火电厂煤粉燃烧系统详解
煤粉炉燃烧原理及燃烧设备
煤粉炉燃烧原理及燃烧设备第一节燃烧化学反应动力学基础燃烧一般是指燃料与氧化剂进行的剧烈化学反应。
燃料与氧化剂可以是同一形态的,如气体燃料在空气中的燃烧,称为单相(均相)燃烧;燃料与氧气剂也可以是不同形态的,如固体燃料在空气中的燃烧,称为多相燃烧。
电厂锅炉的主要燃料是煤,使用空气作燃料的氧化剂。
电厂锅炉的主要燃料是煤使用空气作燃料的氧化剂一、碳粒的燃烧过程和燃烧速度炭粒表面的多相燃烧大致包括如下几个过程炭粒表面的多相燃烧大致包括如下几个过程:(1)参加燃烧的氧从周围环境扩散到炭粒的反应表面;(2)氧被炭粒表面吸附;(3)在炭粒表面进行燃烧化学反应;(4)燃烧产物由炭粒表面解吸附;(5)燃烧产物离开炭粒表面,扩散到周围环境中。
炭粒燃烧速度是指炭粒单位表面上的实际反应速度,它取决于上述过程中进行得最慢的过程。
碳的燃烧速度主要决定于氧向炭粒表面的扩散速度和在反应表面上进行的化学反应速度最终决定于两者中的较慢者速度,最终决定于两者中的较慢者。
(吸附和解吸附过程速度快)1、影响化学反应速度的因素(1)浓度对化学反应速度的影响化学反应是在一定条件下反应物分子之化学反应是在一定条件下,反应物分子之间彼此碰撞而产生的,分子在单位时间内的碰撞次数越多则化学反应速度越快的碰撞次数越多,则化学反应速度越快。
分子碰撞次数决定于单位容积中反应物的分子数,即物质浓度。
在定温度下反应容积不变增加反应在一定温度下,反应容积不变,增加反应物的浓度即可增加反应物的分子数,分子之间的碰撞次数就会增多,反应速度就会加快。
加快(2)压力对化学反应速度的影响分子运动论认为,气体压力是气体分子撞击容器壁面的结果。
在温度和容积不变的条件下,反应物压力高,意味着反应物浓度大,因此化学反应速度就快。
(3)温度对化学反应速度的影响阿累尼乌斯定律反映的是温度对化学反应速度影响的规律。
阿累尼乌斯定律反映的是温度对化学反应速度影响的规律化学反应是在一定条件下,反应分子间发生碰撞而发生的,应在条件应发生撞发生的但并不是所有碰撞的分子都可以发生反应,只有那些碰撞能量足以破坏现存化学键并建立新的化学键的碰撞才是有效的。
火力发电厂煤粉的燃烧
火力发电厂煤粉的燃烧一. 燃烧煤粉对炉膛的要求炉膛作为燃烧室,是保证炉膛正常运行的先决条件之一。
燃烧煤粉时,对炉膛的要求是:1.创造良好的着火、稳燃条件,并使燃料在炉内完全燃尽;2.炉膛受热面不结渣;3.布置足够的蒸发受热面,并不发生传热恶化;4.尽可能减少污染物的生成量;5.对煤质和负荷复合有较宽的适应性能,以及连续运行的可靠性。
二. 煤粉在炉膛内的燃烧过程燃料从入炉内开始到燃烧完毕,大体上可分为如下三个阶段:1.着火前准备阶段从燃料入炉至达到着火温度这一阶段称准备阶段。
在这一阶段内,要完成水分蒸发,挥发分析出、燃料与空气混合物达到着火温度。
显然,这一阶段是吸热过程,热量来源是火焰辐射及高温烟气回流。
影响准备阶段时间长短的因素除燃烧器本身外,主要是炉内热烟气为煤粉气流提供热量的强弱,煤粉气流的数量、温度、浓度、挥发分含量及煤粉细度等。
2.燃烧阶段当达到着火温度后,挥发分首先着火燃烧,放出热量,使温度升高,焦炭被加热到较高温度而开始燃烧。
燃烧阶段是强烈的放热过程,温度升高较快,化学反应强烈,这时碳粒表面往往会出现缺氧状态。
强化燃烧阶段的关键是加强混合,使气流强烈扰动,以便向碳粒表面提供氧气,而将碳粒表面的二氧化碳扩散出去。
3.燃尽阶段主要是将燃烧阶段未燃尽的碳烧完。
燃尽阶段剩余的碳虽然不多,但要完全燃尽却很困难,主要是存在着诸多不利于完全燃烧的因素,如少量的固定碳被灰包围着;氧气浓度已较低;气流的扰动渐趋衰减;炉内温度在逐步降低。
如果燃料的挥发分低、灰分高、煤粉粗、炉膛容积小,完全燃尽将更困难。
据试验,对细度R90=5%的煤粉,其中97%的可燃物可在25%的时间内燃尽,而其余3%的可燃物却要75%的时间才能燃尽。
这也是实际锅炉中不可能使可燃物彻底燃尽的基本原因。
三. 影响燃烧的因素燃烧速度反映单位时间烧去可燃物的数量。
由于燃烧是复杂的物理化学过程,燃烧速度的快慢,取决于可燃物与氧的化学反应速度以及氧和可燃物的接触混合速度。
制粉系统概述
称重系统机械部分示意图
给煤机的结构
5、链式清理刮板机构 • 链式清理刮板供清理给煤机机体内底部积煤用。 在机器工作时,胶带内侧如有粘结煤灰,则通过 自洁式张紧辊筒后由辊筒端面落下,同时密封风 的存在,也会使煤灰产生,这些煤灰堆积在机体 底部,如不及时清除,往往有可能引起自燃。 • 刮板链条由电动机通过减速机带动链轮拖动。带 翼的链条,将煤灰刮至给煤机出口排出。链式清 理刮板随着给料皮带的运转而连续运行。采用这 种运行方式,可以使机体内积煤最少。同时,连 续清理可以减少给煤率误差。连续的运转也可以 防止链销粘结和生锈。
给煤机的结构
3、堵煤及断煤信号装置 • 断煤信号装置安装在胶带上方,当胶带上 无煤时,由于信号装置上挡板的摆动,使 信号装置轴上的凸轮触动限位开关从而控 制皮带驱动电机,或起动煤仓振动器,或 者返回控制室表示胶带上无煤。 • 堵煤信号装置安装在给煤机出口处,其结 构与断煤信号装置相同,当煤流堵塞至排 出口时,限位开关发出信号,并停止给煤 机。
断煤信号装置
挡板(断煤状态) 挡板(有煤状态) 调试垫块 胶带
38
