2019年秋七年级数学上册第5章相交线与平行线5.1相交线5.1.2垂线习题课件新版华东师大版PPT
七年级数学上册 5.1 相交线 5.1.2 垂线导学案(无答案)(新版)华东师大版
如图, 那么点 A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C
到AB的距离是________.
【巩固训练】
1、如图,已知, ,垂足为O,OE是一条射线,且
求: ,
2、如图,在△ABC中,请作出AB边上的高,及量出顶点B到边AC的距离。
板书设计
已知直线AB,及AB外(上)一点P,求画出过P点垂直于直线AB的直线CD。
(2)垂线的公理
从画图的过程发现,过一点能 作直线与已知直线相垂直。
概括:经过一点,有且只有条直线与已知直线垂直。
(3)点到直线的距离
看图5.1.8,点A到l的所有线段中,哪条最短?
概括:(公理)最短。
点(直线外)到直线的距离指
垂线
学习内容
垂线
学习目标
1、理解垂线的含义与垂线的画法;
2、理解点到直线的距离,理解垂线段的意义;
3、能在一个三角形画出三角形的高。
学习重点
如何确定点到直线的距离以及垂线段的公理 ;
学习难点
变换的思想。
导学过 程
复备栏
【温故 互查】:
1、什么叫对பைடு நூலகம்角?什么叫邻补角?
2、 说出图中的对顶角和邻补角。
【设问导读】:
1、同学们把手中可以转动的两条相交的纸条进行转动,在转动的过程中,是否会出现四个角都相等的情况?如果会,那么每一个角都是多少度?
2、当两条直线转动到所形成的四个角都相等时(等于直角),这时,称这两条直线。叫垂足,其中一条直线叫另一条直线的。
如图:
表示:, ,垂足为O,
应用:
∴
3、(1)画(作)一条已知直线的垂线
教学反思
安全提示
数学课件 华东师大版七年级上册 同步教学第5章相交线与平行线第二节平行线
12.在写艺术字时,常常运用画“平行线段”这种基本方法,如图 所示写的是字母“M”.
(1)请从正面、上面、右面三个不同方向上各找出一组平行线段, 并用字母表示出来;
解:正面:AB∥EF;上面:A′B′∥AB; 右面:DD′∥HI.(答案不唯一)
(2)EF 与 A′B′有何位置关系? 解:EF∥A′B′.
8 如图,平面内有A,B,C三点,且三点不在同一条直 线上,过这三点画两条平行线,这样的平行线能画几 种?画图说明.
解:能画三种,如图所示.
9 如图,(1)过BC上一点P画AB的平行线交AC于T; (2)过点C画MN∥AB; 解:(1)如图.(2)如图.
(3)直线PT,MN具有何种位置关系?试说明理由. 解:PT∥MN,理由如下:因为PT∥AB,MN∥AB, 所以PT∥MN.
8 如图,P是线段AB的中点,过点P画BC的平行线交AC 于点Q,再过点Q画AB的平行线交BC于点S. 解:所画图形如图所示.
(1)用刻度尺测量后确定AQ与QC,CS与BS的数量关系; 解:经测量得到AQ=QC,CS=BS.
(2)用刻度尺测量后确定PQ与BC,QS与AB的数量关系,你 发现了什么?用简洁的语言把你发现的规律叙述出来. 经测量得到 PQ=12BC,QS=12AB. 经过三角形一边的中点,画另一边的平行线,则这条
3 如图,将一张长方形纸对折三次,则产生的折痕与折 痕间的位置关系是( C )
A.平行 C.平行或垂直
B.垂直 D.无法确定
4 【原创题】如图,能相交的是___②___,平行的是 __③____.
5 在如图所示的方格纸中,经过点C画与线段AB平行的 直线l1. 略
6 读下列语句,并画出图形. P是直线AB外一点,直线CD经过点P且与直线AB平行, 直线EF也经过点P且与直线AB垂直. 解:如图所示.
华师版七年级数学上册作业课件(HS)第五章 相交线与平行线 垂 线
3.(8分)下列各图中,分别过点P作AB的垂线. 解:如图所示:
4.(3分)如图,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是(B) A.两点确定一条直线 B.在同一平面内,经过一点有且只有一条直线与已知直线垂直 C.在同一平面内,过一点只能作一条垂线 D.垂线段最短
5.(3分)如图所示,P是直线l外一点,点A,B,C在直线l上,且PB⊥l,下列说法: ①PA,PB,PC这3条线段中,PB最短;②点P到直线l的距离是线段PB的长;③线段 AB的长是点A到PB的距离;④线段PA的长是点P到直线l的距离.其中正确的是( A )
8.(4分)如图,AD⊥BD,BC⊥CD,AB=5,BC=3. 若BD的长度是整数,则BD的长度是__4__.
9.(8分)如图,某人在公路的左侧A处,要到公路的右侧,怎样走最近? 为什么?若他要到公路对面的B处,怎样走最近?为什么? 解:某人在公路的左侧A处,要到公路的右侧,如图,沿垂线段AC的方向走最近, 根据是垂线段最短.若他要到公路对面的B处,如图,连结AB,沿线段AB走最近, 根据是两点之间线段最短
数学 七年级上册 华师版
第五章 相交线与平行线
5.1 相交线
5.1.2 垂 线
1.(3分)(河南中考)如图,直线AB,CD相交于点O,EO⊥AB于点O, ∠EOD=50°,则∠BOC的度数为_1_4_0_°____.
