垂线,垂足为为边长为8的等边三角形.则( )A .B .C .点的坐标为D .点的坐标为11.已知双曲线的左、右焦点分别为,点为双曲线右支上的动点,过点作两渐近线的垂线,垂足分别为.若圆与双曲线的渐近线相切,则下列说法正确的是( )xOy ()222:()()(0),3,0C x a y a a a A -+-=>-C P 2PA PO =a (]0,1[]1,21,3⎡+⎣⎤⎦2222:1(0,0)x y C a b a b-=>>12,F F 2F ,A B 12224BF BF AF ==1ABF △C C C 22149x y +=22195x y +=22194x y +=22159x y +=2:2(0)C y px p =>F C P P l ,H PHF △2p =4p =P (P (222:1(0)3x y C b b-=>12,F F P C P ,A B 22(2)1x y -+=CA .双曲线的渐近线方程为B .双曲线的离心率C .当点异于双曲线的顶点时,的内切圆的圆心总在直线上D.为定值三、填空题:本题共3小题,每小题5分,共15分.12.过点且在轴、轴上截距相等的直线方程为______.13.已知是圆______.14.如图,已知椭圆的左、右焦点分别为,过椭圆左焦点的直线与椭圆相交于两点,,,则椭圆的离心率为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)已知动点到点为常数且的距离与到直线的距离相等,且点在动点的轨迹上.(1)求动点的轨迹的方程,并求的值;(2)在(1)的条件下,已知直线与轨迹交于两点,点是线段的中点,求直线的方y x =C e =P C 12PF F △x =PA PB ⋅32()3,1x y (),P m n 22:(4)(4)8C x y -+-=2222:1(0)x y C a b a b+=>>12,F F 1F C,P Q 222QF PF =21cos 4PF Q ∠=C ABC △()()()1,6,3,1,4,2A B C ---D AC BD AB P (),0(F t t 0)t >x t =-()1,1-P P C t l C ,A B ()2,1M AB l程.17.(本小题满分15分)已知点,动点满足.(1)求动点的轨迹的方程;(2)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.18.(本小题满分17分)已知双曲线的一条渐近线方程为,点在双曲线上.(1)求双曲线的标准方程;(2)过定点的动直线与双曲线的左、右两支分别交于两点,与其两条渐近线分别交于(点在点的左边)两点,证明:线段与线段的长度始终相等.19.(本小题满分17分)在平面直角坐标系中,已知椭圆,短轴长为2.(1)求椭圆的标准方程;(2)已知点分别为椭圆的左、右顶点,点为椭圆的下顶点,点为椭圆上异于椭圆顶点的动点,直线与直线相交于点,直线与直线相交于点.证明:直线与轴垂直.()()2,0,6,0O A -(),P x y 3PA PO =P C Q (),(0)Q t t t >Q y Q C t 2222:1(0,0)x y C a b a b-=>>20x y +=()1-C C ()0,1P l C ,A B ,M N M N AM BN xOy 2222:1(0)x y C a b a b+=>>C ,A B C D C P C AP BD M BP AD N MN x2024~2025学年度10月质量检测·高二数学参考答案、提示及评分细则1.C 因为直线的斜率为,由斜率和倾斜角的关系可得又,.故选C .2.D,解得.3.A 若方程表示为焦点在轴上的一个椭圆,有解得.4.B 圆心,直线被圆截得的弦长为.故选B .5.D 设点的坐标为,有,故的最小值为.6.A 由,可得.7.C 设点的坐标为,有,整理为,可化为,若圆上存在这样的点,只需要圆与圆有交点,有,解得C .8.B 设,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.9.BD 由题意有,故椭圆的标准方程可能为或.10.BD 设抛物线的准线与轴的交点为,由,有:80l x +=k =tan α=0180α︒≤<︒30α=︒=18a =y 20,40,24,m m m m ->⎧⎪->⎨⎪-<-⎩23m <<()2,0-=P ()00,x y 03344PF x =+≥PF 34222222221222221,1a b b a b b e e a a a a-+==-==+22122e e +=P (),x y =22230x y x +--=22(1)4x y -+=C P C 22(1)4x y -+=22a a -≤≤+13a ≤≤+221,2,4AF m BF m BF m ===13AF m =23410m m m m +++=1m =12AF F △12BF F △224194416048c c c c +-+-+=c =3,2,5a c b ====C 22195x y +=22159x y +=C x Q 60,PHF HFO FQ p ∠=∠=︒=,有,得,点的坐标为.11.ABC 由题意得,对于选项A :双曲线的渐近线方程是,圆的圆心是,半径是1(舍去),又,故A 正确;则,离心率为B 正确;对于选项C :设的内切圆与轴相切于点,由圆的切线性质知,所以,因此内心在直线,即直线上,故C 正确;对于选项D :设,则,渐近线方程是,则为常数,故D 错误.故选ABC .12.或 设在轴、轴上的截距均为,若,即直线过原点,设直线为,代入,可得,所以直线方程为,即;若,则直线方程为,代入,则,解得,所以此时直线方程为;综上所述:所求直线方程为或.13.表示点到原点的距离,由,有的取值范围为.14设椭圆的焦距为,有,在中,由余弦定理有,有,可得,有.在中,由余弦定理有可得2,HF p HQ ==28p =4p =P (0bx ±=22(2)1x y -+=()2,01,1b ==1-1,b b y x a ===2c ==c e a ===12PF F △x M 122F M F M a -=M x a =I x a =x a ==()00,P x y 222200001,333x y x y -=-=0x ±=3440x y +-=30x y -=x y a 0a =y kx =()3,113k =13y x =30x y -=0a ≠1x ya a+=()3,1311a a+=4a =4x y +=40x y +-=30x y -=⎡⎣P O 28OC r ==OC OP OC -≤≤+OP ≤≤⎡⎣C 222,,2c PF t QF t ==112,22,43PF a t QF a t PQ a t =-=-=-2PQF △2222(43)4a t t t t -=+-45t a =21886,,555QF a PQ a PF a ===22PF Q QPF ∠=∠12PF F △2c ==c e a ==15.解:(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.解:(1)由题意知,动点的轨迹为抛物线,设抛物线的方程为,则,所以,所以抛物线的方程为,故;(2)设点的坐标分别有,可得有,可得,有,可得直线的斜率为,故直线的议程为,整理为.17.解:(1)由得,,整理得,故动点的轨迹的方程为;(2)点的坐标为且圆与轴相切,圆的半径为,圆的方程为,D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD 01(3)9y x 1+=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=P C 22(0)y px p =>12p =12p =C 2y x =124p t ==,A B ()()1122,,,x y x y 12124,2,x x y y +=⎧⎨+=⎩211222y x y x ⎧=⎨=⎩222121y y x x -=-212121112y y x x y y -==-+l 12l 11(2)2y x -=-12y x =3PA PO =229PA PO =2222(6)9(2)x y x y ⎡⎤++=-+⎣⎦22(3)9x y -+=P C 22(3)9x y -+= Q (),(0)t t t >Q y ∴Q t ∴Q 222()()x t y t t -+-=圆与圆两圆心的距离为,圆与圆有公共点,,即,解得,所以实数的取值范围是.18.(1)解:由渐近线方程的斜率为,有,可得,将点代入双曲线的方程,有,联立方程解得故双曲线的标准议程为;(2)证明:设点的坐标分别为,线段的中点的坐标为,线段的中点的坐标为.设直线的方程为,联立方程解得,联立方程解得,可得,联立方程消去后整理为,∴Q C CQ == Q C 33t CQ t ∴-≤≤+2222|3|(3)(3)t t t t -≤-+≤+012t <≤t (]0,1220x y +=12-12b a -=-2a b =()1-C 22811a b-=222,811,a b a b =⎧⎪⎨-=⎪⎩2,1,a b =⎧⎨=⎩C 2214x y -=,,,A B M N ()()()()11223344,,,,,,,x y x y x y x y AB D ()55,x y MN E ()66,x y l 1y kx =+1,1,2y kx y x =+⎧⎪⎨=-⎪⎩3221x k =-+1,1,2y kx y x =+⎧⎪⎨=⎪⎩4221x k =--5212242212141kx k k k ⎛⎫=--=- ⎪+--⎝⎭221,1,4y kx x y =+⎧⎪⎨-=⎪⎩y ()2241880k x kx -++=有,可得,由,可知线段和共中点,故有.19.(1)解:设椭圆的焦距为,由题意有:,解得故椭圆的标准方程为;(2)证明:由(1)知,点的坐标为,点的坐标为,点的坐标为,设点的坐标为(其中,),有,可得,直线的方程为,整理为,直线的方程为,整理为,直线的方程为,联立方程,解得:,故点的横坐标为,直线的方程为, 联立方程,解得:,故点的横坐标为,122841k x x k +=--62441kx k =--46x x =AB MN AM BN =C 2c 22222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩2,1,a b c ===C 2214x y +=A ()2,0-B ()2,0D ()0,1-P (),m n ()()2,00,2m ∈- 2214m n +=2244m n +=BD 121x y +=-112y x =-AD 121x y +=--112y x =--AP ()22ny x m =++()2,2112n y x m y x ⎧=+⎪⎪+⎨⎪=-⎪⎩24422m n x m n ++=-+M ()22222m n m n ++-+BP ()22ny x m =--()2,2112n y x m y x ⎧=-⎪⎪-⎨⎪=--⎪⎩42422n m x m n -+=+-N ()22222n m m n -++-又由,故点和点的横坐标相等,可得直线与轴垂直.()()()()()()22222222222222222222m n m n m n m n m n n m m n m n m n m n +++-+-+--++-+-=-++--++-()()()()()()()222222(2)4(2)42442880222222222222m n m n m n m n m n m n m n m n m n m n ⎡⎤⎡⎤+-+--+-+-⎣⎦⎣⎦====-++--++--++-M N MN x。