46
1
胶带运动方向
1
堵煤信号装置
清扫刮板链 本体
挡板(堵煤状态)Βιβλιοθήκη 挡板给煤机的结构4、称重机构 称重机构位于给煤机进料口与驱动辊筒之间,3个 称重表面辊均经过仔细加工,其中一对固定于机 体上,构成称重跨距,另外一个称重托辊,则悬 挂于一对负荷传感器上,胶带上煤重由负荷传感 器送出讯号。经标定的负荷传感器的输出讯号, 表示单位长度上煤的重量G,而测速发电机输出 的频率信号,则表示为皮带速度V,微机控制系 统把这两者综合,就可以得到机器的给煤率B。 即: 重量(t/m)×皮带速度(m/sec)=给煤率(t/sec)
煤粉锅炉电厂工作原理
煤粉锅炉电厂工作原理煤粉锅炉电厂是利用煤粉作为燃料进行燃烧,产生高温高压蒸汽驱动汽轮机发电的一种发电方式。
它的工作原理主要包括煤粉燃烧系统、水蒸汽循环系统和电力生成系统三个部分。
煤粉燃烧系统是煤粉锅炉电厂的核心部分。
在这个系统中,煤粉经过磨煤机的粉碎处理后,被输送到锅炉中的燃烧室。
在燃烧室内,煤粉遇到空气形成可燃气体。
同时,锅炉中供给的空气和燃烧室中的煤粉混合后,在燃烧室内进行燃烧。
燃烧过程中,煤粉中的煤气化反应和燃烧反应释放出大量热能,将水蒸汽加热到高温高压状态。
水蒸汽循环系统是将热能转化为动力能的关键环节。
在煤粉燃烧过程中,锅炉中的水被加热生成蒸汽,并通过蒸汽管道输送到汽轮机。
蒸汽在汽轮机中的叶片上膨胀,推动汽轮机转动。
汽轮机与发电机相连,通过机械转动产生电能。
蒸汽在汽轮机中发电后,会冷凝成水,再次回到锅炉中进行加热循环。
这个循环过程保证了热能的高效利用,提高了发电效率。
电力生成系统将汽轮机的机械能转化为电能。
汽轮机转动时,通过轴承连接的发电机也会转动,发电机内的导线在磁场的作用下产生电流。
电流经过变压器升压后,输出到电网供给用户使用。
通过这种方式,煤粉锅炉电厂将煤炭燃烧产生的热能转化为电能,实现了能源的高效利用。
总结起来,煤粉锅炉电厂的工作原理就是通过煤粉燃烧系统将煤粉燃烧释放的热能转化为水蒸汽,再通过水蒸汽循环系统将热能转化为动力能,最终通过电力生成系统将动力能转化为电能。
这种发电方式具有煤炭资源丰富、成本较低、发电效率较高等优点,是目前全球主要的发电方式之一。
然而,煤粉锅炉电厂也会产生大量的烟尘、二氧化硫等污染物,对环境造成一定的影响,因此在实际运行中需要进行有效的污染物排放控制和治理。
随着清洁能源的发展,煤粉锅炉电厂也在逐步转型升级,以减少污染物的排放,提高发电效率,实现可持续发展。
第二章 燃烧系统讲解
第二章燃烧系统第一节燃烧概况一概述燃烧方式采用从美国阿尔斯通能源公司引进的摆动式四角切圆燃烧技术。
本燃烧设备燃煤为神府东胜煤,采用中速磨煤机、冷一次风机、正压直吹式制粉系统设计,煤粉燃烧器为四角布置、切向燃烧、摆动式燃烧器。
燃烧器共设置六层煤粉喷嘴,锅炉配置6台HP1003型中速磨煤机,每台磨的出口由四根煤粉管接至炉膛四角的同一层煤粉喷嘴,锅炉MCR和ECR负荷时均投5层,另一层备用,煤粉细度R75=25%。
燃烧方式采用低NOx同轴燃烧系统(LNCFS)。
通过分析煤粉燃烧时NOx的生成机理,低NOx煤粉燃烧系统设计的主要任务是减少挥发份氮转化成NOx,其主要方法是建立早期着火和使用控制氧量的燃料/空气分段燃烧技术。
LNCFS的主要组件为:a.紧凑燃尽风(CCOFA);b.可水平摆动的分离燃尽风(SOFA);c.预置水平偏角的辅助风喷嘴(CFS);d.强化着火(EI)煤粉喷嘴。
LNCFS在降低NOx排放的同时,着重考虑提高锅炉不投油低负荷稳燃能力和燃烧效率。
通过技术的不断更新,LNCFS在防止炉内结渣、高温腐蚀和降低炉膛出口烟温偏差等方面,同样具有独特的效果。
主风箱设有6层强化着火煤粉喷嘴,在煤粉喷嘴四周布置有燃料风(周界风)。
在每相邻2层煤粉喷嘴之间布置有1层辅助风喷嘴,其中包括上下2只偏置的CFS喷嘴,1只直吹风喷嘴。
在主风箱上部设有2层CCOFA(Closed-coupled OFA,紧凑燃尽风)喷嘴,在主风箱下部设有1层UFA (Underfire Air,火下风)喷嘴。
参见图1:煤粉燃烧器布置图。
在主风箱上部布置有SOFA(Separated OFA,分离燃尽风)燃烧器,包括5层可水平摆动的分离燃尽风(SOFA)喷嘴。
参见图2:SOFA燃烧器布置图。
连同煤粉喷嘴的周界风,每角主燃烧器和SOFA燃烧器各有二次风挡板25组,均由电动执行器单独操作。
为满足锅炉汽温调节的需要,主燃烧器喷嘴采用摆动结构,由内外连杆组成一个摆动系统,由一台气动执行器集中带动作上下摆动。
火电厂三大系统简介
三大系统简介一、燃烧系统燃烧系统由输煤、磨煤、燃烧、风烟、灰渣等环节组成,其流程如图2所示。
(l)运煤。
电厂的用煤量是很大的,一座装机容量4×3O万kW的现代火力发电厂,煤耗率按36Og/kw.h计,每天需用标准煤(每千克煤产生70O0卡热量)360(g)×120万(kw)×24(h)=10368t。
因为电厂燃煤多用劣质煤,且中、小汽轮发电机组的煤耗率在40O~5O0g /kw·h左右,所以用煤量会更大。
据统计,我国用于发电的煤约占总产量的1/4,主要靠铁路运输,约占铁路全部运输量的4O%。
为保证电厂安全生产,一般要求电厂贮备十天以上的用煤量。
(2)磨煤。
