有理数的加法法则PPT优选课件

合集下载

有理数的加法ppt课件

有理数的加法ppt课件

解:原式 (14) 26 (27) (33) ( 加法的交换律

[(14) 26] [(27) (33)] ( 加法的结合律

40 (60) (同号两数相加运算法则) ___-2__0___(异号两数相加运算法则).
练习 7 出租车司机小张某天下午的营运全是在东西方向的大街 上进行的,如果规定向东行驶为正,向西行驶为负,他这天下 午行车全程记录如下:(单位:千米) -3,+16,-11,+12,+18,-16 (1)将最后一名乘客送到目的地时,小张在下午出车的出发 点什么方向,距离多远? (2)若每千米耗油 0.3 升,这天下午小张开车共耗油多少升?
在运算过程中,“先定和 的符号,再算和的绝对 值”,是一种有效的方法.
(5)
1 2
1 2
0
有理数加法的运算步骤: 一、要辨别加数的类型(同号、异号); 二、要确定和的符号; 三、要计算绝对值的和(或差).
【思考】任何一个数加上一个正数,和与原来的数有怎 样的大小关系?加上一个负数呢?请你先借助数轴直 观地得出结论,再利用有理数的加法法则进行说明.
任何一个数加上一个负数,和小于原来的数.
我们以前学过加法交换律、结合律,对于有理数的加法它们还 成立吗?
【探究7】 计算:30 + (-20) ,(-20) + 30; 30 + (-20) = 10,(-20) + 30 = 10;
【发现】两个算式的结果相同. 两个算式的第二个算式是由第一个算式交换两个加数的位置 得到的.
2.1.1有理数的加法
第二章 有理数的运算
学习目标
理解有理数加法的意义,掌握有理数的加法运 算法则,能熟练地进行有理数的加法运算. 掌握有理数的加法运算律,并学会运用运算律对 算式进行简化运算.

第1课时有理数的加法法则(39张PPT)数学

第1课时有理数的加法法则(39张PPT)数学

B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
解析 -(-1)+|-1|=-(-1)+1=1+1=2,故选B.
3.下列运算正确的是( )A.(-2)+(-2)=0 B.(-6)+(+4)=-10C.0+(-3)=3 D.0.56+(-0.26)=0.3
1
2
3
4
5
6
7
8
9
10
11
答案
同号两数相加,取与 相同的符号,并把 相加;异号两数相加,取 的符号,并用 减去_____________;互为 的两个数相加得0;一个数同0相加,仍得这个数.
类型2
利用有理数的加法法则运算

例2 (教材例1针对训练)计算:
(2)(-39)+(-11).
解 (-39)+(-11)=-(39+11)=-50.

(4)(-10)+0.
解 (-10)+0=-10.
归纳总结 两个有理数相加的运算方法:(1)同号→确定符号(与加数同号)→把绝对值相加;(2)异号→确定符号(取绝对值较大的加数符号)→较大绝对值减较小绝对值;(3)数+0=原数.
0
-8
典例精析
类型1
利用数轴表示两个有理数相加
例1 (教材补充例题)在数轴上表示以下两数相加,并写出结果.(1)(-5)+(+3).

解 (-5)+(+3)=-2.

(2)(-2)+(-4).
解 (-2)+(-4)=-6.
归纳总结 利用数轴表示两个有理数相加的步骤:(1)画数轴;(2)从0开始进行移动;(3)根据终点确定和.

1.3.1有理数的加法(1)PPT课件

1.3.1有理数的加法(1)PPT课件

+5
+3
西

-1 0 1 2 3 4 5 6 7 8
+8
用算式 表示是
(+5)+(+3)=+8
.
11
情形 22、向西走5米,再向西走3米,两
次一共向东走了多少米 ?
-3
-5
西

-8 -7 -6 -5 -4 -3 -2 -1 0 1
-8
用算式
表示是
(-5)+(-3)= .
-
8
12
情形2 - 3
-5
3 6
1
2
.
2 、 3 .4 ( 4 .3 )
2、解: 原式 (4.33.4) 0.9
28
3 、 (3)(2)
4 、 ( 15)0.62
43
8
3、解:原式 ( 3 2)
43
17 12
4、 解 : 原式(15 0.625) 8
(1.6250.625)
1 .
29


+ -

.
15-5 17+6 18-8 8+6 10-5
小明在一条东西向的跑道上,先走了 5米,又走了3米,能否确定他现在位于 原来位置的哪个方向,与原来位置相距 多少米?
因为小明最后的位置与行走方向有关!
规定:向东为正,向西为负
思考:有哪几种不同的情况?写出
数学式子,并计算出结果.
.
10
情形1
1、 向东走5米,再向东走3米,
两次一共向东走了多少米 ?
(3)在爬行过程中,如果爬行1厘米奖励一粒 芝麻,则蚂蚁一共得到多少粒芝麻? 54粒
.
32