山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

高二数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写济楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版选择性必修第一册第二章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B. C. D.2.已知双曲线的焦距为4,则的渐近线方程为( )A. B.C.D.3.已知椭圆与椭圆有相同的焦点,则( )A.B.C.3D.44.已知点在圆的外部,则实数的取值范围为( )A.B.C.D.5.已知点为双曲线左支上的一点,分别为的左、右焦点,则( )A.2B.4C.6D.86.已知点,若过定点的直线与线段相交,则直线的斜率的取值范围103x --=π6π32π35π6()222:11x C y a a-=>C y =y x=±y =y x =()222:1016x y C b b +=>221125x y +=b =()0,1-22220x y x my +--+=m ()3,∞-+()3,2-()()3,22,∞--⋃+()2,2-M 22:1916x y C -=12,F F C 1122MF F F MF +-=()()2,3,3,2A B ---()1,1P l AB l k是( )A.B.C.D.7.当变动时,动直线围成的封闭图形的面积为( )A.C.D.8.已知椭圆,若椭圆上的点到直线的最短距离,则长半轴长的取值范围为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若直线与直线平行,则的值可以是()A.0B.2C.D.410.已知点是椭圆上关于原点对称且不与的顶点重合的两点,分别是的左、右焦点,为原点,则( )A.的离心率为B.C.的值可以为3D.若的面积为,则11.已知点及圆,点是圆上的动点,则( )A.过原点与点的直线被圆截得的弦长为B.过点作圆的切线,则切线方程为C.当点到直线的距离最大时,过点与平行的一条直线的方程为D.过点作圆的两条切线,切点分别为,则直线的方程为(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭34,4⎡⎤-⎢⎥⎣⎦1,5∞⎛⎫+ ⎪⎝⎭3,44⎡⎤-⎢⎥⎣⎦α2cos2sin24cos x y ααα+=π2π4π()2222:10x y E a b a b +=>>E 50x y ++=a (]0,2((⎤⎦()240a x y a -++=()()222420a x a a y -+++-=a 2-,A B 22:143x y C +=C 12,F F C O C 12228AF BF +=AB 12AF F V 3212154AF AF ⋅=()4,4P 22:40C x y x +-=Q C O P C P C 3440x y -+=Q PC Q PC 240x y ---=P C ,A B AB 240x y +-=三、填空题:本题共3小题,每小题5分,共15分.12.若方程表示椭圆,则的取值范围是__________.13.已知圆与两直线都相切,且圆经过点,则圆的半径为__________.14.把放置在平面直角坐标系中,点在直线的上方,点在边上,平分,且点都在轴上,直线的斜率为,则点的坐标为__________;直线在轴上的截距为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知直线及点.(1)若与垂直的直线过点,求与的值;(2)若点与点到直线的距离相等,求的斜截式方程.16.(本小题满分15分)已知双曲线的顶点为,且过点.(1)求双曲线的标准方程;(2)过双曲线的左顶点作直线与的一条渐近线垂直,垂足为为坐标原点,求的面积.17.(本小题满分15分)已知圆经过点,且与圆相切于原点.(1)求圆的标准方程;(2)若直线不同时为0与圆交于两点,当取得最小值时,与圆交于两点,求的值.18.(本小题满分17分)已知椭圆的上顶点与左,右焦点连线的斜率之积为.(1)求椭圆的离心率;(2)已知椭圆的左、右顶点分别为,且,点是上任意一点(与不重合),直线22164x y m m +=--m C 220,220x y x y -+=++=C ()1,1C ABC V A BC ,D E BC AD ,BAC AE BC ∠⊥,A E y AD 40,y AD -+==AC3-C AB x :210l x ay a -+-=()2,2A -l 320x my -+=A m a A ()1,1B -l l ()2222:10,0x y C a b a b-=>>()(),A B -()4P C C A C ,H O OHA V 1C ()2,0-222:480C x y x y +-+=O 1C :20(,l ax by a b a b ++-=)1C ,A B AB l 2C ,C D CD ()2222:10x y C a b a b+=>>45-C C ,A B 6AB =M C ,A B分别与直线交于点为坐标原点,求.19.(本小题满分17分)已知点是平面内不同的两点,若点满足,且,则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.,MA MB :5l x =,,P Q O OP OQ ⋅,A B P (0PAPBλλ=>1)λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()()()2,0,,2A B a b a -≠-(),A B λ221240x y x +-+=,,a b λQ (),A B OQ O 0,b λ==,a μ(),A B μ参考答案1.A 直线,所以其倾斜角为.故选A.2.D 由题意可知,所以,所以双曲线的渐近线方程为.故选D.3.C 因为椭圆与㮁圆有相同的焦点.所以,解得或(舍去).故选C.4.C 由题意可知解得或.故选C.5.B 因为为双曲线左支上的一点,分别为的左、右焦点,所以,故,由于,所以.故选B6.A 直线过定点,且直线与线段相交,由图象知,或,则紏率的取值范围是.故选A 7.D 方程可化为变动时,点到该直线的距离,则该直线是圆的切线,所以动直线围成的封闭图形的面积是圆的面积,面积为.故选D.103x --=π6214a +=23a =22213x C y -=y x =()22221016x y C b b +=>221125x y +=216125b -=-3b =3b =-222(1)20,(2)420,m m ⎧-++>⎨-+-⨯>⎩32m -<<-2m >M 22:1916x y C -=12,F F C 212MF MF a -=112222MF F F MF c a +-=-3,4,5a b c ====1122221064MF F F MF c a +-=-=-= l ()312131,1,4,21314PA PA P k k ----==-==--- AB ∴34k …4k -…k (]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭2cos2sin24cos x a y a a +=()2cos2sin22,x a y a α-+=()2,02d ==22(2)4x y -+=2cos2sin24cos x y ααα+=22(2)4x y -+=4π8.C 设直线与,则的方程为,由整理,得,因为上的点到直线的最短,所以,整理得,由椭圆的离心,可知,所以,所以,则,所以.故选C.9.AB 因为两直线平行,由斜率相等得,所以或,解得或0或,当时两直线重合,舍去.故选.10.AD 对于A ,椭圆中,,离心率为,A 正确;对于B.由对称性可得,所以,B 错误;对于C ,设且,则,故,所以C 错误;对于D ,不妨设在第一象限,,则,是,则,则,故,故D 正确.故选AD.11.ACD 圆的标准方程为,圆的半径,对于,直线的方程为0,点到直线,所以直线被圆截得的弦长为正确;对于,圆的过点的切线斜率存在时,设其方程为,即,,解得,此时切线方程为,另一条切线是斜率不存在的切线错误;对于C ,当点到直线的距离最大时,过点与平行的一条直线,即为与直线距离为2的图的切线,直线的斜率为2,设该切线方程为,则正确;对于D ,设,,可得切线的方程分别为l 50x y ++=l 30x y ++=22221,30,x y ab x y ⎧+=⎪⎨⎪++=⎩()2222222690a b x a x a a b +++-=E 50x y ++=()()422222Δ36490a a baa b =-+-…2290a b +-…E 22112b a -=2212b a =221902a a +-…26a …0a <…222424a a a a ---=-++20a -=2244a a ++=2a =2-2a =-AB 22:143x y C +=2,1a b c ===12c a =21BF AF =222124AF BF AF AF a +=+==(),,B m n n <<0n ≠22143m n +=)2OB ===()24,AB OB =∈A ()00,A x y 12013222AF F S c y =⋅⋅=V 032y =31,2A ⎛⎫⎪⎝⎭21335,4222AF AF ==-=12154AF AF ⋅=C ()22(2) 4.2,0x y C -+=C 2r =A OP x y -=C OP OP C A =B C P ()44y k x -=-440kx y k --+=234k =3440x y -+=4,x B =Q PC Q PC PC C PC 20x y t -+=2,4t =-±(11,A x y ()22,B x y ,PA PB,将代入两方程得,所以者在直线上,所以直线的方程为,即,D 正确.故选ACD.12.且且也给分) 由题意得,且6—,所以且,所以实数的取值范围是.易知直线与关于轴对称或关于对称,又当圆心在上时,该圆不存在,所以圆的圆心在轴上,设圆的方程为,由题意可知,,整理得,解得或,当时,,当时,.14.(2分)(3分) 直线的方程与直线联立得,因为直线的斜率为3,所以直线的方程为,由,得直线的斜率为0,由,得,所以直线的方程为,与联立得.设直线与轴交于点,点关于直线的对称点为,则点在直线上,所以.联立解得代入,得,所以直线在轴上的截距为15.解:(1)因为直线过点,所以,解得,因为与垂直,()()11122220,20x x y y x x x x y y x x +-+=+-+=()4,4P ()()11122244240,44240x y x x y x +-+=+-+=()()1122,,,A x y B x y ()44240x y x +-+=AB ()44240x y x +-+=240x y +-=()()4,55,6{|46m m ⋃<<5},46m m ≠<<5m ≠60,40m m ->->4m m ≠-46m <<5m ≠m ()()4,55,6⋃220x y -+=220x y ++=x 2x =-2x =-C x C 222()x a y r -+==22730a a -+=12a =3a =12a =r =3a =r =(1,1)AE 0x =AD 40y -+=()0,4A AC -AC 34y x =-+AE BC ⊥BC AD =AD 3AE =BC 1y =34y x =-+()1,1C AB x (),0F t F AD (),G a b G AC b a t =-402b -+=122,a tb ⎧=--⎪⎪⎨⎪=+⎪⎩34y x =-+t =AB x 320x my -+=()2,2A -6220m --+=2m =-3220x y ++=l所以.(2)解法一,若点与点到直线的距离相等,则直线与的斜率相等或的中点在上,又直钱的斜率为的中点坐标为,所以或.解得或.当时,的斜截式方程为,当时,的斜截式方程为.解法二:因为点与点到直线的距离相等,.解得,当时,的斜截式方程为,当时,的斜截式方程为.16.解:(1)因为双曲线的顶点为,且过点,所以,且,解得的标准方程为.(2)由双曲线方程,得渐近线方程为,,又,所以所以.123,32a a ==A()1,1B -l AB l AB l AB ()211,21AB --=---11,22⎛⎫- ⎪⎝⎭11a =-1121022a a --+-=1a =-1a =1a =-l 3y x =-+1a =l 1y x =+A ()1,1B -l =1a =±1a =-l 3y x =-+1a =l 1y x =+()2222:10,0x y C a b a b-=>>()(),A B -()4P a =2254161a b -=a b ==C 221188x y -=221188x y -=230x y ±=,OH HA OA ⊥=OH =11542213OHA S OH HA =⨯⨯==V17.解:(1)因为圆与图相切,且点在圆的外部,所以圆与圆外切,则三点共线,图化为.所以圆心,故圆心在直线上.设圆的标准方程为,又圆过原点,则,圆经过点,则,解得,故圆的标准方程为.(2)由(1)可知,圆的圆心坐标为,由直线化为,所以直线恒过点,易知点在圆的内部,设点到直线的距离为,则,要使取得最小值,则取得最大值,所以,此时.所以,则直线的方程为,即.又圆心到直线的距离,所以.18.解:(1)椭圆的上顶点的坐标为,左、右焦点的坐标分别为,由题意可知,即,1C 2C ()2,0-2C 1C 2C 12,,C O C 222:480C x y x y +-+=22(2)(4)20x y -++=()22,4C -1C 2y x =-1C 222()(2)x t y t r -++=1C ()0,0O 225r r =1C ()2,0-222(2)(02)5t t t --++=1t =-1C 22(1)(2)5x y ++-=1C ()1,2-:20l ax by a b ++-=()()210a x b y ++-=L ()2,1P -P 1C 1C l d AB ==AB d 1PC l ⊥121112PC k -==-+1t k =-l ()12y x -=-+10x y ++=2C 10x y ++=d 'CD ==C ()0,b ()(),0,,0c c -45b b c c ⎛⎫⋅-=- ⎪⎝⎭2245b c =又,所以,即的离心率.(2)由,得,即,所以椭圆的方程为.设,则,即,又,则,因为直线分别与直线交于点,所以,所以.19.(1)解:因为以为“稳点”的一阿波罗尼斯圆的方程为,设是该圆上任意一点,则,所以,因为为常数,所以,且,所以.(2)解:由(1)知,设,由,所以,,監理得,即,所以,222a b c =+2295a c =225,9c ca a ==C e =6AB =26a =3,2a c b ===C 22194x y +=()00,M x y 2200194x y +=22003649x y -=()()3,0,3,0A B -()()0000:3,:333y yMA y x MB y x x x =+=-+-,MA MB :5L x =,P Q 0000825,,5,33y y P Q x x ⎛⎫⎛⎫⎪ ⎪+-⎝⎭⎝⎭()()220000220000163648216641615,5,2525253399999x y y y OP OQ x x x x -⎛⎫⎛⎫⋅=⋅=+=+=-= ⎪ ⎪+---⎝⎭⎝⎭(),A B λ221240x y x +-+=(),P x y 22124x y x +=-22222222222222||(2)4416||()()22(122)24PA x y x y x xPB x a y b x y ax by a b a x by a b +++++===-+-+--++--+-+22||||PA PB 2λ2240,0a b b -+==2a ≠-2,0,a b λ====()()2,0,2,0A B -(),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--…42890x x --…()()22190x x +-…209x ……由,得,即的取值范围是.(3)证明:若,则以一阿波罗尼斯圆的方程为,整理得,该圆关于点对称.由点关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称OQ ==209r ……13OQ ……OQ []1,30b =(),A B 2222(2)2()x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()()2,0,,0A B a -2,02a -⎛⎫ ⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-,a μ(),A B μ。

湖南省长沙市长郡中学2024-2025学年高二上学期10月月考数学试题

湖南省长沙市长郡中学2024-2025学年高二上学期10月月考数学试题

湖南省长沙市长郡中学2024-2025学年高二上学期10月月考数学试题一、单选题 1.已知复数3i1iz +=+,则z =( ) AB C .3 D .52.无论λ为何值,直线()()()234210x y λλλ++++-=过定点( ) A .()2,2-B .()2,2--C .()1,1--D .()1,1-3.在平行四边形ABCD 中,()1,2,3A -,()4,5,6B -,()0,1,2C ,则点D 的坐标为( ) A .()5,6,1--B .()5,8,5-C .()5,6,1-D .()5,8,5--4.已知1sin 33πα⎛⎫+= ⎪⎝⎭,则cos(2)3πα-=( )A .79-B .79C .29-D .295.直线2410x y --=关于0x y +=对称的直线方程为( ) A .4210x y --= B .4210x y -+= C .4210x y ++=D .4210x y +-=6.已知椭圆C :()22104x y m m +=>,则m =( )A .B .C .8或2D .87.已知实数,x y 满足()22203y x x x =-+≤≤,则41y x ++的范围是( ) A .[]2,6 B .(][),26,-∞+∞UC .92,4⎡⎤⎢⎥⎣⎦D .(]9,2,4⎡⎫-∞+∞⎪⎢⎣⎭U8.已知平面上一点(5,0)M 若直线l 上存在点P 使||4PM =则称该直线为点(5,0)M 的“相关直线”,下列直线中不是点(5,0)M 的“相关直线”的是( ) A .3y x =-B .2y =C .430x y -=D .210x y -+=二、多选题9.已知直线l :20x y λλ+--=,圆C :221x y +=,O 为坐标原点,下列说法正确的是( ) A .若圆C 关于直线l 对称,则2λ=- B .点O 到直线lC .存在两个不同的实数λ,使得直线l 与圆C 相切D .存在两个不同的实数λ,使得圆C 上恰有三个点到直线l 的距离为1210.已知圆1F :()()222328x y m m ++=≤≤与圆2F :()()222310x y m -+=-的一个交点为M ,动点M 的轨迹是曲线C ,则下列说法正确的是( )A .曲线C 的方程为22110064x y +=B .曲线C 的方程为2212516x y +=C .过点1F 且垂直于x 轴的直线与曲线C 相交所得弦长为325D .曲线C 上的点到直线4510x ++=11.在边长为2的正方体ABCD A B C D -''''中,M 为BC 边的中点,下列结论正确的有( )A .AM 与DB ''B .过A ,M ,D ¢三点的正方体ABCD A BCD -''''的截面面积为3 C .当P 在线段A C '上运动时,PB PM '+的最小值为3D .若Q 为正方体表面BCC B ''上的一个动点,E ,F 分别为AC '的三等分点,则QE QF +的最小值为三、填空题12.通过科学研究发现:地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为1E ,2E ,则12EE =13.直线()243410a x ay +-+=的倾斜角的取值范围是.14.如图,设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,点P 是以12F F 为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若222PF F Q =u u u u r u u u u r,则直线1PF的斜率为.四、解答题15.已知两圆222610x y x y +---=和2210120x y x y m +--+=.求: (1)m 取何值时两圆外切?(2)当45m =时,两圆的公共弦所在直线的方程和公共弦的长. 16.在ΔABC 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ΔABC 的面积.17.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB AD ===,四边形ABCD 满足AB AD ⊥,BC AD ∥,4BC =,点M 为PC 的中点,点E 为棱BC 上的动点.(1)求证://DM 平面PAB ;(2)是否存在点E ,使得平面PDE 与平面ADE 所成角的余弦值为23?若存在,求出线段BE 的长度;若不存在,说明理由.18.某校高一年级设有羽毛球训练课,期末对学生进行羽毛球五项指标(正手发高远球、定点高远球、吊球、杀球以及半场计时往返跑)考核,满分100分.参加考核的学生有40人,考核得分的频率分布直方图如图所示.(1)由频率分布直方图,求出图中t 的值,并估计考核得分的第60百分位数;(2)为了提升同学们的羽毛球技能,校方准备招聘高水平的教练.现采用分层抽样的方法(样本量按比例分配),从得分在[)70,90内的学生中抽取5人,再从中挑出两人进行试课,求两人得分分别来自[)70,80和[)80,90的概率;(3)若一个总体划分为两层,通过按样本量比例分配分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x ,21s ;n ,y ,22s .记总的样本平均数为w ,样本方差为2s ,证明:()(){}22222121s m s x w n s y w m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+. 19.已知动直线l 与椭圆C:22132x y +=交于()11,P x y ,()22,Q x y 两个不同点,且OPQ ∆的面积OPQ S ∆其中O 为坐标原点. (1)证明2212x x +和2212y y +均为定值;(2)设线段PQ 的中点为M ,求OM PQ ⋅的最大值;(3)椭圆C 上是否存在点D ,E ,G ,使得ODE ODG OEG S S S ===V V V 判断DEG △的形状;若不存在,请说明理由.。