用火车或汽车、轮船等将煤运至电厂的储煤场后,经初步筛选处理,用输煤皮带送到锅炉间的原煤仓。
煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风烘干并带至粗粉分离器。
在粉粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。
(3)锅炉与燃烧。
煤粉由可调节的给粉机按锅炉需要送入一次风管,同时由旋风分离器送来的气体(含有约10%左右未能分离出的细煤粉),由排粉风机提高压头后作为一次风将进入一次风管的煤粉经喷燃器喷入炉膛内燃烧。
电厂煤粉炉燃烧系统流程图目前我国新建电厂以300MW及以上机组为主。
300MW机组的锅炉蒸发量为10O0t/h(亚临界压力),采用强制循环(或自然循环)的汽包炉;600MW机组的锅炉为200Ot/h的(汽包)直流锅炉。
在锅炉的四壁上,均匀分布着4支或8支喷燃器,将煤粉(或燃油、天然气)喷入炉膛,火焰呈旋转状燃烧上升,又称为悬浮燃烧炉。
在炉的顶端,有贮水、贮汽的汽包,内有汽水分离装置,炉膛内壁有彼此紧密排列的水冷壁管,炉膛内的高温火焰将水冷壁管内的水加热成汽水混合物上升进入汽包,而炉外下降管则将汽包中的低温水靠自重下降至下连箱与炉内水冷壁管接通,靠炉外冷水下降而炉内水冷壁管中热水自然上升的锅炉叫自然循环汽包炉,而当压力高到16.66~17.64MPa时,水、汽重度差变小,必须在循环回路中加装循环泵,即称为强制循环锅炉。
煤粉锅炉电厂工作原理
煤粉锅炉电厂工作原理
1.煤粉燃烧系统:该系统主要由煤粉输送系统和燃烧系统组成。
煤粉
从煤粉仓经过煤粉输送系统输送到燃烧系统中,煤粉在燃烧器中与空气进
行充分混合后,在高温下燃烧产生高温燃烧气体。
燃烧系统通常采用多燃
烧室结构以提高燃烧效率和燃烧稳定性。
2.锅炉系统:煤粉燃烧后的高温燃烧气体通过燃烧室传热到水管中,
将水管中的水加热转化为蒸汽。
锅炉系统包括水处理系统、水循环系统和
蒸汽系统。
水处理系统主要用于去除水中的杂质和氧气,保证锅炉运行安
全稳定;水循环系统通过泵将水循环流动,实现水和蒸汽的传热;蒸汽系
统将产生的蒸汽引导至汽轮机发电。
3.汽轮机系统:蒸汽从锅炉中进入汽轮机,通过汽轮机的透平和中间
反向式空气冷却器逐级膨胀,产生动力转化为机械能,驱动发电机旋转并
产生电能。
汽轮机系统包括高、中、低压多级透平、凝汽器和循环水泵等
组成。
4.辅助设备系统:电厂还需要一系列辅助设备来保证煤粉锅炉的正常
运行,如锅炉给水泵、灰渣处理系统、烟气净化系统等。
锅炉给水泵负责
将净水送入锅炉系统;灰渣处理系统用于清理锅炉中产生的灰渣;烟气净
化系统主要用于对烟气中的微粒物质和废气进行处理,保护环境。
综上所述,煤粉锅炉电厂工作原理是通过煤粉燃烧产生高温燃烧气体,将其传热到水管中,将水转化为高温高压蒸汽,蒸汽通过汽轮机驱动发电
机发电,同时利用余热供生产和供暖。
该系统需要配备一系列的辅助设备
来确保正常运行并净化排放。
煤粉锅炉电厂作为传统的热电联产设备,在
我国仍然具有较为广泛的应用。
火电厂煤粉燃烧特性及优化研究
火电厂煤粉燃烧特性及优化研究火电厂煤粉燃烧特性及优化研究随着能源需求的不断增长,煤炭作为目前最主要的化石能源之一,在全球范围内产生了大量的热能和电力。
而火电厂作为燃烧煤炭的主要场所,煤粉燃烧特性及其优化研究成为了研究的热点。
本文将从煤粉燃烧的特性入手,探讨煤粉燃烧的机理和影响因素,同时介绍当前的煤粉燃烧优化技术。
1. 煤粉燃烧特性煤粉燃烧是将固体的煤粉转化为气体状态的过程。
煤粉在火电厂中通过燃烧反应释放出热能,进而用于产生蒸汽驱动汽轮发电机发电。
煤粉燃烧特性主要表现为燃烧速率、燃烧稳定性和排放物生成等方面。
1.1 燃烧速率燃烧速率是指煤粉燃烧的快慢程度,其受到煤炭的品质和煤粉粒径的影响。
煤炭的品质决定了燃烧过程中的能量释放程度和燃烧温度,而煤粉的粒径会影响燃烧的表面积和燃烧速率,因此,选择适当的煤种和控制煤粉粒径对提高煤粉燃烧速率至关重要。
1.2 燃烧稳定性燃烧稳定性是指煤粉燃烧过程中火焰的稳定程度,其主要受到燃烧设备的影响。
燃烧设备的结构和设计对火焰的可见度、燃烧稳定度等起到重要作用。
同时,煤粉的湿度和含硫量也会影响燃烧的稳定性。
较高的湿度和硫含量会使火焰不稳定,产生火花和高浓度的二氧化硫等有害物质。
1.3 排放物生成煤粉燃烧过程中产生的排放物主要包括二氧化碳、二氧化硫和氮氧化物等。
其中,二氧化硫和氮氧化物是主要的大气污染物之一。
所以,在煤粉燃烧过程中,如何控制这些有害物质的生成和排放具有重要意义。
2. 煤粉燃烧机理煤粉燃烧机理是指煤粉在燃烧时所经历的一系列化学反应。
具体而言,煤粉燃烧主要包括煤的热解、气相燃烧和固相燃烧等几个阶段。
2.1 煤的热解煤的热解是指煤在高温下分解为气体、液体和固体的过程。
在煤粉燃烧初期,煤粉中的挥发分会被蒸发出来,形成气相产物。
煤的热解温度和速率受到煤种、煤质和煤粉粒径等因素的影响。
2.2 气相燃烧煤粉的气相燃烧是指气态燃料与氧气在一定温度条件下发生的反应。
在气相燃烧过程中,煤粉中的挥发分会与氧气发生氧化反应,产生燃烧生成物。
制粉系统
制粉系统简介-作用和分类
– – 直吹式制粉系统 中间储仓式制粉系统
制粉系统主要设备-分离器、磨煤机 制粉系统的选用原则 制粉系统相关计算
一、制粉系统简介
系统组成:
• 原煤输送系统将破碎后的原煤送入原煤仓→给煤 机→磨煤机→煤粉分离器→合格的煤粉(煤粉仓) →给粉机→由气流(如热空气)送入炉内燃烧。
作用:保证磨制煤粉的细度(粗粉分离器)或较 彻底地分离干燥介质与煤粉(细粉分离器)。 原理:利用离心力及重力(沉降)、惯性力、撞 击等的共同作用将较粗煤粉颗粒分离出来。
类型:
– 离心式分离器:径向叶片式;轴向叶片式。
– 旋转式分离器
煤粉细度的调节主要通过分离器的调节来实现。
粗粉分离器 作Leabharlann :3、影响球磨机工作的主要因素
(1)临界转速ncr与工作转速n:影响磨煤出力和电耗
图3 筒体不同转速时钢球的运动状况 (a) n ≤ ncr;(b) n略小于ncr ;(c) n ≥ ncr
3、影响球磨机工作的主要因素
(2)钢球充满系数ψ 与钢球直径D: 影响出力、能耗和煤粉粒度 钢球充满系数是指钢球容积占筒体容积的份额。一 般为筒体容积的1/3。 钢球直径应根据磨煤电耗和金属损耗的总费用为最 小的原则来选择。一般采用直径为30~60mm的不同钢 球。
中间储仓式制粉系统:
• 低速球磨中间储仓式制粉系统
包括热风送粉和干燥剂送份(乏气送粉)
制粉系统主要设备
制粉系统的任务及相应设备: ① 制粉及干燥——磨煤机、下行干燥管; ② 输煤及输粉——给煤机、排粉风机、一 次风机、 给粉机、原煤仓及煤粉仓; ③ 煤粉分离——粗粉分离器及细粉分离器。
二、煤粉分离器
火力发电厂主要设备及其作用介绍
火力发电厂主要设备及其作用介绍一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。
送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。
引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。
磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。
空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。
提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。
空预器分为导热式和回转式。
回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。
炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。
燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。
煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。
汽轮机本体汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。
它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。
汽轮机本体由固定部分(静子)和转动部分(转子)组成。
固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。
转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。
固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。
汽缸是约束高压蒸汽不得外泄的外壳。
汽轮机本体还设有汽封系统。
汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。
分冲动式和反动式汽轮机。
给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。
高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。
除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。
凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。
火力发电厂的设备作用和各系统流程
火力发电厂的设备作用和各系统流程一、燃烧系统生产流程来自煤场的原煤经皮带机输送到位置较高的原煤仓中,原煤从原煤仓底部流出经给煤机均匀地送入磨煤机研磨成煤粉。
自然界的大气经吸风口由送风机送到布置于锅炉垂直烟道中的空气预热器内,接受烟气的加热,回收烟气余热。
从空气预热器出来约250左右的热风分成两路:一路直接引入锅炉的燃烧器,作为二次风进入炉膛助燃;另一路则引入磨煤机入口,用来干燥、输送煤粉,这部分热风称一次风。
流动性极好的干燥煤粉与一次风组成的气粉混合物,经管路输送到粗粉分离器进行粗粉分离,分离出的粗粉再送回到磨煤机入口重新研磨,而合格的细粉和一次风混合物送入细粉分离器进行粉、气分离,分离出来的细粉送入煤粉仓储存起来,由给粉机根据锅炉热负荷的大小,控制煤粉仓底部放出的煤粉流量,同时从细粉分离器分离出来的一次风作为输送煤粉的动力,经过排粉机加压后与给粉机送出的细粉再次混合成气粉混合物,由燃烧器喷入炉膛燃烧。