有理数的加法ppt课件

有理数的加法ppt课件
22
在运算过程中,“先 定和的符号、再算和的 绝对值”是一种有效 的方法.
新知探究 知识点1 有理数加法法则
➢ 有理数加法的运算步骤:
一看 一要辨别加数的类型(同号、异号);
二定 三算
二要确定和的符号; 三要计算绝对值的和(或差).
新知探究 知识点2 一个数加上正(负)数 思考
任何一个数加上一个正数,和与原来的数有怎样的大小关 系?加上一个负数呢?请你先借助数轴直观地得出结论,再利用 有理数的加法法则进行说明.
(1)如果物体沿着一条直线先向右运动5 m,再向右运动3 m,
那么两次运动的最后结果是什么?可以用怎样的算式表示?
5
+3
-1 0 1 2 3 4 5 6 7 8
8 (+5)+(+3)=8
新知探究 知识点1 有理数加法法则 思考
(2)如果物体沿着一条直线先向左运动5 m,再向左运动3 m,
那么两次运动的最后结果是什么?可以用怎样的算式表示?
取绝对值较大 的加数的符号
新知探究 知识点1 有理数加法法则 例1 计算: (1)(-3)+(-9); (2)(-8)+0; (3)12+(-8); (4)(-4.7)+3.9;(5)(-1)+(+1).
22
解: (4) (-4.7)+3.9=-(4.7-3.9)=-0.8;
(5) (-1)+(+1)=0.
22
把绝对值相加
解:(1)(-3)+(-9)=-(3+9)=-12;
同号两数相加 取相同符号
新知探究 知识点1 有理数加法法则 例1 计算: (1)(-3)+(-9); (2)(-8)+0; (3)12+(-8); (4)(-4.7)+3.9;(5)(-1)+(+1).

1.6 有理数的加法(第1课时 有理数加法法则)(课件) 七年级数学上册(华东师大版2024)

1.6 有理数的加法(第1课时 有理数加法法则)(课件) 七年级数学上册(华东师大版2024)
A. -5
B. 5
C. -1
D. 1
)
和的绝对值

20
20
20
-20
5. [2023·连云港]如图,数轴上的点 A , B 分别对应数 a , b ,
则a+b

0.(用“>”“<”或“=”填空)
【解析】由数轴可得 a <0< b ,| a |>| b |,根据异号两
数相加,取绝对值较大的数的符号,再用绝对值较大的数减去较小的


【解】因为| a |= ,所以 a =± .




因为| b |= ,所以 b =± .因为 a > b ,






所以 a = , b = 或- .所以 a + b =





.
11. [立德树人 民族精神]在某次抗洪抢险中,解放军战士的冲锋舟沿东西方向的河
流抢救灾民,早晨从甲村出发,晚上到达乙村,约定向东为正方向,当天的航
4
–2 –1 0
1
2
3
4
10
3
Байду номын сангаас
–7 –6 –5 –4 –3 –2 –1 0
7
1
2
3
4
5
–6 –5 –4 –3 –2 –1 0
2
1
2
3
1
2
3
6
–6 –5 –4 –3 –2 –1 0
还有两种特殊情形:
(5)第一次向西走了30米,第二次向东走了30米写成算式是.
(-30)+(+30)=( 0 )
(6)第一次向西走30米,第二次没走.写成算式是.

2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册

2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册
(+3)+(-4)= ?-1 -1
思考:从上面问题中,你能得出异号两数相加的方法吗?
结论:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的 绝对值。
问题4:如果星期三那天,水泥进货5吨,同时出货5吨,那么那天的 库存有没有变化?
(+5)+(-5)= 0
结论:互为相反数的两个数相加得零。
学以致用
3、在数轴上表示下列有理数的运算,并求出计算结果.
(1)2+3
(1) −5 (2) −7
(3)
−8 (4) −7
(2)(-5)+(-2) (3)(-8)+(+5) (4)(-6)+6
+2
+3
−4 −3 −2 −1 0 1 2 3 4 5 2+3=5
+5
-2
-5
(-5)+(-2)=-7
−6 −5 −4 -7−3 −2 −1 0
结论:同号两数相加,取与加数相同的符号,并把绝对值相加.
请尝试完成下列问题:
一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如 图,其中进货为正,出货为负(单位:吨):
日期 星期一 星期二
进出货情况
+5
-2
+3
-4
库存变化
问题3:星期一该建筑工地仓库的水泥库存是增加了还是减少了? 星期二该建筑工地仓库的水泥库存是增加了还是减少了?
一建筑工地仓库记录星期一和星期二水泥的 进货和出货数量,如下表,其中进货为正,出货 为负,库存增加为正,库存减少为负(单位:吨).
星期一 星期二 合计
进出货数量
+5 -2
+3 -4
+8
-6
库存变化
+3 -1 +2
根据你的生活经验,填写表中的空格, 然后思考以下问题:

2.1.1 有理数的加法法则课件(第1课时)(19张PPT) 人教版(2024)数学七年级上册

2.1.1 有理数的加法法则课件(第1课时)(19张PPT) 人教版(2024)数学七年级上册
(2) 3.7+(-8.4)=-(8.4-3.7)=-4.7.
(3) 3.22+1.78=+(3.22+1.78)=5.
(4) 7+(-3.3)=+(7-3.3)=3.7.
2. 如果两个数的和为正数,那么下列描述中,一定错误的是 ( )A. 两个数均为正数B. 两个数一个是正数,另一个是零C. 两数一正一负,正数比负数的绝对值大D. 两数一正一负,正数比负数的绝对值小
魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工作)分别表示正数和负数(红色为正,黑色为负). 你能写出下列算筹表示的数和最终结果吗?
( ) + ( ) 何计算?
探究一 一个物体作左右方向的运动,我们规定向右为正,向左为负.向右运动 5m 记作 5m ,向左运动 5m 记作-5m.
(+15)+(-25)+(+20) =-(25-15)+(+20)
答:卡车最后停在 A 站东面 10 km 处.
=(-10)+20=10 (km).
同学们再见!
授课老师:
时间:2024年9月1日
符号不变
绝对值相加
例1 填表:
算式
结果符号
+3+(+8)
-6+(-4)
+2024+(+2025)
-1.3+(-9.9)




3. 如果物体先向左运动 3 m,再向右运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?4. 如果物体先向右运动 3 m,再向左运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?
1. 计算:(1) 180 + (-10); (2) (-10) + (-1);(3) 5 + (-5); (4) 0 + (-2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/10/18
6
让我们再试几次:
(+4)+(+3)= +7 (+20)+(+30)=+50 (-5)+(-7)= -12 (-20)+(-30)=-50 (+6)+(-8)= -2 (+20)+(-30)=-10 (-3)+(+5)= +2 (-20)+(+30)=+10
同号两数相加,取相同的符号,并把绝对值相加。
-(
1 2
2
+3
)=
11 6
(4) ( -3.2 )+4.3 = +(4.3-3.2)=+0.9
2020/10/18
10
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXX 日期:20XX年XX月XX日
绝对值不等的异号两数相加,
取绝对值较大的加数的符号,并用较大的
绝对值减去较小的绝对值。
2020/10/18
7
在看下面的特殊情况
(5)若第一次向西走30米,第二次向东走了30 米。
+30 -30
-30 -20 -10
0
10 20
写成算式:(-30)+(+30)=( 0 )
即小明回到原来的位置
(6)若第一次向西走30米,第二次没走。

写成算式:(-30)+(0)=( -30)
即小明位于原来位置的西方30米
2020/10/18
8
有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不等的异号两数相加,取绝对值较大的加数 的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两数相加得零。 (4)一个数与零相加,仍得这个数。
-30
-10
20
-20 -10
0
10
20
30
写成算式:(+20)+(-30)=-10
即小明位于原来位置的西方10米
2020/10/18
5
(4)若第一次向西走20米,第二次向东走了30米
+30 -20 +10
-20 -10
0
10 20
30
写成算式:(-20)+(+30)=+10
即小明位于原来位置的东方10米
写成算式:(+20)+(+30)=+50
2020/10/1即8 小明位于原来位置的东方50米
3
(2)若两次都是向西走, 则共向西走了50米
-50
-30
-20
-50 -40 -30 -20 -10 0 10
写成算式:(-20)+(-30)=-50
即小明位于原来位置的西方50米
2020/10/18
4
(3)若第一次向东走20米,第二次向西走了30米
2020/10/18
1
问题:
小明在一条东西向上午跑道上,先走 了20米,又走了30米,能否确定他 现在的位于原来位置的哪个方向,与 原来位置相距多少米?
2020/10/18
2
试验:
因为这个问题涉及到方向,不妨规定向东为 正,向西为负。
(1)若两次都是向东走, 共向东走了50米
50
20
30
-10 0 10 20 30 40 50
2020/10/18
9
例题评析
计算:
(1) (+2)+(-11)
(3)

1 2
)+(
2 3

(2)(+20)+(+12) (4) ( -3.2 )+4.3
解:(1) (+2)+(-11)= -(11-2)=-9
(2)(+20)+(+12)= +(20+12)=+32
(3) ( 1 )+(
2
2 3
)=
相关文档
最新文档