湖南省名校联考联合体2024-2025学年高二上学期10月月考数学试题含答案

湖南省名校联考联合体2024-2025学年高二上学期10月月考数学试题含答案

高二数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一,二册占60%,选择性必修第一册第一章至第二章第4节占40%.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,{}2,4A =,{}1,4,5B =,则()UB A ⋂=ð()A.{}3B.{}4C.{}1,4 D.{}1,5【答案】D 【解析】【分析】利用补集与交集的定义可求解.【详解】因为全集{}1,2,3,4,5U =,{}2,4A =,所以{}U 1,3,5A =ð,又因为{}1,4,5B =,(){}{}{}U 51,3,51,4,51,A B == ð.故选:D.2.已知复数1i z a =+(0a >),且3z =,则a =()A.1B.2C.D.【答案】D 【解析】【分析】利用复数的模的定义即可求解.【详解】因为1i z a =+,3z =3=,解得a =±,因为0a >,所以a =故选:D,3.已知1sin 3α=,π0,2α⎛⎫∈ ⎪⎝⎭,则πcos 22α⎛⎫-= ⎪⎝⎭()A.9B.19-C.79-D.9-【答案】A 【解析】【分析】根据同角三角函数关系得出余弦值,再结合诱导公式化简后应用二倍角正弦公式计算即可.【详解】因为221sin ,sin cos 13ααα=+=,又因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos 3α===,所以π12242cos 2sin22sin cos 22339αααα⎛⎫-===⨯⨯ ⎪⎝⎭.故选:A.4.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x af x =+,则()1f =()A.2B.4C.2- D.4-【答案】A 【解析】【分析】利用题意结合奇函数的定义判断()f x 是奇函数,再利用奇函数的性质求解即可.【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=,所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-,故当0x ≤时,()222x f x =-+,由奇函数性质得()()11f f =--,而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A5.在正方体1111ABCD A B C D -中,二面角1B AC B --的正切值为()A.2B.3C.3D.【答案】D 【解析】【分析】取AC 的中点M ,连接1,MB MB ,可得1B MB ∠是二面角1B AC B --的平面角,求解即可.【详解】取AC 的中点M ,连接1,MB MB ,由正方体1111ABCD A B C D -,可得11,AB B C AB BC ==,所以1,B M AC BM AC ⊥⊥,所以1B MB ∠是二面角1B AC B --的平面角,设正方体1111ABCD A B C D -的棱长为2,可得AC =,所以BM =在1Rt B B M 中,11tan B B B MB BM =∠==,所以二面角1B AC B --.故答案为:D.6.已知线段AB 的端点B 的坐标是()3,4,端点A 在圆()()22124x y -+-=上运动,则线段AB 的中点P的轨迹方程为()A.()()22232x y -+-= B.()()22231x y -+-=C.()()22341x y -+-= D.()()22552x y -+-=【答案】B 【解析】【分析】设出动点P 和动点A 的坐标,找到动点P 和动点A 坐标的关系,再利用相关点法求解轨迹方程即可.【详解】设(,)P x y ,11(,)A x y ,由中点坐标公式得1134,22x y x y ++==,所以1123,24x x y y =-=-,故(23,2)A x y --4,因为A 在圆()()22124x y -+-=上运动,所以()()222312424x y --+--=,化简得()()22231x y -+-=,故B 正确.故选:B7.我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵111ABC A B C -中,π2ABC ∠=,1AB BC AA ==,,,D E F 分别是所在棱的中点,则下列3个直观图中满足BF DE ⊥的有()A.0个B.1个C.2个D.3个【答案】B 【解析】【分析】建立空间直角坐标系,利用空间位置关系的向量证明逐个判断即可.【详解】在从左往右第一个图中,因为π2ABC ∠=,所以AB BC ⊥,因为侧棱垂直于底面,所以1AA ⊥面ABC ,如图,以B 为原点建立空间直角坐标系,设12AB BC AA ===,因为,,D E F 分别是所在棱的中点,所以(0,0,0),(0,1,0),(1,0,2),(1,1,0)B E D F所以(1,1,0)BF = ,(1,1,2)DE =-- ,故110BF DE ⋅=-+=,即BF DE ⊥得证,在从左往右第二个图中,我们建立同样的空间直角坐标系,此时(0,0,0),(1,1,0),(1,0,2),(0,1,1)B E D F ,所以(0,1,1)BF = ,(0,1,2)DE =-,故121BF DE ⋅=-=-,所以,BF DE 不垂直,在从左往右第三个图中,我们建立同样的空间直角坐标系,此时(0,0,0),(1,1,0),(1,0,0),(1,1,2)B E D F ,故(1,1,2)BF = ,(0,1,0)DE = ,即1BF DE ⋅=,所以,BF DE 不垂直,则下列3个直观图中满足BF DE ⊥的有1个,故B 正确.故选:B8.已知过点()1,1P 的直线l 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点,则22OA OB+的最小值为()A.12B.8C.6D.4【答案】B 【解析】【分析】根据题意可知直线l 的斜率存在设为(0)k k <,分别解出,A B 两点的坐标,表示出22OA OB +的表达式由基本不等式即可求得最小值.【详解】由题意知直线l 的斜率存在.设直线的斜率为(0)k k <,直线l 的方程为1(x 1)y k -=-,则1(1,0),(0,1)A B k k--,所以222222121(1)(1)112OA OB k k kk k k+=-+-=-++-+22212(2)28k k k k =+--++≥++=,当且仅当22212,k k k k-=-=,即1k =-时,取等号.所以22OA OB +的最小值为8.故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得分分,有选错的得0分.9.已知函数()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 的最小正周期为πB.()f x 的图象关于直线π85x =对称C.()f x 的图象关于点π,18⎛⎫- ⎪⎝⎭中心对称D.()f x 的值域为[]1,1-【答案】ABD 【解析】【分析】求得最小正周期判断A ;求得对称轴判断B ;求得对称中心判断C ;求得值域判断D.【详解】因为()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,所以的最小正周期为2ππ2T ==,故A 正确;由ππ2π,Z 42x k k +=+∈,可得ππ,Z 28k x k =+∈,所以()f x 图象的对称轴为ππ,Z 28k x k =+∈,当1k =时,图象的关于π85x =对称,故B 正确;由Z 2ππ,4k x k =∈+,可得ππ,Z 28k x k =-∈,所以()f x 图象的对称中心为ππ(,0),Z 28k k -∈,当0k =时,图象的关于点()π8,0-对称,故C 不正确;由()πsin 2[1,1]4f x x ⎛⎫=+∈- ⎪⎝⎭,故()f x 的值域为[]1,1-,故D 正确.故选:ABD.10.若数据1x ,2x ,3x 和数据4x ,5x ,6x 的平均数、方差、极差均相等,则()A.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的平均数相等B.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的方差相等C.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的极差相等D.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的中位数相等【答案】ABC 【解析】【分析】运用平均数,方差,极差,中位数的计算方法和公式计算,通过已知两组数据的平均数、方差、极差均相等这个条件,来分析这两组数据组合后的相关统计量与原数据的关系.【详解】设数据123,,x x x 的平均数为x ,数据456,,x x x 的平均数也为x .那么数据123456,,,,,x x x x x x 的平均数为123456()()3366x x x x x x x xx ++++++==,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的平均数相等,A 选项正确.设数据123,,x x x 的方差为2s ,数据456,,x x x 的方差也为2s .对于数据123456,,,,,x x x x x x ,其方差计算为2222221234561[()((()()()]6x x x x x x x x x x x x -+-+-+-+-+-2222221234561[3(()(())3(((())]6x x x x x x x x x x x x =⨯-+-+-+⨯-+-+-2221(33)6s s s =+=,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的方差相等,B 选项正确.设数据123,,x x x 的极差为R ,数据456,,x x x 的极差也为R .对于数据123456,,,,,x x x x x x ,其极差是这六个数中的最大值减去最小值,由于前面两组数据的极差相等,所以组合后数据的极差依然是R ,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的极差相等,C 选项正确.设数据123,,x x x 按从小到大排列为123x x x ≤≤,中位数为2x .设数据456,,x x x 按从小到大排列为456x x x ≤≤,中位数为5x .对于数据123456,,,,,x x x x x x 按从小到大排列后,中位数不一定是2x ,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的中位数不一定相等,D 选项错误.故选:ABC11.已知四棱柱1111ABCD A B C D -的底面是边长为6的菱形,1AA ⊥平面ABCD ,13AA =,π3DAB ∠=,点P 满足1AP AB AD t AA λμ=++,其中λ,μ,[]0,1t ∈,则()A.当P 为底面1111D C B A 的中心时,53t λμ++=B.当1t λμ++=时,AP 长度的最小值为2C.当1t λμ++=时,AP 长度的最大值为6D.当221t λμλμ++==时,1A P为定值【答案】BCD 【解析】【分析】根据题意,利用空间向量进行逐项进行分析求解判断.【详解】对于A ,当P 为底面1111D C B A 的中心时,由1AP AB AD t AA λμ=++ ,则11,,122t λμ===故2t λμ++=,故A 错误;对于B ,当1t λμ++=时,()22222222112·AP AB AD t AA AB AD t AA AB ADλμλμλμ=++=+++()()222223693636936t t λμλμλμλμ=+++=++-22245723636457236362t t t t λμλμ+⎛⎫=-+-≥-+- ⎪⎝⎭223273654273644t t t ⎛⎫=-+=-+⎪⎝⎭当且仅当13,84t λμ===,取最小值为2,故B 正确;对于C ,当1t λμ++=时,1AP AB AD t AA λμ=++,则点P 在1A BD 及内部,而AP是以A 为球心,以AP 为半径的球面被平面1A BD 所截图形在四棱柱1111ABCD A B C D -及内的部分,当=1=0t λμ=,时,=6AP ,当=0=10t λμ=,,时,=6AP ,可得1A P最大值为6,故C 正确;对于D ,221t λμλμ++==,()22223693636945AP t λμλμ=+++=+= ,而11=A P A A AP +,所以()22222111111=+2·=+2A P A A AP A A AP A A AP A A AB AD t AA λμ++⋅++ 22211=29452936A A AP t A A +-=+-⨯= ,则16A P = 为定值,故D 正确.故答案选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()1,2a =- ,(),4b m =-.若()a ab ⊥+ ,则m =________.【答案】3-【解析】【分析】利用非零向量垂直时数量积为0,计算即可.【详解】()1,2a b m +=--.因为()a ab ⊥+ ,所以()1220m ---⨯=,解得3m =-.故答案为:3-.13.已知在正四棱台1111ABCD A B C D -中,()0,4,0AB = ,()13,1,1CB =- ,()112,0,0A D =-,则异面直线1DB 与11A D 所成角的余弦值为__________.【答案】19【解析】【分析】利用向量的线性运算求得1DB,根据向量的夹角公式可求异面直线1DB 与11A D 所成角的余弦值.【详解】111(0,4,0)(3,1,1)(3,3,1)DB DC CB AB CB =+=+=+-=,所以111111111·cos,19·DB A DDB A DDB A D==-,所以异面直线1DB与11A D所成角的余弦值为19.故答案为:1914.已知函数()21xg x=-,若函数()()()()()2121f xg x a g x a=+--+⎡⎤⎣⎦有三个零点,则a的取值范围为__________.【答案】()2,1--【解析】【分析】令()0f x=,可得()2g x=或()1g x a=--,函数有三个零点,则需方程()1g x a=--有两个解,则=与1y a=--的图象有两个交点,数形结合可求解.【详解】令()0f x=,可得()()()()21210g x a g x a⎡⎤+--+=⎣⎦,所以()()()[2][1]0g x g x a-++=,所以()2g x=或()1g x a=--,由()2g x=,又()21xg x=-,可得212x-=,解得21x=-或23x=,方程21x=-无解,方程23x=有一解,故()2g x=有一解,要使函数()()()()()2121f xg x a g x a⎡⎤=+--+⎣⎦有三个零点,则()1g x a=--有两解,即=与1y a=--的图象有两个交点,作出函数=的图象的示图如下:由图象可得011a<--<,解得21a-<<-.所以a的取值范围为(2,1)--.故答案为:(2,1)--.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos c b a B +=.(1)若π2A =,求B ;(2)若a =1b =,求ABC V 的面积.【答案】(1)π4(2)12【解析】【分析】(1)利用正弦定理化边为角,再结合内角和定理与两角和与差的正弦公式化简等式得sin sin()B A B =-,代入π2A =求解可得;(2)由sin sin()B A B =-根据角的范围得2A B =,由正弦定理结合二倍角公式可得cos 2B =,从而得π4B =,再利用余弦定理求边c ,由面积公式可求结果.【小问1详解】因为2cos c b a B +=,所以由正弦定理得,sin sin 2sin cos C B A B +=,又sin sin()sin cos cos sin C A B A B A B =+=+代入上式得,所以()sin sin cos cos sin sin =-=-B A B A B A B ,由π2A =,则B 为锐角,且c sin s os n π2i B B B ⎛⎫-= ⎭=⎪⎝,所以π4B =.【小问2详解】由(1)知,()sin sin B A B =-,因为a =1b =,所以A B >,则0πA B <-<,π02B <<,故B A B =-,或πB A B A +-==(舍去).所以2A B =,又a =1b =,由正弦定理得sin sin 22cos sin sin A B aB B B b====,则cos 2B =,则π4B =,由余弦定理得2222cos b a c ac B =+-,则2122c =+-,化简得2210c c -+=,解得1c =,所以111sin 2222ABC S ac B === .故ABC V 的面积为12.16.甲、乙、丙三人打台球,约定:第一局由甲、乙对打,丙轮空;每局比赛的胜者与轮空者进行下一局对打,负者下一局轮空,如此循环.设甲、乙、丙三人水平相当,每场比赛双方获胜的概率都为12.(1)求甲连续打四局比赛的概率;(2)求在前四局中甲轮空两局的概率;(3)求第四局甲轮空的概率.【答案】(1)18(2)14(3)38【解析】【分析】(1)由题意知甲前三局都要打胜,计算可得甲连续打四局比赛的概率;(2)甲轮空两局的情况为,第一局甲败,第二局轮空,第三局甲败,第四局轮空,计算即可;(3)分析可得甲第四轮空有两种情况:第1种情况,第一局甲败,第二局轮空,第三局甲败,第四局轮空,第2种情况,第一局甲胜,第二局甲胜,第三局甲败,第四局轮空,计算即可.【小问1详解】若甲连续打四局,根据比赛规则可知甲前三局都要打胜,所以甲连续打四局比赛的概率311(28=;【小问2详解】在前四局中甲轮空两局的情况为,第一局甲败,第二局轮空,第三局甲败,第四局轮空,故在前四局中甲轮空两局的概率111(1(1)224-⨯-=;【小问3详解】甲第四轮空有两种情况:第1种情况,第一局甲败,第二局轮空,第三局甲败,第四局轮空,第2种情况,第一局甲胜,第二局甲胜,第三局甲败,第四局轮空,第1种情况的概率111(1)(1224-⨯-=;第2种情况的概率1111(12228⨯⨯-=;由互斥事件的概率加法公式可得第四局甲轮空的概率为113488+=.17.如图,在几何体PABCD 中,PA ⊥平面ABC ,//PA DC ,AB AC ⊥,2PA AC AB DC ===,E ,F 分别为棱PB ,BC 的中点.(1)证明://EF 平面PAC .(2)证明:AB EF ⊥.(3)求直线EF 与平面PBD 所成角的正弦值.【答案】(1)证明见解析(2)证明见解析(3)6【解析】【分析】(1)构造线线平行,证明线面平行.(2)先证AB ⊥平面PACD ,得到AB PC ⊥,结合(1)中的结论,可得AB EF ⊥.(3)问题转化为直线PC 与平面PBD 所成角的正弦值.设1CD =,表示CP 的长,利用体积法求C 到平面PBD 的距离,则问题可解.【小问1详解】如图,连接CP .在BCP 中,E ,F 分别为棱PB ,BC 的中点,所以//EF CP ,,又EF ⊄平面PAC ,CP ⊂平面PAC .所以//EF 平面PAC .【小问2详解】因为PA ⊥平面ABC ,AB ⊂平面ABC ,所以PA AB ⊥,又AB AC ⊥,,PA AC ⊂平面PAC ,且PA AC A = ,所以AB ⊥平面PAC .因为CP ⊂平面PAC ,所以AB CP ⊥.又因为//EF CP ,所以AB EF ⊥.【小问3详解】因为//EF CP ,所以直线EF 与平面PBD 所成角与直线PC 与平面PBD 所成角相等,设为θ.不妨设1CD =,则=PC 设C 到平面PBD 的距离为h .则13C PBD PBD V S h -=⋅ .又11212333C PBDB PCD PCD V V S AB --==⋅=⨯⨯= .在PBD △中,PB =BD PD ==,所以12PBD S =⨯= .所以33C PBD PBD V h S -=== .所以63sin θ6h PC ===.故直线EF 与平面PBD.18.设A 是由若干个正整数组成的集合,且存在3个不同的元素a ,b ,c A Î,使得a b b c -=-,则称A 为“等差集”.(1)若集合{}1,3,5,9A =,B A ⊆,且B 是“等差集”,用列举法表示所有满足条件的B ;(2)若集合{}21,,1A m m =-是“等差集”,求m 的值;(3)已知正整数3n ≥,证明:{}23,,,,nx x x x ⋅⋅⋅不是“等差集”.【答案】(1)答案见解析(2)2m =(3)证明见解析【解析】【分析】(1)根据等差集的定义结合子集的定义求解即可;(2)根据等差集定义应用a b b c -=-,即2a c b +=逐个计算判断即可;(3)应用反证法证明集合不是等差集.【小问1详解】因为集合{}1,3,5,9A =,B A ⊆,存在3个不同的元素a ,b ,c B ∈,使得a b b c -=-,则{}1,3,5,9B =或{}1,3,5B =或{}1,5,9B =.【小问2详解】因为集合{}21,,1A m m =-是“等差集”,所以221m m =+-或2211m m =+-或()2221m m +=-,计算可得1132m -±=或0m =或2m =或1334m =,又因为m 正整数,所以2m =.【小问3详解】假设{}22,,,,nx x x x⋅⋅⋅是“等差集”,则存在{},,1,2,3,,,m n q n m n q ∈<< ,2n m q x x x =+成立,化简可得2m n q n x x --=+,0m n x ->因为*N ,1x q n ∈-≥,所以21q n x x ->≥≥,所以=1与{}22,,,,nx x x x ⋅⋅⋅集合的互异性矛盾,所以{}22,,,,nx x x x⋅⋅⋅不是“等差集”.【点睛】方法点睛:解题方法是定义的理解,应用反证法设集合是等差集,再化简计算得出矛盾即可证明.19.过点()00,A x y 作斜率分别为1k ,2k 的直线1l ,2l ,若()120k k μμ=≠,则称直线1l ,2l 是()A K μ定积直线或()()00,x y K μ定积直线.(1)已知直线a :()0y kx k =≠,直线b :13y x k=-,试问是否存在点A ,使得直线a ,b 是()A K μ定积直线?请说明理由.(2)在OPM 中,O 为坐标原点,点P 与点M 均在第一象限,且点()00,M x y 在二次函数23y x =-的图象上.若直线OP 与直线OM 是()()0,01K 定积直线,直线OP 与直线PM 是()2P K -定积直线,直线OM与直线PM 是()00,202x y K x ⎛⎫- ⎪⎝⎭定积直线,求点P 的坐标.(3)已知直线m 与n 是()()2,44K --定积直线,设点()0,0O 到直线m ,n 的距离分别为1d ,2d ,求12d d 的取值范围.【答案】(1)存在,理由见解析(2)()1,2(3)[)0,8【解析】【分析】(1)由定积直线的定义运算可求结论;(2)设直线OM 的斜率为()0λλ≠,则直线OP 的斜率为1λ,利用定积直线的定义可得01x λ=或1-,进而2003x x λ-=,计算即可;(3)设直线():42m y t x -=+,直线()4:42n y x t-=-+,其中0t ≠,计算得12d d =,利用基本不等式可求12d d 的取值范围.【小问1详解】存在点()0,0A ,使得a ,b 是()A K μ定积直线,理由如下:由题意可得1133k k ⎛⎫⋅-=- ⎪⎝⎭,由()013y kx k y x k ⎧=≠⎪⎨=-⎪⎩,解得00x y =⎧⎨=⎩,故存在点()0,0A ,使得a ,b 是()A K μ定积直线,且13μ=-.【小问2详解】设直线OM 的斜率为()0λλ≠,则直线OP 的斜率为1λ,直线PM 的斜率为2λ-.依题意得()2022x λλ⋅-=-,得2201x λ=,即01x λ=或1-.直线OM 的方程为y x λ=,因为点()200,3M x x -在直线OM 上,所以2003x x λ-=.因为点M 在第一象限,所以20031x x λ-==,解得02x =或2-(舍去),12λ=,()2,1M ,所以直线OP 的方程为12y x x λ==,直线PM 的方程为()2213y x x λ=--+=-+,由23y x y x =⎧⎨=-+⎩,得12x y =⎧⎨=⎩,即点P 的坐标为()1,2.【小问3详解】设直线():42m y t x -=+,直线()4:42n y xt-=-+,其中0t ≠,则12d d ===2216171725t t ++≥=,当且仅当2216t t =,即24t =时,等号成立,所以08≤<,即1208d d ≤<,故12d d 的取值范围为[)0,8.【点睛】思路点睛:理解新定义题型的含义,利用定积直线的定义进行计算求解,考查了运算求解能力,以及基本不等式的应用.。