二、汽水系统生产流程储存在给水箱中的锅炉给水由给水泵强行打入锅炉的高压管路,并导入省煤器。
锅炉给水在省煤器管内吸收管外烟气和飞灰的热量,水温上升到300左右,但从省煤器出来的水温仍低于该压力下的饱和温度(约330),属高压未饱和水。
水从省煤器出来后沿管路进入布置在锅炉外面顶部的汽泡。
汽包下半部是水,上半部是蒸汽,下半部是水。
高压未饱和水沿汽泡底部的下降管到达锅炉外面底部的下联箱,锅炉底部四周的下联箱上并联安装上了许多水管,这些水管内由下向上流动吸收炉膛中心火焰的辐射传热和高温烟气的对流传热,由于蒸汽的吸热能力远远小于水,所以规定水冷壁内的气化率不得大于40%,否则很容易因为工质来不及吸热发生水冷壁水管熔化爆管事故。
锅炉设备的流程一、锅炉燃烧系统1、作用:使燃料在炉内充分燃烧放热,并将热量尽可能多的传递给工质,并完成对省煤器和水冷壁水管内的水加热,对过热器和再热器管内的干蒸汽加热,对空气预热器管内的空气加热。
火电厂热力循环系统
锅炉部分给水系统给水系统是指锅炉的水系统,它不断地向锅炉供应给水以保证正常的水循环。
给水泵将除氧器的水升压后送往高压加热器,经过给水操作台进入锅炉的省煤器。
省煤器将给水加热后送往汽包,下降管把气包的水分配到水冷壁的各个下联箱,水冷壁吸收炉膛高温火焰(烟气)的辐射热使水变成汽水混合物,汽水混合物进入汽包进行汽水分离,分离出来的水继续进行水循环,分离出来的饱和蒸汽进入顶棚过热器。
过热汽系统过热汽系统是将饱和蒸汽加热成为具有一定温度和压力的过热蒸汽。
汽包来的饱和蒸汽进入顶棚过热器,顶棚过热器中间联箱出来后分三路:前包覆过热器、中间隔墙和后包覆过热器,三路都进入低温过热器,再低温过热器出口联箱汇集,经过一级喷水减温后送往前屏过热器,出口左右交叉换位后进入后屏过热器,在高温过热器进口联箱上经过二级喷水减温并左右交叉后换位,然后进入高温过热器,高温过热器出口的过热蒸汽进入集汽联箱,最后通过主蒸汽管道送往汽轮机高压缸做功。
再热汽系统再热汽系统是将汽轮机高压缸排汽重新加热成一定温度的再热蒸汽,送往汽轮机中压缸做功。
汽轮机高压缸排汽进入低温再热器的进口联箱,在低温再热器出口左右交叉换位后进入高温再热器,在高温再热器出口联箱汇集,然后通过再热蒸汽管道送往汽轮机中压缸继续做功。
在低温再热器进口管段设有事故喷水装置,在高温再热器的进口联箱上设有微量喷水装置。
输煤系统输煤系统是将火车或轮船运输来的煤卸下来并经过杂物清除和破碎后输送到锅炉的原煤仓,或直接送往电厂的煤场备用。
场外运输来的煤由卸煤机卸下,由煤斗进入皮带输送机,在转运站内进行筛选、除去铁等其他杂物后,再由碎煤机破碎成小煤块,然后由皮带输送机经输煤栈桥一直送往锅炉房内,然后用犁煤器将原煤分配给各个原煤仓。
来煤卸下后也可直接送往煤场,在需要时由皮带输送机送往锅炉的原煤仓。
制粉燃烧系统制粉燃烧系统包括制粉系统和风烟系统,是将原煤干燥并磨制成一定细度的煤粉,送入炉膛中燃烧,同时送入煤粉燃烧所需要的空气,并把燃烧生成的烟气排出炉外。
电厂燃煤与制粉系统
电厂燃煤与制粉系统引言电厂燃煤与制粉系统是现代火力发电厂的核心系统之一。
该系统通过燃烧煤炭来产生高温高压的蒸汽,驱动发电机发电。
制粉系统则负责将原料煤炭进行粉碎处理,以满足燃烧的需要。
本文将介绍电厂燃煤与制粉系统的基本原理、组成部分以及工作流程。
基本原理电厂燃煤与制粉系统的基本原理是将煤炭进行燃烧,产生高温高压的蒸汽,从而驱动发电机发电。
在燃烧之前,煤炭需要经过粉碎处理,以增加其表面积,提高燃烧效率。
组成部分电厂燃煤与制粉系统主要由以下组成部分构成:1.燃煤系统:负责将煤炭从存储区域运输到锅炉燃烧区域,通常包括煤炭输送设备、煤炭储存设备和煤炭处理设备等。
2.制粉系统:负责将煤炭进行粉碎处理,通常包括颚式破碎机、圆锥破碎机和辊式破碎机等设备。
3.锅炉系统:负责将煤炭燃烧产生的热能传递给工作介质(水蒸汽),通常包括燃烧器、锅炉管道和烟气处理设备等。
4.发电系统:负责将蒸汽的能量转化为电能,通常包括发电机、调速器和电厂变压器等设备。
工作流程电厂燃煤与制粉系统的工作流程可以简单描述如下:1.煤炭从存储区域通过输送设备运输到煤炭处理设备。
2.煤炭经过粉碎处理后,得到所需的细度要求的煤粉。
3.煤粉经过输送设备运输到锅炉燃烧区域。
4.在锅炉燃烧区域,煤粉与空气混合燃烧,产生高温高压的烟气。
5.烟气通过烟气处理设备进行脱硫、脱氮等处理,净化排放。
6.锅炉产生的蒸汽驱动发电机发电。
7.电能通过电厂的变电设备输送到电网。
结论电厂燃煤与制粉系统在现代火力发电厂中起着至关重要的作用。
通过对煤炭的粉碎处理和燃烧,该系统能够高效地转化煤炭的能量为电能。
实现煤炭的高效利用和减少环境污染对于可持续发展至关重要。
因此,电厂燃煤与制粉系统的优化和改进是当前电力行业的重要课题之一。
说明粉煤燃烧的基本过程
说明粉煤燃烧的基本过程粉煤燃烧的基本过程包括:煤粉的干燥、预热、燃烧、燃烧产物的排放等环节。
首先,煤粉的干燥是粉煤燃烧过程中的重要步骤。
在粉煤燃烧炉中,需要使用预先干燥的煤粉才能够顺利进行燃烧。
通过加入干燥介质,如热风或烟气,可以使煤粉中的水分蒸发,从而达到干燥的目的。
接下来是煤粉的预热。
在预热过程中,将干燥后的煤粉送入锅炉的燃烧区域,通过加热燃烧室内的空气,将煤粉加热至点火温度。
