人教中考数学培优易错试卷(含解析)之二次函数附答案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数真题与模拟题分类汇编(难题易错题)

1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

【答案】(1)抛物线解析式为y=﹣1

2

x2+2x+6;(2)当t=3时,△PAB的面积有最大值;

(3)点P(4,6).

【解析】

【分析】(1)利用待定系数法进行求解即可得;

(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,

设P(t,﹣1

2

t2+2t+6),则N(t,﹣t+6),由

S△PAB=S△PAN+S△PBN=1

2

PN•AG+

1

2

PN•BM=

1

2

PN•OB列出关于t的函数表达式,利用二次函数

的性质求解可得;

(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.

【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),

∴设抛物线解析式为y=a(x﹣6)(x+2),

将点A(0,6)代入,得:﹣12a=6,

解得:a=﹣1

2

所以抛物线解析式为y=﹣1

2

(x﹣6)(x+2)=﹣

1

2

x2+2x+6;

(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

设直线AB 解析式为y=kx+b ,

将点A (0,6)、B (6,0)代入,得:

6

60b k b =⎧⎨

+=⎩

, 解得:16k b =-⎧⎨=⎩

则直线AB 解析式为y=﹣x+6,

设P (t ,﹣

12

t 2

+2t+6)其中0<t <6, 则N (t ,﹣t+6),

∴PN=PM ﹣MN=﹣

12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣1

2

t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+1

2PN•BM =1

2

PN•(AG+BM ) =

1

2PN•OB =12×(﹣1

2t 2+3t )×6 =﹣3

2t 2+9t

=﹣32(t ﹣3)2+272

∴当t=3时,△PAB 的面积有最大值; (3)如图2,

∵PH ⊥OB 于H , ∴∠DHB=∠AOB=90°, ∴DH ∥AO , ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE ∥x 轴、PD ⊥x 轴, ∴∠DPE=90°,

若△PDE 为等腰直角三角形, 则∠EDP=45°,

∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,

则当y=6时,﹣

12

x 2

+2x+6=6, 解得:x=0(舍)或x=4, 即点P (4,6).

【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.

2.如图,对称轴为直线x 1=-的抛物线()2

y ax bx c a 0=++≠与x 轴相交于A 、B 两

点,其中A 点的坐标为(-3,0).

(1)求点B 的坐标;

(2)已知a 1=,C 为抛物线与y 轴的交点.

①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;

②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94

. 【解析】

【分析】

(1)由抛物线的对称性直接得点B 的坐标.

(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.

②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】

解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).

(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),

∴2a 1

b

12a 9a 3b c 0

=⎧⎪⎪

-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.

∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13

S 1322

∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13

S 3p p 22

∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴

3

p 62

=,解得p 4=±. 当p 4=时2

p 2p 321+-=;当p 4=-时,2

p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).

②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:

3k b 0

b 3-+=⎧⎨

=-⎩

,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.

∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).

∴()

2

2239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝

⎭.

∵a 10<=-,-3

302

<<- ∴线段QD 长度的最大值为

94

.

相关文档
最新文档