上海市建平中学2024-2025学年高二上学期10月月考数学试题

上海市建平中学2024-2025学年高二上学期10月月考数学试题

上海市建平中学2024-2025学年高二上学期10月月考数学试题一、填空题1.圆22:4O x y +=在点处的切线方程为. 2.抛物线22y x =的焦点坐标是.3.已知函数()f x =R ,则m 的取值范围为.4.已知1F ,2F 是椭圆22193x y+=的两个焦点,过1F 的直线交此椭圆于A ,B 两点.若228AF BF +=,则AB =;5.双曲线222x y k -=的焦距是10,则实数k 的值为.6.设集合{}23A m m =-<,22123x y B m m m ⎧⎪=+=⎨+-⎪⎩是双曲线},则A B =I.7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,点()0,2B b ,双曲线的渐近线上存在一点P ,使得顺次连接,,,A B F P 构成平行四边形,则双曲线C 的离心率为.8.设P 是椭圆2214x y +=第一象限部分上的一点,过P 分别向x 轴、y 轴作垂线,垂足分别为M 、N ,则矩形OMPN 的面积的最大值为.9.若直线ax +y +b ﹣1=0(a >0,b >0)过抛物线y 2=4x 的焦点F ,则11a b+的最小值是.10.已知抛物线对称轴为x 轴.若抛物线上的动点到直线34120x y +-=的最短距离为1,则该抛物线的标准方程为.11.坐标平面上一点P 到点()1,0A ,(),2B a 及到直线1x =-的距离都相等.如果这样的点P 有且只有两个,那么实数a 的取值范围是.12.已知函数()2f x ax b =-,其中,R a b ∈,()f x 的最大值为(),M a b ,则(),M a b的最小值为.二、单选题13.方程210x -+=的两个根可分别作为( )A .椭圆和双曲线的离心率B .两双曲线的离心率C .两椭圆的离心率D .以上皆错14.“222a b R +<”是“圆()()222x a y b R -+-=与坐标轴有四个交点”的( )A .充分非必要条件;B .必要非充分条件;C .充要条件;D .非充分非必要条件.15.已知方程()()22222200b x a k x b a b b a ⎡⎤---=>>⎣⎦的根大于a ,则实数k 满足( )A .bk a > B .b k a < C .a k b>D .a k b<16.设曲线E 的方程为2249x y +=1,动点A (m ,n ),B (﹣m ,n ),C (﹣m ,﹣n ),D (m ,﹣n )在E 上,对于结论:①四边形ABCD 的面积的最小值为48;②四边形ABCD 外接圆的面积的最小值为25π.下面说法正确的是( )A .①错,②对B .①对,②错C .①②都错D .①②都对三、解答题17.已知,αβ是方程24420x mx m -++=的两个实数根. (1)求m 的取值范围;(2)若()22f x αβ=+,求()f m 的最小值.18.已知p :点()1,3M 不在圆()()2216x m y m ++-=的内部,q :“曲线2122:128x yC m m +=+表示焦点在x 轴上的椭圆”,s :“曲线222:11x ym t m t C +=---表示双曲线”.(1)若p 和q 都成立,求实数m 的取值范围; (2)若q 是s 的必要不充分条件,求t 的取值范围.19.如图1,某十字路口的花圃中央有一个底面半径为2m 的圆柱形花柱,四周斑马线的内侧连线构成边长为20m 的正方形.因工程需要,测量员将使用仪器沿斑马线的内侧进行测量,其中仪器P 的移动速度为1.5m/s ,仪器的移动速度为1m/s .若仪器Р与仪器Q 的对视光线被花柱阻挡,则称仪器Q 在仪器P 的“盲区”中.(1)如图2,斑马线的内侧连线构成正方形ABCD ,仪器Р在点A 处,仪器Q 在BC 上距离C 点4m 处,试判断仪器Q 是否在仪器P 的“盲区”中,并说明理由;(2)如图3,斑马线的内侧连线构成正方形ABCD ,仪器P 从点A 出发向点D 移动,同时仪器Q 从点C 出发向点B 移动,在这个移动过程中,仪器Q 在仪器Р的“盲区”中的时长为多少?20.如图所示,已知动直线y kx =交圆()2224x y -+=于坐标原点O 和点A ,交直线4x =于点B ,若动点M 满足OM AB =u u u u r u u u r,动点M 的轨迹C 的方程为(),0F x y =.(1)试用k 表示点A 、点B 的坐标; (2)求动点M 的轨迹方程(),0F x y =;(3)以下给出曲线C 的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分) ①对称性;②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点); ③图形范围; ④渐近线;⑤对方程(),0F x y =,当0y ≥时,函数()y f x =的单调性.21.已知直线0x y +与椭圆222:1x E y a+=有且只有一个公共点.(1)求椭圆E 的方程;(2)是否存在实数λ,使椭圆E 上存在不同两点P 、Q 关于直线20x y λ--=对称?若存在,求λ的取值范围;若不存在,请说明理由;(3)椭圆E 的内接四边形ABCD 的对角线AC 与BD 垂直相交于椭圆的左焦点,S 是四边形ABCD 的面积,求S 的最小值.。

山西省山西大学附属中学校2024-2025学年高二10月月考数学试题

山西省山西大学附属中学校2024-2025学年高二10月月考数学试题

山西大学附属中学2024~2025学年第一学期高二10月月考(总第二次)数 学 试 题考试时间:120分钟 满分:150分一、选择题(本小题8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有2.已知向量,若,则( )A . B. C . D .3.已知直线:与直线:,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在空间四边形中,若分别是的中点,是上的5.如图,在圆锥SO 中,AB 是底面圆的直径,, D ,E分别为SO,SB 的中点,点C 是底面圆周上一点(不同于A ,B )且,则直线AD 与直线CE 所成角的余弦值为( )6.已知直线过点,且为其一个方向向量,则点到直线的距离为( )7.已知两点,若直线与线段有公共点,则的取值范围为( )A .B .C .D .8.已知点P 和非零实数,若两条不同的直线,均过点P ,且斜率之积为,则称直(,2,1),(2,4,2)a x b =-=- //a b x =1-15-51l 2y x a =-+2l ()222y a x =-+1a =-12l l //OABC ,E F ,AB BC H EF O 2AB SO ==OC AB ⊥l (2,3,1)A (1,1,1)a = (4,3,2)P l ()()1,5,0,0A B -:22l y kx k =-+AB k (][),11,-∞-+∞ (][],10,1-∞- [][)1,01,-+∞ []1,1-λ1l 2l λ项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列说法中不正确的是( )A. 若直线的倾斜角越大,则直线的斜率就越大B. 若直线过点,且它的倾斜角为,则这条直线必过点C. 过两点的直线的方程为D. 直线在在y 轴上的截距为10.在空间直角坐标系中,点,,,下列结论正确的有()A .B .向量与的夹角的余弦值为C .点关于轴的对称点坐标为D .向量在11.如图,在三棱锥中,,,为的中点,点是棱上一动点,则下列结论正确的是( )A. 三棱锥B. 若为棱的中点,则异面直线与C. 若与平面所成角的正弦值为,则二面角D. 的取值范围为三、填空题(12.已知点在13.直线的一个方向向量为,且经过点,则直线的一般式方程为 . 14.在棱长为1的正方体中,为棱上一点,且,为正方形内一动点(含边界),若且与平面所成的角最大时,线段的长度为 .(1,2)45︒(3,4)()()1122,,,x y x y 112121y y x x y y x x --=--2y kx =-2Oxyz (0,0,0)O (2,1,1)A --(3,4,5)B AB =OA OB A z OA OB -P ABC AB BC ==BA BC ⊥2PA PB PC ===O AC M -P ABC 1M BC PM AB PC PAM 12M PA C --PM MA +4⎤⎥⎦P 12OP OA mOB =+ 1111ABCD A B C D -P 1BB 12B P PB =Q 11BB C C 1D Q =1D Q 1A PD 1A Q(1)若直线不经过第四象限,求的取值范围;(2)若直线交轴负半轴于点,交轴正半轴于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.l k l x A y B O AOB V S S l18.(本小题满分17分)已知在四棱锥中,底面是边长为4的正方形,是正三角形,点分别是的中点,平面.(1)求证:;(2)求点B 到平面的距离;(3)在线段上是否存在点N ,使得直线与平面所成角的正弦值为在,求线段的长度;若不存在,说明理由.19.分)已知的正四面体,设的四个顶点到平面的距离所构成的集合为,若中元素的个数为,则称为的阶等距平面,为的阶等距集.(1)若为的1阶等距平面且1阶等距集为,求的所有可能值以及相应的的个数;(2)已知为的4阶等距平面,且点与点分别位于的两侧. 是否存在,使的4阶等距集为,其中点到的距离为?若存在,求平面与夹角的余弦值;若不存在,说明理由. P ABCD -ABCD PAD △,,,E F M O ,,,PC PD BC AD ⊥PO ABCD EF PA ⊥EFM PA MN EFM PN ΩABCD ΩαM M k αΩk M Ωk αΩ{}a a αβΩA ,,B C D ββΩ{},2,3,4b b b b A βb BCD β。