预热是为了提高煤粉的燃烧效率和燃烧速度,并为煤粉的点火提供所需的温度条件。
然后,是煤粉的燃烧阶段。
煤粉经过预热之后,进一步与空气进行充分混合,使煤粉中的可燃物质与氧气发生氧化反应,释放出能量。
在燃烧过程中,煤粉燃烧产生的高温燃烧气体和灰渣在炉内的上升速度和压力控制下,通过燃烧室、过热器、空气预热器等设备进行换热,最终释放出高温高压的蒸汽,用于发电或供热。
最后,煤粉燃烧完毕后,燃烧产物需要进行合理的处理和排放。
热电厂通常配置有除尘器、脱硫设备等环保设施,以减少燃烧产物对环境的污染。
除尘器可有效地去除燃烧产生的颗粒物,脱硫设备则可减少烟气中的二氧化硫排放。
需要注意的是,在燃烧过程中,粉煤中的灰分也会在煤粉被完全燃烧之前转化为灰渣。
如若不能完全转化,会导致灰渣内的无热煤灰变几,从而降低燃烧效率和燃烧体系的安全稳定性。
总之,粉煤燃烧的基本过程包括煤粉的干燥、预热、燃烧与燃烧产物的排放。
其中,干燥和预热过程为煤粉提供了适宜的燃烧条件,燃烧过程释放出能量用于发电或供热,排放处理则是为了减少对环境的污染。
同时,在粉煤燃烧过程中,还需考虑灰分的转化问题,以确保燃烧效率和安全稳定性。
火力发电厂制粉系统煤粉细度管理
火力发电厂制粉系统煤粉细度管理摘要:作为火力发电厂锅炉的关键部分,制粉系统的运行情况会在很大程度上决定着整个机组是否可以安全工作。
本文首先对锅炉制粉系统进行了简单的介绍,并在如何调整锅炉制粉系统煤粉细度方面做出了一些探究,希望给同行业的工作人员提供一些参考。
关键词:锅炉制粉系统;煤粉细度前言锅炉一般均采用煤粉燃烧,经破碎后的原煤输进磨煤机磨制煤粉,成品煤粉应保证稳定着火并燃尽,煤粉有效燃烧起决定作用的首先是煤粉的细度,即表面积乃是衡量煤粉品质的重要指标;在煤粉细度相同的情况下,均匀性忧的煤粉不仅对煤粉在炉内的燃烧(着火和燃尽)影响极大,也有利于降低飞灰可燃物,同时对抑制NOx生作用也明显。
火力发电厂作为能源消耗大户,节能减排一直是火力发电厂工作人员追求的目标,提高锅炉燃烧效率,降低飞灰含碳量是其重要的途径之一。
选择合理的煤粉细度能够改善锅炉燃烧,提高燃烧效率,实现节能减排。
实践经验表明,煤粉磨制得越细,着火越容易,利于燃烧完全,飞灰含碳量降低,减少二次燃烧的可能性;同时炉膛火焰中心相对降低、炉效相对升高。
但是提高煤粉细度,制粉系统的电耗增加,磨煤机内磨煤部件磨损增大(特别是钢球磨),增加维护量,制粉系统经济性随之降低。
因此,在实际运行中,选择使机械不完全燃烧损失和制粉系统能耗之和最小的煤粉细度,这样的煤粉细度称为经济煤粉细度。
所以对火力发电厂而言,通过正确合理的手段确定经济煤粉细度对于设备的安全经济运行是非常有意义的。
1.煤粉细度煤粉细度是煤粉的重要指标之一,它反映了煤粉颗粒群的粗细程度。
我国通常用Rx表征煤粉细度。
例如:煤粉细度10~12%(R90),意思是煤粉通过孔径为90微米的筛子的概率为88~90%,不通过率为10~12%。
也就是说,筛子孔径不变的话,留在上面的越多,细度越大,煤粉越粗。
2.锅炉制粉系统的简介2.1锅炉制粉系统的概述制粉系统是火力发电厂锅炉上的重要部分,其主要是把原煤磨成粉末,并将其送进锅炉里面进行燃烧的设备以及整个装备中连接管道的组合。
600MW火电厂制粉系统解析
• 为保证磨煤机的一次风流量与磨机的出煤量之间保持线形关系。磨煤 机输出的风煤比必须保持恒定,而风煤比在很大程度上取决于磨机内 的装煤量。为了更为精确地测量磨煤机的筒体料位,以便调节给煤机 转速,使磨煤机筒体料位保持在基本稳定的水平进而保证磨煤机出口 风煤比的恒定,在磨煤机已建立初始料位后料位测量系统可自动切换 为压差测量的方式。该方式的工作元件是三根伸入磨煤机筒体的压缩 空气的探管。探管系统利用的是低速喷射气流的原理,流量控制器维 持测量管内有一低速气流,管中的压力取决于管外流体的比重,当“ 液面”不是处于大气压下而是在正压容器内,那么可采用压差测量流 体“液面”的高度。磨煤机的两侧端部有三根压缩空气管用来以差压 的原理测量筒体料位称为料位差压管,其中一根探管(基准料位管) 置于粉状燃料之上,另两根(高、低料位管)的开口置于螺旋输送器 的里侧,高低料位管与基准料位管之间的压差代表了上下探头之间的 平均煤粉浓度(即料位),测量系统为保证每根探管的的通畅,防止 阻塞,设置了一套专用的压缩空气料位管吹扫系统,定时对磨煤机料 位管进行清理和吹扫。
墙
墙
A4 A3 A2 A1
F4 F3 F2 F1
磨煤机风量控制系统
•
料位的调整
•
1)磨负荷与风量的调节
• 磨分离器出口的一次风与煤粉之间的质量之比称为磨机的 风煤比,该量表征了对于本型号的双进双出球磨在额定的
转速下,携带单位质量的煤粉需要的一次风的总质量。风
煤比对于双进双出球磨来讲是负荷调节中的重要参考数据
• 因为这两个回路是对称而彼此独立的回路,具体操作时可 使用其中一个或同时使用两
• 个回路。在低负荷运行状态下,可实现半磨运行。
螺旋输送装置
• 磨煤机对煤的破碎作用是依靠磨煤金属元件对煤的撞击、挤 压及研磨作用来实现的。磨煤机采用耐磨锰钢钢球,直径为 φ50-80mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火电厂煤粉燃烧系统火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水生成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。