重庆市育才中学2024-2025学年度高2026届高二上学期10月月考数学试题答案

重庆市育才中学2024-2025学年度高2026届高二上学期10月月考数学试题答案

重庆市育才中学校高2026届高二(上)十月月考数学试题参考答案一、选择题:本题共8个小题,每小题5分,共40分.1-4:ADBB5-8:CCBD8【解析】:如图所示,取PA 中点为O ,由于PB AB ⊥,PC AC ⊥,则OB OC OP OA ===,故O 是三棱锥的外接球的球心,易知4PA =,PB PC ==.过点P 作PH ABC ⊥平面,连接AH ,易知AH 过BC 中点M ,连接PM .因为AM =PM =,4PA =,则直线PA 与平面ABC 所成角PAM ∠,由余弦定理可得22243cos3PAM +-∠==,故选D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.三、填空题:本题共3个小题,每小题5分,共15分.2121==+OP d d ;9)8()8(88221,82,82222122212221=-+-≤--=⨯=-=-=d d d d BD AC S d BD d AC ABCD 当且仅当21d d =时取得等号.四、解答题:本题共5小题,15题13分,16、17题15分,18、19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.15.(1)过点(5,1)A -,点(3,7)B 的直线的两点式方程为:157135y x -+=-+,......................................................................................(2分)整理得:34190x y -+=∴直线l 的方程为34190x y -+=..........................................................................................(4分)(2)设线段MN 的中点为P ,则由(1,0)M ,(3,2)N 有(2,1)P ,且直线MN 的斜率为20131MN k -==-,因此线段MN 的垂直平分线l '的方程为:1(2)y x -=--,即30x y +-=,.........................(7分)由垂径定理可知,圆心C 也在线段MN 的垂直平分线上,则有301341904x y x x y y +-==-⎧⎧⇒⎨⎨-+==⎩⎩∴圆C 的坐标是(1,4)-;..................................................(9分)圆的半径22(11)(40)25r MC ==--+-=,................................................................(11分)∴圆C 的标准方程是22(1)(4)20x y ++-=.....................................................................(13分)16.(1)连接1BC ,设11BC B C O = ,连接OD ,由三棱柱的性质可知,侧面11BCC B 为平行四边形,∴O 为1BC 的中点,........................................(2分)又∵D 为AB 中点,∴在1ABC 中,1//OD AC ,又∵OD ⊂平面1CDB ,1AC ⊄平面1CDB ,..................................................(5分)∴1//AC 平面1CDB ................................................................................(7分)(2)由题意可知1,,CA CB CC 两两垂直故以1,,CA CB CC 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()0,0,0C ,()6,0,0A ,()16,0,8A ,()3,4,0D ,()10,8,8B .所以()10,0,8AA = ,()3,4,0CD = ,()10,8,8CB =,...................................(9分)设平面1CDB 的法向量为n(),,x y z =,则1340880C y CBD n x n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 令4x =,得()4,3,3n =- ;........................................................................(12分)设1AA 与平面1CDB 所成角为θ,则sin θ=111cos ,n AA n AA n AA ⋅===所以1AA 与平面1CDB 所成角的正弦值为33434..........................................................................(15分)17.(1)由BC BA ==90CBA ∠=︒,所以2AC =.取AC 的中点O ,连接PO ,BO ,由题意,得112PO BO AC ===,再由PB 222PO BO PB +=,即PO BO ⊥........(3分)由题易知PO AC ⊥,又AC BO O ⋂=,,BO AC ⊂面ABC ,所以⊥PO 平面ABC ,............(5分)又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC ..........................................................(6分)(2)由(1)可知PO OB ⊥,PO OC ⊥,又OB AC ⊥,故以OC ,OB ,OP 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()1,0,0C ,()0,1,0B ,()1,0,0A -,0,0,1.所以()1,0,1AP = ,()1,1,0BC =- ,()1,0,1PC =- ,...........................(8分)令(),0,AM AP λλλ==,()01λ<<所以()1,0,M λλ-.所以()2,0,MC λλ=--.设平面MBC 的法向量为m()111,,x y z =,则()1111020BC m x y MC m x z λλ⎧⋅=-=⎪⎨⋅=--=⎪⎩ 令11x =,得m 21,1,λλ-⎛⎫= ⎪⎝⎭;..................................................(10分)设平面PBC 的法向量为()222,,n x y z =,222200BC n x y PC n x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令21x =,得()1,1,1n = ;...................................................................(12分)则cos ,n m n m n m⋅=79=,设2t λλ-=,()1,t ∞∈+,则上式可化为2115450t t --=,..................................................(14分)即()()51110t t -+=,所以5t =(111t =-舍去),所以25λλ-=,解得13λ=.....................(15分)18.解:(1)设动点M 坐标为),(y x ,由MA MO 21=,即2222)3(21y x y x ++=+,.....................................................................................(4分)整理得4)1(22=+-y x ......................................................................................(6分)(2)设直线l 的方程为2-=kx y ,Q P ,两点的坐标分别为),(),(2211y x y x ,联立⎩⎨⎧-==+-24)1(22kx y y x ,整理得01)24()1(22=++-+x k x k (*)..........................................(9分)因为(*)式的两根为21,x x ,所以121222421,11k x x x x k k ++==++,........................................(10分)0)1(4)24(22>+-+=∆k k ,即34-<k 或0>k .........................................(11分)则2121212121212(2)(2)(1)2()43OP OQ x x y y x x kx kx k x x k x x ⋅=+=+--=+-++=-,..............(13分)将121222421,11k x x x x k k ++==++代入上式,化简解得2=k .........................................(15分)而2=k 满足0>∆,故直线l 的方程为)1(2-=x y .因为圆心)0,1(M 在直线l 上,所以4=PQ ...................................................................(17分)19.解:(1)在EB D '∆中,易得4B E '=,33B D '=,7DE =,由余弦定理可得2223cos 22B E B D DE DB E B E B D ''+-'∠=='',从而6DB E π'∠=..............(4分)提示:可建立空间坐标系利用向量求夹角的余弦值为32,从而得出6DB E π'∠=.(2)(i )曲线Γ是椭圆...............................................................................................(6分)因为二面角B AC D --为直二面角,且90ACB ︒∠=,所以B C α'⊥,如图1,不妨取AC 的中点为O ,以OD 为x 轴,OC 为y 轴,过点O 作B C '的平行线为z 轴建立空间直角坐标系.则点(0,3,23)B ',(0,1,0)E ,设(,,0)P x y ,(0,2,23)B E '=-- ,(,3,23)B P x y '=--,...........(8分)图1由(1)可知6PB E DB E π''∠=∠=,从而222183cos 24(3)12B E B P y PB E B E B P x y ''⋅-+'∠===''+-+ ,...............(10分)化简可得:22169x y +=,即为Γ的方程.......................................................(12分)说明:不同的建系可能得到不同的方程,只要得出椭圆的方程即可得分.(ii )将立体几何平面化,只需研究平面α上几何关系.不防将(i )中椭圆所在坐标系逆时针旋转90︒得到图2,在新坐标系下椭圆方程为22196x y +=,直线l 的方程为3530x y +-=,引理:点11(,)M x y 与直线0mx ny c ++=上一动点22(,)N x y 的最小曼哈顿距离为{}11min (,)max ,mx ny cd M N m n ++=.证明:如图3,当m n >,即12MM MM <时,由于111111(,)d M N MN N N MN N M MM =+≥+=,当点N 在点1M 处取得等号成立,即111min 1(,)mx ny c ny cd M N x m m+++=+=,同理可以得出m n ≤时的最小曼哈顿距离,综上{}11min (,)max ,mx ny cd M N m n ++=得证.设点(3cos ,6sin )M θθ.由引理可知:{}min 35333cos 6sin 53(,)5113max3,1M M x y d M N θθ+-+-==≥-,所以(,)d M N 的最小值为511-.........................................................(17分)图2图3。

福建省2024-2025学年高二上学期10月月考模拟数学试卷 (解析版)

福建省2024-2025学年高二上学期10月月考模拟数学试卷 (解析版)

2024-2025学年福建省高二上学期10月月考模拟数学试卷注 意 事 项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量(0,3,3)a =是直线l 的方向向量,(1,1,0)b − 是平面m 的一个法向量,则直线l与平面m 所成的角为( ) A .π6B .π4C.π3D .π2【答案】A【分析】根据题意,由空间向量的坐标运算,结合线面角的公式即可得到结果. 【详解】设直线l 与平面m 所成的角为θ,由题意可得,1sin cos ,2a θ=< ,即π6θ=.故选:A 2.已知()2,1,3a =−,()1,4,2b =−− ,(),2,4c λ= ,若a ,b ,c共面,则实数λ的值为( )A .1B .2C .3D .4【答案】C【分析】由a,b,c 三向量共面,我们可以用向量a,b作基底表示向量c,进而构造关于λ的方程,解方程即可求出实数λ的值.【详解】 ()2,1,3a =− ,()1,4,2b =−−,∴a与b不平行,又 a,b,c三向量共面,则存在实数x ,y 使c xa yb =+,即242324x y x y x y λ−= −+=−= ,解得213x y λ== =. 故选:C3.如图,在棱长均相等的四面体O ABC −中,点D 为AB 的中点,12CE ED =,设,,OA a OB b OC c === ,则OE =( )A .111663a b c ++B .111333a b c ++C .111663a b c +−D .112663a b c ++【答案】D【分析】根据空间向量的线性运算求得正确答案.【详解】由于12CE ED =, 所以()11113332CE CD CA AD CA AB==+=+ 1136CA AB +, 所以1136OE OC CE OC CA AB =+=++()()1136OC OA OC OB OA =+−+−112112663663OA OB OC a b c =++=++. 故选:D4.设,R x y ∈,向量(),1,1a x = ,()1,,1b y =,()2,4,2c =− 且,//a c b c ⊥,则a b += ( )A.BC .3D .4【答案】C【分析】根据空间向量平行与垂直的坐标表示,求得,x y 的值,结合向量模的计算公式,即可求解.【详解】由向量(),1,1,a x = ()1,,1,= b y ()2,4,2,=−c 且,//a c b c ⊥,可得2420124x y−+== − ,解得1,2x y ==−,所以()1,1,1a = ,()1,2,1b =− ,则()2,1,2a b +− ,所以3a b +=. 故选:C.5.已知三棱锥O ABC −,点M ,N 分别为OA ,BC 的中点,且OA a = ,OB b =,OC c = ,用a ,b ,c表示MN ,则MN 等于( )A .()12b c a +− B .()12a b c +− C .()12a b c −+ D .()12c a b −− 【答案】A【分析】由向量对应线段的空间关系,应用向量加法法则用OA ,OB ,OC 表示出MN即可.【详解】由图知:1111()2222MN MO OC CN OA OC CB OA OC OB OC =++=−++=−++− 1111()2222OA OB OC b c a =−++=+−.故选:A6.已知正三棱柱111ABC A B C −的各棱长都为2,以下选项正确的是( )A .异面直线1AB 与1BC 垂直B .1BC 与平面11AA B BC .平面1ABC 与平面ABCD .点C 到直线1AB【答案】B【分析】建立如图所示的空间直角坐标系,由空间向量法求空间角、距离,判断垂直. 【详解】如图,以AB 为x 轴,1AA 为z 轴,建立如图所示的空间直角坐标系, 则(0,0,0)A ,(2,0,0)B,C ,1(0,0,2)A ,1(2,0,2)B,1C ,11(2,0,2),(2)AB BC −,112420AB BC ⋅=−+=≠ ,1AB 与1BC不垂直,A 错;平面11AA B B 的一个法向量为(0,1,0)m =,111cos ,BC m BC mBC m ⋅==所以1BC 与平面11AA B BB 正确; 设平面1ABC 的一个法向量是(,,)n x y z = ,又(2,0,0)AB =,由100n AB n BC ⋅= ⋅=得2020x x z = −+= ,令2y =得(0,2,n = ,平面ABC 的一个法向量是(0,0,1)p =,cos ,n p =所以平面1ABC 与平面ABCC 错;AC =,12AB AC ⋅=,d 所以点C 到直线1AB的距离为h ===,D 错; 故选:B .7.在正方体1111ABCD A B C D −中,在正方形11DD C C 中有一动点P ,满足1PD PD ⊥,则直线PB 与平面11DD C C 所成角中最大角的正切值为( )A .1 BC D 【答案】D【分析】根据题意,可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点.由BPC ∠即为直线PB 与平面11DD C C 所成的角可知当PC 取得最小值时,PB 与平面11DD C C 所成的角最大.而连接圆心E 与C 时,与半圆的交点为P,此时PC 取得最小值.设出正方体的棱长,即可求得PC ,进而求得tan BPC ∠.【详解】正方体1111ABCD A B C D −中,正方形11DD C C 内的点P 满足1PD PD ⊥ 可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点,设圆心为E,如下图所示:当直线PB 与平面11DD C C 所成最大角时,点P 位于圆心E 与C 点连线上 此时PC 取得最小值.则BPC ∠即为直线PB 与平面11DD C C 所成的角设正方体的边长为2,则1PC EC EP =−−,2BC =所以tan BC BPC PC ∠=【点睛】本题考查了空间中动点的轨迹问题,直线与平面夹角的求法,对空间想象能力要求较高,属于中档题.8.我国古代数学名著《九章算术》中记载的“刍薨”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍薨,其中四边形ABCD 为矩形,其中8AB =,AD =ADE 与BCF 都是等边三角形,且二面角E AD B −−与F BC A −−相等,则EF长度的取值范围为( )A .()2,14B .()2,8C .()0,12D .()2,12【答案】A【分析】由题意找到二面角E AD B −−与F BC A −−的两个极端位置,即二面角的平面角为0 和180 时,求得相应EF 的长,集合题意即可得答案.【详解】由题意可知AD =ADE 与BCF 都是等边三角形,故ADE 与BCF 的底边,AD BC 上的高为3=, 因为二面角E AD B −−与F BC A −−相等,故当该二面角的平面角为0 时,此时EF 落在四边形ABCD 内,长度为8232−×=,当该二面角的平面角为180 时,此时EF 落在平面ABCD 上,长度为82314+×=,由于该几何体ABCDEF 为五面体,故二面角E AD B −−与F BC A −−的平面角大于0 小于180 ,故EF 长度的取值范围为()2,14,二、选择题:本题共3小题,每小题6分,共18分。