今天我的课题是煤粉燃烧系统。
一、煤粉的制备及预热用火车或汽车、轮船等将煤运至电厂的煤场后,经初步筛选处理,用输煤皮带送到锅炉的原煤仓。
煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风干燥并带至粗粉分离器。
在粗粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。
二、煤粉气流的着火和燃烧(一)煤粉气流的着火煤粉空气混合物经燃烧器以射流方式被喷入炉膛后,经过湍流扩散和回流,卷吸周围的高温烟气,同时又受到炉膛四周高温火焰的辐射,被迅速加热,热量到达一定温度后就开始着火。
有实验表明,煤粉气流的着火温度要比煤的着火温度高一些。
因此,煤粉空气混合物较难着火,这是煤粉燃烧的特点之一。
在锅炉燃烧中,希望煤粉气流离开燃烧器喷口不远处就能稳定地着火,如果着火过早可能使燃烧器喷口因过热被烧坏,也易使喷口附近结渣;如果着火太迟,就会推迟整个燃烧过程,使煤粉来不及烧完就离开炉膛,增大机械不完全燃烧损失。
另外着火推迟还会使火焰中心上移,造成炉膛出口处的受热面结渣。
煤粉气流着火后就开始燃烧,形成火炬,着火以前是吸热阶段,需要从周围介质中吸收一定的热量来提高煤粉气流的温度,着火以后才是放热过程。
将煤粉气流加热到着火温度所需的热量称为着火热。
它包括加热煤粉及空气(一次风),并使煤粉中水分加热、蒸发、过热所需热量。
(二)煤粉燃烧的三个阶段煤粉同空气以射流的方式经喷燃器喷入炉膛,在悬浮状态下燃烧,从燃烧器出口,煤粉的燃烧过程大致可分为以下三个阶段:1.着火前的准备阶段煤粉气流喷人炉内至着火这一阶段为着火前的准备阶段。
着火前的准备阶段是吸热阶段。
在此阶段内,煤粉气流被烟气不断加热,温度逐渐升高。
煤粉受热后,首先是水分蒸发,接着干燥的煤粉进行热分解并析出挥发分。
挥发分析出的数量和成分取决于煤的特性、加热温度和速度。
着火前煤粉只发生缓慢氧化,氧浓度和飞灰含碳量的变化不大。
一般认为,从煤粉中析出的挥发分先着火燃烧。
挥发分燃烧放出的热量又加热炭粒,炭粒温度迅速升高,当炭粒加热至一定温度并有氧补充到炭粒表面时,炭粒着火燃烧。
2.燃烧阶段煤粉着火以后进入燃烧阶段。
燃烧阶段是一个强烈的放热阶段。
煤粉颗粒的着火燃烧,首先从局部开始,然后迅速扩展到整个表面。
煤粉气流一旦着火燃烧,可燃质与氧发生高速的燃烧化学反应、放出大量的热量,放热量大于周围水冷壁的吸热量,烟气温度迅速升高达到最大值,氧浓度及飞灰含碳量则急剧下降。
3.燃尽阶段燃尽阶段是燃烧过程的继续。
煤粉经过燃烧后,炭粒变小,表面形成灰壳,大部分可燃物已经燃尽,只剩少量未燃尽炭继续燃烧。
在燃尽阶段中,氧浓度相应减少,气流的扰动减弱,燃烧速度明显下降,燃烧放热量小于水冷壁吸热量,烟温逐渐降低,因此燃尽阶段占整个燃烧阶段的时间最长。
对应于煤粉燃烧的三个阶段,煤粉气流喷人炉膛后,从燃烧器出口至炉膛出口,沿火炬行程可分为三个区域,即着火区、燃烧区与燃尽区。
其中着火区很短,燃烧区也不长,而燃尽区却比较长。
图1表示煤粉火炬的工况曲线。
图中曲线表明,随着煤粉燃烧过程的进行,沿着煤粉火炬行程,烟气中飞灰含碳量逐渐减少,氧浓度逐渐下降,而燃烧产物R02气体的浓度却逐渐上升。
这些参数在燃烧最剧烈的燃烧区变化最快,在着火区和燃尽区变化较慢。
烟气温度变化是在着火区和燃烧区上升,在燃尽区中烟气温度下降。
图1 煤粉火炬的工况曲线(三)炭粒的燃烧煤粉燃烧的关键是其中炭粒的燃烧。
这是因为:①焦炭中的碳是大多数固体燃料可燃质的主要成分;②焦炭的燃烧过程是整个燃烧过程中最长的阶段,在很大程度上它能决定整个粒子的燃烧时间;③焦炭中碳燃烧的放热量占煤发热量的40%(泥煤)~95%(无烟煤)它的发展对其他阶段的进行有着决定性的影响。
因此,煤粉的整个燃烧过程中,关键在于组织好焦炭中碳的燃烧。
在炭粒的实际燃烧过程中,燃烧温度的高低、温度是否稳定、炭粒的几何形状和结构以及炭粒周围的气流性质等,都会对炭粒燃烧的过程造成影响。
(四)影响完全燃烧的因素要组织良好的燃烧过程,其标志就是尽量接近完全燃烧,也就是在炉内不结渣的前提下,燃烧速度快而且燃烧完全,得到最高的燃烧效率。
要做到完全燃烧,其原则性条件如下。
1.供应充足而又合运的空气量这是燃料完全燃烧的必要条件。
空气量常用炉膛出口处过量空气系数表示。
若系数过小,即空气量供应不足,会增大不完全燃烧热损失,使燃烧效率降低;系数过大,会降低炉温,也会增加不完全燃烧热损失。
因此,合适的空气量应根据炉膛出口最佳过量空气系数来供应。
2.适当高的炉温燃烧反应速度与温度成指数关系,因此炉温对燃烧过程有着极其显著的影响。
炉温高、着火快、燃烧速度快,燃烧过程便进行的猛烈,燃烧也易于趋向完全。
但是炉温也不能过分的提高,因为过高的炉温不但会引起炉内结渣,也会引起膜态沸腾。
同时因为燃烧反应是一种可逆反应,过高的炉温当然会使正反应速度加快,但同时也会使逆反应(还原反应)速度加快。
逆反应(还原反应)速度加快,将有较多燃烧产物又还原为燃烧反应物,这同样等于燃烧不完全。
通过试验证明,锅炉的炉温在中间区域(1000-200O℃)内比较适宜。
当然,在中温区域中,在保证锅炉不结渣的前提下,可以尽量高一些。
3.空气和煤粉的良好扰动和混合煤粉燃烧是多相燃烧,燃烧反应主要在煤粉表面进行。
燃烧反应速度主要取决于煤粉的化学反应速度和氧气扩散到煤粉表面的扩散速度。
因而,要做到完全燃烧,除保证足够高的炉温和供应充分而又合适的空气外,还必须使煤粉和空气充分扰动混合,及时将空气输送到煤粉的燃烧表面去,煤粉和空气接触才能发生燃烧反应。
要做到这一点,就要求燃烧器的结构特性优良,一、二次风混合良好,并有良好的炉内空气动力场。
煤粉和空气不但要在着火燃烧阶段充足混合,而且在燃尽阶段也要加强扰动混合。
因为在燃尽阶段中,可燃质和氧的数量已经很少,而且煤粉表面可能被一层灰分包裹着,妨碍空气与煤粉可燃质的接触,所以此时加强扰动混合,可破坏煤粉表面的灰层,增加煤粉和空气的接触机会,有利于燃烧完全。
4.在炉内要有足够的停留时间在一定的炉温下,一定细度的煤粉要有一定的时间才能燃尽。
煤粉在炉内的停留时间,是从煤粉自燃烧器出口一直到炉膛出口这段行程所经历的时间。
在这段行程中,煤粉要从着火一直到燃尽,才能燃烧完全,否则将增大燃烧热损失。
如果在炉膛出口处煤粉还在燃烧,会导致炉膛出处烟气温度过高,使过热器结渣和过热;汽温升高,影响锅炉运行的安全性。
煤粉在炉内的停留时间主要取决于炉膛容积、炉膛截面积、炉膛高度及烟气在炉内的流动速度,这都与炉膛容积热负荷和炉膛截面热负荷有关,即要在锅炉设计中选择合适的数据,而在锅炉运行时切忌超负荷运行。
三、锅炉点火设备锅炉点火装置主要是在锅炉机组启动时,用它来点燃主燃烧器的煤粉气流。
此外,当锅炉机组在低负荷运行,或者当燃煤质量变差,炉膛温度降低,危及煤粉气流的稳定,炉内火焰发生脉动以致有熄火危险时,也用点火装置来稳定着火和燃烧;同时也可作为辅助燃烧的一种手段。
现代大、中型煤粉炉常采用过渡燃料的点火装置,可分为气--油--煤粉的三级点火和油--煤粉的二级点火系统两种。
三级点火系统是用点火器点燃着火能量最小的气体燃料,再点燃雾化的燃料油,最后点燃主燃烧器的煤粉气流。
二级点火系统则直接用点火器点燃燃料油,再点燃主燃烧器中的煤粉气流。
如果煤粉锅炉装有煤粉预燃室,就可以用点火器点燃装在煤粉预燃室燃烧器中的小油枪喷射出来的雾状油,再点燃煤粉燃烧器中的煤粉气流,待着火燃烧形成炽热火炬后再去点燃主燃烧器的煤粉气流。
点火装置中的点火器都采用电器点火器,常用的电器点火器有电火花点火器,电弧点火器和高能点火器三种。
电火花点火器常用于大、中型锅炉的三级点火系统中。
电火花点火器的结构及其点火程序如图2所示。
电火花点火器的结构是由点火杆、火焰检测器和气体燃烧器三部分组成。
点火杆与点火器外壳组成打火电极,在两极间加上5~lOkV 的高电压,两极间便会产生电火花,借助电火花的高温和电离作用,可点燃气体燃烧器中的可燃气体,再点燃油枪喷出来的雾状油,最后点燃主燃烧器的煤粉气流。
这种点火器击穿能力较强,点火可靠,使用较广。
用电火花点火器的三级点火系统的点火程序为:按下点火按钮,通过点火变电器将5~lOkV的高电压通往电火花点火器;电火花点火器中的点火杆与点火器外壳两极间便产生电火花;通往点火器中气体燃烧器的可燃气体(丙烷)通道上的电磁阀开启;气体燃烧器出来的可燃气体便着火燃烧;火焰检测器检测到丙烷着火,便发出信号;接受信号后,继电器将电磁空气阀切换到进气位置,将压缩空气送至汽缸;汽缸活塞便下移;随后将控制进油的四通阀下移至进油位置;燃料油便经四通阀送到油枪,接着雾化喷人炉内;油枪喷出的雾状油滴被点火器中丙烷的火炬点燃着火燃烧,主火焰检测器发出信号;点火用油枪为可调节回油的机械式油喷嘴,此时回油至四通阀,使阀杆下移;时间继电器工作;经数秒后切断丙烷,停止点火。
至此,完成了点火程序。
图2 电火花点火器的结构及其点火程序电弧点火器则多用于二级点火系统。
电弧点火的起弧原理和电焊机相同,碳块和碳棒组成的点火电极通电后,两极先接触再拉开起弧,利用两极间形成的高温电弧去点燃油枪喷出的燃料油。
高能点火器是一种新型的点火器,用于两级点火系统。
常用的是半导体高能点火器,其工作原理是,将半导体电阻两极置于一个能量峰值很高的脉冲电压作用下,在半导体电阻表面就产生强烈的电火花,产生强大的能量,足够直接点燃雾化了的重油。
高能点火器连同重油枪都放在主燃烧器中,待主燃烧器的煤粉气流着火后,高能点火器和点火用重油枪(包括火焰稳焰器)由两台电动推杆分别带动,使点火器和重油枪自行退出,避免停用时在高温下被烧坏。
四、煤粉燃烧器煤粉炉的燃烧设备包括煤粉燃烧器、点火装置和炉膛。
煤粉燃烧器也称为喷燃器,它是煤粉炉燃烧设备的主要组成部分。
其作用是:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉迅速稳定地着火;及时供应空气,使燃料和空气充分混合,达到煤粉在炉内迅速完全燃烧。
燃烧器的性能对燃烧的稳定性和经济性有很大的影响。
一个性能良好的燃烧器应能满足下列要求:(1)组织良好的空气动力场,使燃料及时着火,与空气适时混合,保证燃烧的稳定性和经济性。
(2)有较好的燃料适应性,具有良好的调节性能和较大的调节范围,以适应煤种和负荷变化的需要。
(3)应能控制氮氧化物的生成在允许的范围内,以达到保护环境的要求。