四川省南充市白塔中学2024-2025学年高二上学期10月月考数学试题

四川省南充市白塔中学2024-2025学年高二上学期10月月考数学试题

四川省南充市白塔中学2024-2025学年高二上学期10月月考数学试题一、单选题1.()()123322a b c a b c +----= ()A .542a c--B .5422a b c-+-C .53722a b c-++D .59522a b c-+-2.在不透明的布袋中,装有大小、形状完全相同的3个黑球、1个红球,从中摸一个球,摸出1个黑球这一事件是()A .必然事件B .随机事件C .确定事件D .不可能事件3.把红、蓝、黑、白4张纸牌随机地分给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A .对立B .相等C .相互独立D .互斥但不对立4.已知空间向量()1,3,5a =- ,()2,,b x y = ,且//a b,则x y -=()A .16-B .16C .4D .4-5.若{},,a b c构成空间的一个基底,则下列各组向量中能构成空间的一个基底的是()A .2,,2b c b b c+- B .,2,2a a b a b+-C .,,a b a b c+- D .,,a b a b c c+++ 6.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是16,14,13,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为A .3172B .712C .2572D .15727.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A .333,,22⎛⎫ ⎪⎝⎭B .333,,244⎛⎫ ⎪⎝⎭C .333,,422⎛⎫ ⎪⎝⎭D .()4,2,28.正三棱柱111ABC A B C -中,2AB =,1AA =O 为BC 的中点,M 为棱11B C 上的动点,N 为棱AM 上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A .⎣B .,27⎢⎣⎦C .,47⎢⎣⎦D .二、多选题9.已知事件A ,B ,且()0.4,()0.3P A P B ==,则()A .如果B A ⊆,那么()0.3P AB =B .如果B A ⊆,那么()0.4P A B = C .如果A 与B 相互独立,那么()0.7P A B ⋃=D .如果A 与B 相互独立,那么()0.42P AB =10.下列事件中,,A B 是相互独立事件的是()A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸两球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为3或4”D .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”11.如图,四棱锥P ABCD -的底面为平行四边形,且π3APD APC DPC ∠=∠=∠=,2,3PA PC PD ===,G 为PCD △的重心,M 为BG 的中点.若,BG mPA nPC pPD PT PD λ=++=,则下列结论正确的是()A .13m n p ++=-.B .5PM =C .若14λ=,则向量,,PM AD GT 共面D .若BG GT ⊥ ,则16λ=三、填空题12.设向量()1,,3a m = ,()4,1,0b =- ,若a b ⊥,则m =.13.袋中有红球、黑球、黄球、绿球共12个,它们除颜色外完全相同,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,则得到黄球的概率是.14.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,底面ABCD 是矩形,26AB BC ==,PC PD ⊥,PC PD =,点O 是CD 的中点,则线段PB 上的动点E 到直线AO 的距离的最小值为.四、解答题15.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11BCC B 为正方形,2BC =,C 1A =.(1)求证:1⊥BC 平面1AB C ;(2)求直线1AB 与平面1ABC 所成的角的正弦值.16.平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =,且1160A AD A AB ∠=∠=︒,M 为BD 中点,P 为1BB 中点,设AB a=,AD b = ,1AA c = ;(1)用向量a ,b ,c 表示向量PM,并求出线段PM 的长度;(2)请求出异面直线PM 与1AC 所成夹角的余弦值.17.如图,在正三棱柱111ABC A B C -中,12BC CC M N P ==,,,分别是11CC AB BB ,,的中点.(1)求点M 到平面PCN 的距离.(2)在线段1BB 上是否存在一点Q ,使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.18.某学校组织校园安全知识竞赛.在初赛中有两轮答题,第一轮从A 类的5个问题中任选两题作答,若两题都答对,则得40分,否则得0分;第二轮从B 类的5个问题中任选两题作答,每答对1题得30分,答错得0分若两轮总积分不低于60分则晋级复赛.小芳和小明同时参赛,已知小芳每个问题答对的概率都为0.5.在A 类的5个问题中,小明只能答对4个问题;在B 类的5个问题中,小明每个问题答对的概率都为0.4.他们回答任一问题正确与否互不影响.(1)求小明在第一轮得40分的概率;(2)以晋级复赛的概率大小为依据,小芳和小明谁更容易晋级复赛?19.如图①所示,长方形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -.(1)求四棱锥P ABCM-的体积的最大值;(2)若棱PB的中点为N,求CN的长;(3)设P AM D--的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM和平面PBC夹角余弦值的最小值.。

广西壮族自治区贵百河联考2024-2025学年高二上学期10月月考数学试题(含解析)

广西壮族自治区贵百河联考2024-2025学年高二上学期10月月考数学试题(含解析)

贵百河联考2024-2025学年高二上学期10月月考数学(考试时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.回答非选择题时,将答案写在答题卡上,写在试卷上无效。

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设为虚数单位,若复数,则复数的实部为( )A .B .C .D .2.若向量是直线的一个方向向量,则直线的倾斜角为()A .B .C .D .3.定义运算:.已知,则( )ABC .D .4.已知,两点到直线的距离相等,求的值( )A.B .C .或D .或5.从1984年第23届洛杉矶夏季奥运会到2024年第33届巴黎夏季奥运会,我国获得的夏季奥运会金牌数依次为15、5、16、16、28、32、51、38、26、38、40,这11个数据的60%分位数是( )A .16B .30C .32D .516.关于的方程有一根为1,则一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形7.如图,在直三棱柱中,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为( )A .B C .D .i 121iz i +=+z 12-39-1232)a =l l 6π3π23π56πa b ad bc c d =-()sin cos180sin 270cos tan 60ααα︒︒=+tan α=()3,4A --()6,3B :10l ax y ++=a 1397-13-79-1379-x 22cos cos cos 02Cx x A B -⋅⋅-=ABC △111ABC A B C -1AC AB AA ==120BAC ∠= D E F 11B C BC 11A C AD EF 310257108.已知函数,则有( )A .最小值B .最大值C .最小值D .最大值二、多选题:本题共3小题,每小题6分,共18分。

2024-2025学年湖南省“名校大联考”高二上学期10月月考数学试题(含答案)

2024-2025学年湖南省“名校大联考”高二上学期10月月考数学试题(含答案)

2024-2025学年湖南省“名校大联考”高二上学期10月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.复数z =4+ii 在复平面内对应的点位于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.已知椭圆x 2a 2+y 23=1(a > 3)的离心率为12,左、右焦点分别为F 1,F 2,A 为椭圆上除左、右顶点外的一动点,则▵AF 1F 2的面积最大为( )A. 1B.3C. 2D. 233.设a ∈R ,直线l 1:(a +1)x +y−1=0,l 2:2x +ay−(a +2)=0,则“a =1”是“l 1//l 2”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件4.若函数f (x )=(x 2+ax )3x9x +1为偶函数,则a =( )A. −1B. 0C. 1D. 35.已知点(x 0,y 0)为直线x +2y +6=0上任意一点,则(x 0+1)2+y 20的最小值是( )A.3B. 2C.5 D.66.如图,在异面直线m,n 上分别取点A,B 和C,D ,使AB =2,CD =4,BD =6,且AC ⊥m,AC ⊥n ,若<AB ,CD >=π3,则线段AC 的长为( )A. 2B. 22 C. 26 D. 67.已知点P 为椭圆x 216+y 29=1上任意一点,则点P 到直线l:x−y +9=0的距离的最小值为( )A. 25B. 4C. 23D. 228.如图所示,在四棱锥P−ABCD 中,底面ABCD 是边长为2的菱形,PA =3,∠ABC =∠BAP =π3,且cos ∠PAD =16,则cos ∠PBC =( )A. −2 77 B.2 77 C. −3 714 D.3 714二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

山西省2024-2025学年高二上学期第二次月考试题 数学含答案

山西省2024-2025学年高二上学期第二次月考试题 数学含答案

山西省2024—2025学年第一学期第二次阶段性考试题(卷)高二年级数学(答案在最后)卷面总分值150分考试时间120分钟第I 卷(客观题)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.直线10x ++=的倾斜角为()A.π6B.5π6 C.π3D.2π32.已知m 为实数,直线()()12:220,:5210l m x y l x m y ++-=+-+=,则“12l l //”是“3m =-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若方程2224240x y mx y m m ++-+-=表示一个圆,则实数m 的取值范围是()A .1m <- B.1m < C.1m >- D.1m ≥-4.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是()A.250x y +-=B.20x y -=C.230x y -+= D.20x y +=5.已知a ,b 都是正实数,且直线()2360x b y --+=与直线50bx ay +-=互相垂直,则23a b +的最小值为()A.12B.10C.8D.256.如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别为,OA BC 的中点,点G 在线段MN上,3MG GN =,若OG xOA yOB zOC =++ ,则x y z ++=()A.118B.98C.78D.587.直线:(2)(21)340l m x m y m -++++=分别与x 轴,y 轴交于A 、B 两点,若三角形AOB 面积为5,则实数m 的解有几个()A.B.2C.3D.48.若圆()()22:344C x y -+-=上总存在两点关于直线43120ax by ++=对称,则过圆C 外一点(),a b 向圆C 所作的切线长的最小值是()A.4B.2C.25D.27二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.下列说法一定正确的是()A.过点(0,1)的直线方程为1y kx =+B.直线sin cos 10x y αα-+=的倾斜角为αC.若0ab >,0bc <,则直线0ax by c ++=不经过第三象限D.过()11,x y ,()22,x y 两点的直线方程为()()()()121121y y x x x x y y --=--10.已知直线:50l x y +-=与圆22:(1)2C x y -+=,若点P 为直线l 上的一个动点,下列说法正确的是()A.直线l 与圆C 相离B.圆C 关于直线l 对称的圆的方程为22(5)(4)2x y -++=C.若点Q 为圆C 上的动点,则PQ 的取值范围为)2,+∞D.圆C 上存在两个点到直线l 的距离为32211.如图,在三棱锥P ABC -中,2AB BC ==,BA BC ⊥,2PA PB PC ===,O 为AC 的中点,点M 是棱BC 上一动点,则下列结论正确的是()A.三棱锥P ABC -1+B.若M 为棱BC 的中点,则异面直线PM 与AB 所成角的余弦值为77C.若PC 与平面PAM 所成角的正弦值为12,则二面角M PA C --的正弦值为3D.PM MA +的取值范围为4⎤⎥⎦第Ⅱ卷(主观题)三、填空题:本大题共3小题,每小题5分,共15分.12.已知实数x ,y 满足1355y x =-,且23x -≤≤,则31y x -+的取值范围是__________.13.如图,已知点(8,0)A ,(0,4)B -,从点(3,0)P 射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程是__________.14.已知圆C :()()22114x y ++-=,若直线5y kx =+上总存在点P ,使得过点P 的圆C 的两条切线夹角为60o ,则实数k 的取值范围是_________四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线1l 的方程为240x y +-=,若2l 在x 轴上的截距为32,且12l l ⊥.(1)求直线1l 与2l 的交点坐标;(2)已知直线3l 经过1l 与2l 的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求3l 的方程.16.已知圆C 的圆心在直线y x =上,且过点(3,0)A ,(2,1)B -(1)求圆C 的方程;(2)若直线:4390l x y -+=与圆C 交于E 、F 两点,求线段EF 的长度.17.已知线段AB 的端点B 的坐标是(6,8),端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点(1,0).(1)求点M 的轨迹方程;(2)记(1)中求得的图形为曲线E ,若直线l 与曲线E 只有一个公共点,求直线l 的方程.18.已知三棱锥P ABC -满足,,AB AC AB PB AC PC ⊥⊥⊥,且3,AP BP BC ===(1)求证:⊥AP BC ;(2)求直线BC 与平面ABP 所成角的正弦值,19.在平面直角坐标系xOy 中,已知两点()()4,0,1,0S T ,动点P 满足2PS PT =,设点P 的轨迹为C .如图,动直线l 与曲线C 交于不同的两点,A B (,A B 均在x 轴上方),且180ATO BTO ∠+∠= .(1)求曲线C 的方程;(2)当A 为曲线C 与y 轴正半轴的交点时,求直线l 的方程;(3)是否存在一个定点,使得直线l 始终经过此定点?若存在,求出定点的坐标;若不存在,请说明理由.山西省2024—2025学年第一学期第二次阶段性考试题(卷)高二年级数学卷面总分值150分考试时间120分钟第I卷(客观题)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.【9题答案】【答案】CD【10题答案】【答案】ACD【11题答案】【答案】ABD第Ⅱ卷(主观题)三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦【13题答案】【答案】【14题答案】【答案】0k ≥或815k ≤-.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)()2,1(2)20x y -=或250x y +-=【16题答案】【答案】(1)22(1)(1)5x y -+-=.(2)2.【17题答案】【答案】(1)()()22344x y -+-=(2)1x =或3430x y --=【18题答案】【答案】(1)证明见解析(2)10【19题答案】【答案】(1)224x y +=(2)122y x =-+4,0(3)存在,定点为()。

2024-2025学年湖北云学部分重点高中高二上学期10月月考数学试题及答案

2024-2025学年湖北云学部分重点高中高二上学期10月月考数学试题及答案

2024年湖北云学名校联盟高二年级10月联考数学试卷命题学校:武汉二中审题人:夷陵中学考试时间:2024年10月15日 15:00-17:00 时长:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 12. 已知一组数据:2,5,7,x ,10平均数为6,则该组数据的第60百分位数为( ) A. 7B. 6.5C. 6D. 5.53. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 值为( ) A. 0B. 1C. 0或1D.13或1 4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈ 1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 圆上 C. P 在圆内D. P 与圆的位置关系不确定6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )的的在A.B.C.D.7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( ) A 2πB.4π3C.D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=; D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±.10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++; B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;..C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8.三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = BC 的长为______.14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56. (1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=.(1)求点C 的坐标; (2)求直线BC 的方程.17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值. 18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标; (3)求线段PQ 的中点N 的轨迹方程.19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD 所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由.(2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.2024年湖北云学名校联盟高二年级10月联考数学试卷命题学校:武汉二中审题人:夷陵中学考试时间:2024年10月15日 15:00-17:00 时长:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果.【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i32i 12i 1i 1i1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1C. 0或1D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可. 【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB =⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅ 169912129=++−−+19=.所以PQ =故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误; 对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ==,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2. 故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213APk −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ; D. DH OH ⋅ 的最小值为1−.【答案】BCD【解析】【分析】以{},,OA OB OC 为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅= . 对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+− 2133AB AC + ()()2133OB OA OC OA =−+− 2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++ 111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA = 时, DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− , 又AB OB OA =− ,所以2133DH AB OC =−− .故DH ,AB ,OC 共面.故B 正确; 对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+− 12152336OA OA OB OC OA =+−++−111336OA OB OC =−++ , 所以:HG OA ⋅= 111336OA OB OC OA −++⋅2111336OA OB OA OC OA =−+⋅+⋅ 1119660336=−×+×+×=, 所以HG OA ⊥ ,故GH OA ⊥ ,故C 正确;对D :设OH OA λ= ,()01λ≤≤.因为:DH OH OD =− ()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− . 所以DH OH ⋅ 2133OA OB OC OA λλ =−−⋅ ()2233OA OA OB OA OC λλλ−⋅−⋅ 296λλ−,()01λ≤≤. 当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( )A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8.【答案】ACD【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假.【详解】对A :由222382103410a +−×−×−+<⇒8a >.此时圆C :()()2245x y a −+−=. 因为过P 点的弦|AAAA |的最小值为4,所以CP= 又CP =⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==cos ACP ∠==,所以41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角,所以存在直线l 使得CA CB ⊥.故C 正确;对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MPNP BP =⇒(4AP BP MP NP ⋅=⋅=+=.又1sin 2PAC S PA PC APC APC =⋅⋅∠=∠ ,PBC S BPC =∠ ,且sin sin APC BPC ∠=∠. 所以22sin PAC PBC S S PA PB APC ⋅=⋅⋅∠ 28sin APC ∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确.故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值.三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______.【答案】49【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点, 圆224x y +=的圆心OO (0,0),半径2r =, 则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max27PA AO r =+=+=, 所以22max749PA ==; 故()()2243x y −++的最大值是49.故答案为:49. 13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos 2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+ ,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−,sin cos cos sin 2sin cos A B A B C A +=,()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C >,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =.14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED ,EG ,因为H 为AAAA 上的靠近D 的三分点,所以13DH AD =, 因为E 为AAAA 的中点,所以点E 到AAAA 的距离为点B 到AAAA 的距离的一半, 所以16DEH BAD S S = , 又G 为CCAA 上靠近D 的三分点,所以点G 到平面ABD 的距离为点C 到平面ABD 的距离的13, 所以111119663182G DEH G BAD C BAD V V V −−−==×=×=, 1233BCD FCG BCD BCD BCD BFGD S S S S S S =−=−= 四边形, 所以2211933323E BFGD E BCD A BCD V V V −−−==×=×=, 所以多面体EFGHBD 的体积为17322G DEH E BFGD V V −−+=+=. 故答案为:72. 【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】 样本中男生的人数为:100900601500×=;女生的人数为:1006040−=. 所以总样本的平均数为:6013.24015.214100x ×+×=. 【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=. (1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线10x y −+=上, 所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=, 又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=, .又因为ACB ∠的角平分线所在的直线方程为10x y −+=, 在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=. 17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠, 因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA A C ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC = , 为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E , 设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅=== , 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标; (3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= ,由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】 设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = =, 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+=可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=, 由220,230x y y +−= −=可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°.所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= +++=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。

重庆市广益2024-2025学年高二上学期10月月考数学试题含答案

重庆市广益2024-2025学年高二上学期10月月考数学试题含答案

重庆市广益2024-2025学年高二上学期10月月考数学试题(时间:120分钟,分值:150分)(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.直线310y --=的倾斜角为()A.30︒B.135︒C.60︒D.150︒【答案】A 【解析】【分析】根据直线倾斜角与斜率之间的关系即可得倾斜角.【详解】设直线的倾斜角为α,因为该直线的斜率为33,所以3tan 1803αα=︒≤<︒,所以30α=︒,故选:A2.已知直线1:230l ax y -+=与直线()2:310l x a y +-+=,若12l l ⊥,则a =()A.6B.6- C.2D.2-【答案】A 【解析】【分析】根据两直线垂直的充要条件得到方程,求解方程得答案.【详解】解:因为直线1:230l ax y -+=与直线()2:310l x a y +-+=,且12l l ⊥,所以()()1230a a ⨯+-⨯-=,解得6a =,故选:A.3.若点()1,1P 在圆220x y x y k ++-+=的外部,则实数k 的取值范围是()A.()2-+∞,B.12,2⎡⎤--⎢⎥⎣⎦C.12,2⎛⎫- ⎪⎝⎭ D.()2,2-【答案】C 【解析】【分析】根据点与圆的位置关系及方程表示圆列出方程组,从而可得出答案.【详解】解:因为点()1,1P 在圆220x y x y k ++-+=的外部,所以111101140k k ++-+>⎧⎨+->⎩,解得122k -<<.故选:C .4.已知三棱锥O ABC -,点M ,N 分别为AB ,OC 的中点,且OA a = ,OB b = ,OC c = ,用a ,b ,c表示MN ,则MN等于()A.1()2a b c +- B.1()2b c a +- C.1()2c a b -- D.1()2a b c -+ 【答案】C 【解析】【分析】根据空间向量的线性运算计算即可.【详解】MN MO ON=+ 111222OA OB OC=--+uu r uu ur uuu r 111222a b c =--+ .故选:C.5.某直线l 过点(3,4)B -,且在x 轴上的截距是在y 轴上截距的2倍,则该直线的斜率是()A.43-B.12-C.43或12- D.43-或12-【答案】D 【解析】【分析】讨论在x 轴和y 轴上的截距均为0或均不为0,设直线方程并由点在直线上求参数,即可得直线方程,进而写出其斜率.【详解】当直线在x 轴和y 轴上的截距均为0时,设直线的方程为y kx =,代入点(3,4)B -,则43k =-,解得43k =-,当直线在x 轴和y 轴上的截距均不为0时,设直线的方程为12x ym m +=,代入点(3,4)B -,则3412m m -+=,解得52m =,所以所求直线的方程为1552x y +=,即250x y +-=,综上,该直线的斜率是43-或12-.故选:D6.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A .相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D7.如图,在平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,侧面11A ADD 是正方形,且1120A AB ∠=︒,60DAB ∠=︒,2AB =,若P 是1C D 与1CD 的交点,则异面直线AP 与DC 的夹角的余弦值为()A.3714B.64C.74D.614【答案】A 【解析】【分析】根据平行六面体的结构特征及向量对应线段位置关系,结合向量加法、数乘的几何意义,将AP 、DC,用基底1,,AA AB AD表示出来,在应用向量数量积的运算律即可.【详解】在平行六面体1111ABCD A B C D -中,四边形11DD C C 是平行四边形,侧面11A ADD 是正方形,又P 是11,C D CD 的交点,所以P 是1CD 的中点,因为DC AB =,1120A AB ∠=,60,2DAB AB ∠== ,所以()(()111111)2222AP AD AC AA AD AD AB AA AB AD =+=+++=++ ,所以()22221111||42444AP AA AB AD AA AB AA AD AB AD =+++⋅+⋅+⋅111444422204227422⎡⎛⎫⎤=++⨯+⨯⨯⨯-++⨯⨯⨯= ⎪⎢⎥⎝⎭⎦⎣,所以7,AP =又2DC =,所以()()11112·222AP DC AA AB AD DC AA AB AD AB ⋅=++=++⋅()21122AA AB AB AD AB =⋅++⋅()211cos120||2|cos602AA AB AB AD AB =⋅++⋅∣21112222223222⎡⎤⎛⎫=⨯⨯-++⨯⨯⨯= ⎪⎢⎥⎝⎭⎣⎦,可得cos AP <,14AP DC DC AP DC⋅>==⋅,所以异面直线AP 与DC的夹角的余弦值为cos ,14AP DC =.故选:A.8.正四面体A BCD -的棱长为4,空间中的动点P满足PB PC += 则AP PD ⋅ 的取值范围为()A.44⎡-+⎣B.C.4⎡-⎣D.[]14,2-【答案】D 【解析】【分析】分别取BC ,AD 的中点E ,F ,由题意可得点P 的轨迹是以E为半径的球面,又AP PD ⋅=24PF - ,再求出PF 的最值即可求解【详解】分别取BC ,AD 的中点E ,F,则2PB PC PE +==所以PE =故点P 的轨迹是以E为半径的球面,()()()()AP PD PF FA PF FD PF FA PF FA ⋅=-+⋅+=-+⋅- 2224FA PF PF =-=- ,又ED ===EF ====所以minPFEF ==,maxPF EF ==所以AP PD ⋅的取值范围为[]14,2-.故选:D.二、多项选择题:本题共3小题,每小题6分,共计18分,有选错的得0分.9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭ ,()1,2,3c =-,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底【答案】BC 【解析】【分析】对A :计算出a b ⋅ 即可得;对B :由向量共线定理计算即可得;对C :计算a c ⋅ 并判断a 与c是否共线即可得;对D :借助空间向量基本定理即可得.【详解】对A :132********a b ⎛⎫⎛⎫⋅=⨯-+⨯+⨯-=--=- ⎪ ⎝⎭⎝⎭r r ,故a 与b 不垂直,故A 错误;对B :由13,1,22b ⎛⎫=-- ⎪⎝⎭ 、()1,2,3c =-,有12b c = ,故b 与c 共线,故B 正确;对C :()21022380a c ⋅=⨯+⨯-+⨯=> ,且a 与c不共线,故a 与c所成角为锐角,故C 正确;对D :由b 与c 共线,故a ,b ,c不可作为空间向量的一组基底,故D 错误.故选:BC .10.已知圆225()(12)2C x y --+=:,直线()():211740l m x m y m +++--=.则以下命题正确的有()A.直线l 恒过定点()3,0B.y 轴被圆C截得的弦长为C.直线l 与圆C 恒相交D.直线l 被圆C 截得弦长最长时,直线的方程为250x y +-=【答案】CD 【解析】【分析】根据直线方程求出定点坐标即可判断选项A ;求出圆和y 轴的交点坐标,即可判断选项B ;利用定点和圆的位置关系即可判断选项C ;当弦长最长时,直线过圆心从而判断选项D.【详解】对于A ,直线()():211740l m x m y m +++--=,即()2740m x y x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩,解得3,1x y ==,故直线过定点()3,1P ,故A 错误;对于B,圆225()(12)2C x y --+=:,当0x =时,2y =±故y 轴被圆C 截得的弦长为,故B 错误;对于C ,直线过定点()3,1P ,225(1123)(2)<-+-,故点P 在圆内,则直线l 与圆C 恒相交,故C 正确;对于D ,当直线l 被圆C 截得弦长最长时,直线过圆心()1,2,则()()2121740m m m +++--=,解得13m =-,故直线方程为:1250333x y -=+,即250x y +-=,故D 正确.故选:CD11.如图,在边长为2的正方体1111ABCD A B C D -中,E ,F ,G 分别为11C D ,11A B ,AB 的中点,则()A.1BC ∥平面AEFB.1A G ⊥平面AEFC.异面直线AF 与GC 所成角的余弦值为15D.点B 到平面AEF 的距离为5【答案】CD 【解析】【分析】建立平面直角坐标系,通过空间向量运算依次判断4个选项.【详解】以D 为原点,DA ,DC ,1DD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则()2,0,0A ,()12,0,2A ,()2,1,2F ,()0,1,2E ,()2,1,0G ,()2,2,0B ,()0,2,0C ,()10,2,2C ,()2,1,2AE =- ,()0,1,2AF = ,()12,1,0GC =- ,()12,0,2BC =- ,()10,1,2AG =- .对于选项A ,B :设平面AEF 的法向量为(),,n x y z =,则0,0,n AE n AF ⎧⋅=⎨⋅=⎩ ,即22020x y z y z -++=⎧⎨+=⎩,令2y =-,则0x =,1z =,得()0,2,1n =-,所以1BC 与平面AEF 不平行,1A G 与平面AEF 不垂直,即A ,B 错误.对于选项C :11cos ,555AF GC ==⨯ ,则异面直线AF 与GC 所成角的余弦值为15,即C 正确.对于选项D :又()0,2,0AB =,所以点B 到平面AEF 的距离为55AB n n⋅=,即D 正确.故选:CD.三、填空题:本题共3小题,每小题5分,共计15分.12.过点(2,1)与直线:10l x y -+=平行的直线方程______.【答案】10x y --=【解析】【分析】根据平行关系可设直线方程为0x y C -+=,然后将(2,1)代入求解即可【详解】设与直线:10l x y -+=平行的直线方程为0x y C -+=,因为(2,1)在直线0x y C -+=上,所以2101C C -+=⇒=-,所以方程10x y --=即为所求;故答案为:10x y --=13.在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是边长为1的正方形,2AP =,则直线PB 与平面PCD 所成角的正弦值为______.【答案】25##0.4【解析】【分析】由线面垂直得到线线垂直,建立空间直角坐标系,写出点的坐标,求出平面PCD 的法向量,利用线面角的正弦向量夹角公式进行求解.【详解】因为PA ⊥底面ABCD ,,AB AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥,又底面ABCD 是边长为1的正方形,所以AB AD ⊥,以A 为坐标原点,,,AB AD AP 所在直线分别为,,x y z 轴,建立空间直角坐标系,2AP =,故()()()()0,0,2,1,0,0,1,1,0,0,1,0P B C D,设平面PCD 的法向量为 =s s ,则()()()(),,1,1,220,,0,1,220m PC x y z x y z m PD x y z y z ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-=⎪⎩ ,解得0x =,令1z =,则2y =,故()0,2,1m =,()1,0,2PB =-,PB 与平面PCD 的夹角正弦值为25PB m PB m⋅==⋅.故答案为:2514.已知曲线1y =(2)4y k x =-+有且仅有一个公共点,那么实数k 的取值范围是______.【答案】35,412⎛⎫⎧⎫+∞⎨⎬ ⎪⎝⎭⎩⎭【解析】【分析】根据方程可知直线恒过定点,曲线为半圆,画出图象,数形结合可得到k 的取值范围.【详解】直线(2)4y k x =-+恒过点(2,4)A .由1y =22(1)4(1)x y y+-=≥,表示以(0,1)C 为圆心,2为半径的半圆,该半圆在直线1y =的上方.当直线与半圆相切于点E 时,直线方程可化为:240kx y k--+=,根据圆心(0,1)C 到直线的距离等于半径22=,解得512k =,当直线过点(2,1)B -时,4132(2)4k -==--,此时直线与曲线有两个公共点,当直线过点(2,1)D 时,直线斜率不存在,此时直线与曲线有一个公共点,综上得,实数k 的取值范围是35,412∞⎛⎫⎧⎫+⋃⎨⎬⎪⎝⎭⎩⎭.故答案为:35,412∞⎛⎫⎧⎫+⋃⎨⎬⎪⎝⎭⎩⎭.四、解答题:本题共5小题,共计77分.解答时应写出文字说明、证明过程或演算步骤.15.已知(3,1),(1,2),A B ACB -∠的平分线所在的直线的方程为1y x =+.(1)求AB 的中垂线方程;(2)求AC 的直线方程.【答案】(1)8250x y --=;(2)210x y --=【解析】【分析】(1)求出AB 的中点坐标及14AB k =-,故求出AB 的中垂线斜率,点斜式求出方程;(2)()1,2B -关于1y x =+的对称点(),D s t 在直线AC 上,求出()1,0D ,利用两点式求出直线方程,得到答案.【小问1详解】AB 的中点坐标为31123,1,222-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,又211134AB k -==---,故AB 的中垂线斜率为4,故AB 的中垂线方程为()3412y x -=-,即8250x y --=;【小问2详解】由对称性可知,()1,2B -关于1y x =+的对称点(),D s t 在直线AC 上,故21121122t s t s -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得10s t =⎧⎨=⎩,故()1,0D ,故直线AC 的方程为130113y x --=--,即210x y --=.16.已知圆C 经过),,(02)(08,A B 两点,且与x 轴的正半轴相切.(1)求圆C 的标准方程;(2)若直线l :30x y -+=与圆C 交于M ,N ,求||MN .【答案】(1)()()224525x y -+-=(2)【解析】【分析】(1)圆C 经过),,(02)(08,A B 两点,且与x 轴的正半轴相切,可设圆心82,2C a +⎛⎫ ⎪⎝⎭,即(5),0,a a >,可得半径.利用勾股定理、弦长公式计算进而得出答案.(2)求出圆心(4),5C 到直线l 的距离d ,即可得出弦长.【小问1详解】圆C 经过),,(02)(08,A B 两点,且与x 轴的正半轴相切,设圆心82,2C a +⎛⎫ ⎪⎝⎭,即(5),0,a a >,故半径=5r ,则22282()5,42a a -+=∴=,∴圆C 的标准方程为:()()224525x y -+-=.【小问2详解】圆心(4,5)到直线l :30x y -+=的距离d ==,∴弦长MN ==.17.如图,在边长为2的正方体1111ABCD A B C D -中,,E F 分别为1,AB A C 的中点.(1)证明:1EF A CD ⊥平面;(2)求点1C 到平面1A CD 的距离.【答案】(1)见解析(22【解析】【分析】(1)建立坐标系求出点的坐标,利用向量的坐标运算求平面法向量即可求解,(2)利用向量法求解点面距离即可.【小问1详解】建立以D 为坐标原点,DA ,DC ,1DD 分别为x ,y ,z轴的空间直角坐标系如图:则(0D ,0,0),(2A ,0,0),(0C ,2,0),(2B ,2,0),1(2A ,0,2),1(0D ,0,2)E ,F 分别为AB ,1AC 的中点,(2E ∴,1,0),(1F ,1,1),1(2DA = ,0,2),(0DC = ,2,0),设平面1A CD 的法向量为(),,m x y z = ,则100m DA m DC ⎧⋅=⎨⋅=⎩,即22020x z y +=⎧⎨=⎩,令1x =,则()1,0,1m =- 因为()=101,,EF - ,=EF m - ,所以//EF mEF ∴⊥平面1A CD .【小问2详解】()10,0,2CC = ,()1,0,1m =- ,设点1C 到平面1A CD 的距离为d,所以1CC m d m⋅== 18.如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD 是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为棱AD 的中点,四棱锥S ABCD -的体积为3.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面//PEF 平面SCD ;(2)是否存在点E ,使得平面PEB 与平面SAD 的夹角的余弦值为3010?若存在,确定点E 的位置;若不存在,请说明理由.【答案】(1)证明见解析(2)存在点E ,E 为AS 上靠近A 点的三等分点【解析】【分析】(1)以点P 为坐标原点,建立空间直角坐标系,利用两个平面法向量相同得证平行;(2)设AE AS λ= ,向量法表示已知条件中两平面夹角的余弦值,求解λ即可.【小问1详解】在等边三角形SAD 中,P 为AD 的中点,于是SP AD ⊥,又平面SAD ⊥平面ABCD ,平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,SP ∴⊥平面ABCD ,SP ∴是四棱锥S ABCD -的高,设AD m =,则2SP m =,矩形ABCD 的面积S m =,113323S ABCD V S SP m m -∴=⋅=⋅=,2m ∴=,如图,以点P 为坐标原点,PA 所在直线为x 轴,过点P 且与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立空间直角坐标系,则(0,0,0)P ,(1,0,0)A ,(1,1,0)B,(S,1,0,22E ⎛⎫ ⎪ ⎪⎝⎭,11,,222F ⎛⎫ ⎪ ⎪⎝⎭,1,0,22PE ⎛⎫∴= ⎪ ⎪⎝⎭,11,,222PF ⎛⎫= ⎪ ⎪⎝⎭,设1 =1,1,1是平面PEF 的一个法向量,则110,0,n PE n PF ⎧⋅=⎪⎨⋅=⎪⎩即1111113022110222x z x y z ⎧+=⎪⎪⎨⎪++=⎪⎩,令11z =,则1x =,10y =,1(n ∴=.同理可得平面SCD 的一个法向量为2(n = .12n n = ,∴平面//PEF 平面SCD .【小问2详解】存在.设(()(01)AE AS λλλλ==-=-≤≤,则(1,0,0)()(1)PE PA AE λλ=+=+-=- ,(1,1,0)PB = ,设平面PEB 的一个法向量为(,,)m x y z =,则()100m PE x z m PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令x ,则y =,1z λ=-,,,1)m λ∴=- ,易知平面SAD 的一个法向量为(0,1,0)AB =,cos ,10AB m AB m AB m⋅∴== .01λ≤≤ ,13λ∴=,∴存在点E ,且E 为AS 上靠近A 点的三等分点.19.已知在平面直角坐标系xOy 中,()0,1A ,()0,4B ,平面内动点P 满足2PA PB =.(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线l :x =4上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,直线MN 与x 轴交点为Q ,求点Q 的坐标.【答案】(1)224x y +=(2)()10Q ,.【解析】【分析】(1)设点(),P x y 为曲线上任意一点,利用两点间距离公式表示条件关系,化简等式可得轨迹方程;(2)设()()4,0E t t ≠,联立直线CE 的方程和曲线τ的方程求点M 的坐标,联立直线DE 的方程和曲线τ的方程求点N 的坐标,求直线MN 的方程,确定其与x 轴的交点坐标即可.【小问1详解】设点(),P x y 为曲线上任意一点,因为2PA PB =,()0,1A ,()0,4B ,则=化简得224x y +=.【小问2详解】由题意得()2,0C -,()2,0D ,设()()4,0E t t ≠,则直线CE 的方程为()26t y x =+,直线DE 的方程为()22t y x =-,联立()22264t y x x y ⎧=+⎪⎨⎪+=⎩,,得2222364440363636t t t x x +++-=,则224236M t x t -=-+,即2272236M t x t -=+,()2242636M M t t y x t =+=+,所以22272224,.3636t t M t t ⎛⎫- ⎪++⎝⎭联立()222,24,t y x x y ⎧=-⎪⎨⎪+=⎩得22224404t x t x t +-+-=,则22424N t x t +=+,即22284N t x t -=+,()28224N N t t y x t -=-=+,所以222288.44t t N t t ⎛⎫-- ⎪++⎝⎭,①当t ≠±时,直线MN 的斜率222222224883647222812364MN t t t t t k t t t t t --++==----++,则直线MN 的方程为222288284124t t t y x t t t ⎛⎫---=- ⎪+-+⎝⎭,即()28112t y x t =--,所以()10Q ,,②当t =±时,直线MN 垂直于x 轴,方程为1x =,也过定点()10Q ,.综上,直线MN 恒过定点()10Q ,.较高.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高二年级第二次月考数学试卷(理科)一、选择题(每小题5分,共60分)1.圆心为(1,1)且过原点的圆的方程是( )A.(x ﹣1)2+(y ﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x ﹣1)2+(y ﹣1)2=2 2.如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的左视图为( )3.圆2240x y +-=与圆22450x y x +--=的位置关系是( ) A .相切 B .相交 C .相离 D .内含 4.下列命题:①经过三点确定一个平面;②梯形可以确定一个平面; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. 其中正确命题的个数是( ) A .0 B .1C .2D .35.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 26.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,//m m βα⊥,则αβ⊥ B .若,//m m n αγ=,则//αβC .若,m βαβ⊂⊥,则m α⊥D .若,αγαβ⊥⊥,则βγ⊥7.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( ) A .36 B .26 C .310 D .2108.已知直线:l a y x =+与圆422=+y x 交于B A ,两点,且||||OB OA OB OA -=+(其中O 为坐标原点),则实数a 的值是( ) A .2 B .2-C .2或2-D .6或6-9.一个多面体的三视图如图所示,则该多面体的表面积为( ) A .183+ B .213+ C .21 D .1810.已知平面上两点)0,(),0,(a B a A -(0>a ),若圆4)4()3(22=-+-y x 上存在点P,使得︒=∠90APB ,则a 的取值范围是( )A .]6,3[B .]7,3[C .]6,4[D .]7,0[11.N 为圆221x y +=上的一个动点,平面内动点M ),(00y x 满足10≥y 且030=∠OMN (O 为坐标原点),则动点M 运动的区域面积为( )A.3238-πB.334-πC.332+πD.334+π12.棱长为43的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为( ) A .2 B .22 C .24 D .26二、填空题(每小题5分,共20分) 13.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是 14.与圆(x -2)2+(y +1)2=4外切于点A (4,-1)且半径为1的圆的方程为________. 15.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,∠ADC =90°,且AA 1=AD =DC =2,M ∈平面ABCD ,当D 1M ⊥平面A 1C 1D 时,DM =________.16.7在该几何体的正视图中,6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 .2018届高二年级第二次月考数学试卷(理科)答题卡一、选择题(每小题5分,共60分)题号123456789101112答案二、填空题(本大题共4个小题,每小题5分,共20分)13、14、15、 16、三、解答题(共70分)17.已知圆C经过坐标原点O,A(6,0),B(0,8).(Ⅰ)求圆C的方程;(Ⅱ)过点P(﹣2,0)的直线l和圆C的相切,求直线l的方程.18.如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.19.已知圆C 的方程:04222=+--+m y x y x (1)求m 的取值范围;(2)若圆C 与直线042:=-+y x l 相交于M ,N 两点,且45MN =,求m 的值.20.如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的正方形,OA ⊥底面,2,ABCD OA M =为OA 中点.(1)求证:直线BD 平面OAC;(2)求直线MD与平面OAC所成角的大小;(3)求点A到平面OBD的距离.21.已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C 相交于P、Q两点.(1)求圆C的方程;(2)若,求实数k的值;(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在M?若存在,求出圆P的方程;若不存在,请说明理由.这样的圆P,使得圆P经过点(2,0)22.如图,在四棱锥ABCD E -中,底面ABCD 为正方形,⊥AE 平面CDE ,已知2AE DE ==,F 为线段DE 的中点.(1)求证://BE 平面ACF ;(2)求二面角C BF E --的平面角的余弦值.2018届高二年级第二次月考数学试卷答案(理科)1-12 DCB CC ADCBB AB13、3 14、(x -5)2+(y +1)2=1 15、2 2 16、417、(Ⅰ)(x ﹣3)2+(y ﹣4)2=25.(Ⅱ)直线l 的方程是x=﹣2,或9x+40y+18=0. 18、略19、解:(1)(1)方程x 2+y 2-2x -4y +m =0,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2) 圆的方程化为 22(1)(2)5x y m -+-=-,圆心 C (1,2),半径 m r -=5, 则圆心C (1,2)到直线:240l x y +-=的距离为 5121422122=+-⨯+=d由于5MN =125MN =,有2221()2r d MN =+,,)52()51(522+=-∴m 得4=m .20、(1)证明见解析;(2)030;(3)23. (1)由OA ⊥底面,ABCD OA BD ⊥.ACBDEF底面ABCD 是边长为1的正方形, ∴BD AC ⊥,又ACOA A =,∴BD ⊥平面 OAC .(2)设AC 与BD 交于点E ,连结EM ,则DME ∠是直线MD 与平面 OAC 所成的角22,2MD DE ==, ∴直线MD 与平面OAC 所成的角为030.(3)作AH OE ⊥于点H .BD ⊥平面 OAC , ∴BO AH ⊥,线段AH 的长就是点A 到平面OBD 的距离.∴22223322OA AE AH OE ===, ∴点A 到平面OBD 的距离为23. 21、(1)设圆心C (a ,a ),半径为r .因为圆C 经过点A (-2,0),B (0,2), 所以|AC|=|BC|=r ,易得a =0,r =2, 所以圆C 的方程是x 2+y 2=4. (2)因为且与的夹角为∠POQ,所以cos∠POQ=-12,∠POQ=120°,所以圆心C 到直线l :kx -y +1=0的 距离d =1,又d =21k +,所以k =0. (联立直线与圆的方程求解酌情给分)(3) (ⅰ)当直线m 的斜率不存在时,直线m 经过圆C 的圆心C ,此时直线m 与圆C 的交点为(0,2)E ,(0,2)F -,EF 即为圆C 的直径,而点(2,0)M 在圆C 上,即圆C 也是满足题意的圆(ⅱ)当直线m 的斜率存在时,设直线:4m y kx =+,由224,4,x y y kx ⎧+=⎨=+⎩,消去y 整理,得22(1)8120k x kx +++=,由△226448(1)0k k =-+>,得3k >3k <设1122(,),(,)E x y F x y ,则有1221228,112,1k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①由①得22121212122164(4)(4)4()161k y y kx kx k x x k x x k -=++=+++=+, ②1212122844()81y y kx kx k x x k +=+++=++=+, ③ 若存在以EF 为直径的圆P 经过点(2,0)M ,则ME MF ⊥,所以,因此1212(2)(2)0x x y y --+=, 即1212122()40x x x x y y -+++=,则2222121616440111k k k k k-+++=+++,所以16320k +=,2k =-, 满足题意.此时以EF 为直径的圆的方程为2212121212()()0x y x x x y y y x x y y +-+-+++=,即22168120555x y x y +--+=, 亦即2255168120x y x y +--+=.综上,在以EF 为直径的所有圆中,存在圆P :2255168120x y x y +--+=或224x y +=,使得圆P 经过点(2,0)M .22、证明:(1)连结BD 和AC 交于O ,连结OF ,ABCD 为正方形,∴O 为BD 中点,F 为DE 中点,BE OF //∴,BE ⊄平面ACF ,OF ⊂平面ACF//BE ∴平面ACF .(2)⊥AE 平面CDE ,⊂CD 平面CDE ,CD AE ⊥∴,ABCD 为正方形,CD AD ∴⊥,,,AEAD A AD AE =⊂平面DAE ,⊥∴CD 平面DAE ,DE ⊂平面DAE ,CD DE ∴⊥∴以D 为原点,以DE 为x 轴建立如图所示的坐标系,则(2,0,0)E ,(1,0,0)F ,(2,0,2)A ,)0,0,0(D⊥AE 平面CDE ,DE ⊂平面CDE ,AE DE ∴⊥2AE DE ==,22AD ∴=ABCD 为正方形,22CD ∴=(0,22,0)C ∴由ABCD 为正方形可得:(2,22,2)DB DA DC =+=,(2,22,2)B ∴ 设平面BEF 的法向量为1111(,,)n x y z =(0,22,2)BE =--,(1,0,0)FE =由1100n BE n FE ⎧⋅=⎪⎨⋅=⎪⎩11122200z x ⎧--=⎪⇒⎨=⎪⎩,令11y =,则12z =- 1(0,1,2)n ∴=-设平面BCF 的法向量为2222(,,)n x y z =,(2,0,2)BC =--,(1,22,0)CF =-由22222222002200x z n BC x y n CF ⎧--=⎧⋅=⎪⎪⇒⎨⎨-=⋅=⎪⎪⎩⎩ ,令21y =,则222x =,222z =-2(22,1,22)n ∴=-设二面角C BF E --的平面角的大小为θ,则12121212cos cos(,)cos ,||||n n n n n n n n θπ⋅=-<>=-<>=-⋅55151317==-⨯∴二面角C BF E --的平面角的余弦值为55151-zyOACBE F。

相关文档
最新文档