2.(3分)如图,A,B,C三点在同一直线上,已知∠1=20°,∠2=70°, 则CD与CE的位置关系是__C_D_⊥__C__E_____.
A.①②③ B.①②④ C.①③④ D.②③④
6.(4分)如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为__4__.
7.(4分)自来水公司为某小区A改造供水系统,如图所示, 沿路线AO铺设管道和BO主管道衔接(AO⊥BO), 路线最短,工程造价最低,根据是_垂__线__段__最__短__.
人教版七年级初一数学下册 5.1 相交线 5.1.2 垂线
时,∠BOD 的度数是( D )
A.60°
B.120° C.60°或 90° D.60°或 120°
9/13/2019
9
二、填空题(每小题 5 分,共 10 分)
13.如图所示,EO⊥CD,垂足为 O,AB 平分∠EOD,则∠BOD 的度数为_1_3__5_°___.
(第 13 题图)
(第 14 题图)
9/13/2019
2
垂线的定义及画法
1.(4 分)如图,直线 AB 与 CD 相交于点 O,若∠AOC+∠BOD
=180°,则∠AOC=__9__0_°___,AB 与 CD 的位置关系是_A__B__⊥__C_.D
2.(4 分)如图,直线 l1 与 l2 相交于点 O,OM⊥l1,若∠α=44°,则
9/13/2019
7
一、选择题(每小题 5 分,共 20 分)
9.如图,已知 QA⊥l,QB⊥l,所以 QA 与 QB 重合,其理由是( B )
A.过两点只有一条直线
B.经过一点有且只有一条直线垂直于已知直线
C.垂线段最短
D.过一点只能作一条垂线
(第 9 题图)
(第 10 题图)
10.如图,AO⊥BO,CO⊥DO,∠AOC∶∠BOC=1∶5,则∠BOD 的度数为( D )
A.105°
B.112.5°
பைடு நூலகம்
C.135°
D.157.5°
9/13/2019
8
11.如图,△ABC 中,∠C=90°,AC=3,点 P 是边 BC 上的动
点,则 AP 长不可能是( A )
A.2.5
B.3
C.4
D.5
12.在直线 AB 上任取一点 O,过点 O 作射线 OC,OD,使 OC⊥OD,当∠AOC=30°
第5章相交线与平行线测试题(教师用书)
绵阳外国语实验学校七年级数学单元测试卷第5章相交线与平行线班级:姓名:一.选择题(每小题4分,共16分)1.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,AB∥CD,∠A=70°,则∠1的度数是()A.130°B.110°C.100°D.70°3.下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥bB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c4.如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠ADB的度数是()A.45°B.30°C.50°D.36°第2题图第4题图第5题图二.填空题(每小题4分,共24分)5.如图,(1)要证AD∥BC,只需∠B=,根据是;(2)要证AB∥CD,只需∠3=,根据是.6.把下列命题写成“如果…那么…”的形式是:(1)内错角相等,两直线平行:;(2)同角的补角相等:.7.如图,长方形ABCD中,线段AC、BD相交于点O,DE∥AC,CE∥BD,BC=2cm,那么三角形EDC可以看作由平移得到的,连接OE,则OE=cm.第7题图第8题图第9题图8.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=度,∠COB=度.9.如图,AC平分∠DAB,∠1=∠2.填空:因为AC平分∠DAB,所以∠1=,从而∠2=,因此AB∥.10.如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是.三.解答题(每小题15分,共60分)11.如图,已知三角形ABC及三角形ABC外一点D,平移三角形ABC,使点A移动到点D,并保留画图痕迹.12.完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α()∵DE平分∠BDC(已知),∴∠BDC=().∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90.(已知),∴∠ABD+∠BDC=().∴AB∥CD()13.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,求∠EAD、∠DAC、∠C的度数.14.如图,AB∥CD∥EF,写出∠A,∠C,∠AFC的关系并说明理由.。
“相交线与平行线”易错题
第五单元《相交线和平行线》易错题5.1相交线1.判断题: 同一平面内三条直线a 、b 、c ,若a ∥b,b ∥c,则a ∥c ;同理,若a ⊥b,b ⊥c,则a⊥c 。
( )【错解】正确【错题剖析】这句话的前半部分是成立的(如图1),但由此推出的后半部分不成立。
平行具有传递性,但垂直不具有传递性(如图2)如果a ⊥b,b ⊥c ,则a ∥c 。
【正确解答】错误【应对攻略】画图是解决问题的最简单也是最直接的办法,往往有意想不到的效果.【练习巩固】1.判断题:1)不相交的两条直线叫做平行线。
( ) 2)过一点有且只有一条直线与已知直线平行。
( ) 3)两直线平行,同旁内角相等。
( ) 4)两条直线被第三条直线所截,同位角相等。
( )2.判断题:只有过直线外一点才能画已知直线的垂线 ( )【错解】正确【错题剖析】此句错误的原因是受“经过直线外一点有且只有一条直线和已知直线平行”这一事实的影响。
但画垂线可以过直线上一点,也可以过直线外一点来画。
正确说法是:经过直线上或直线外一点可以画已知直线的垂线。
【正确解答】错误【应对攻略】考虑问题要全面,全方面的多角度的分析,不能片面看问题.【练习巩固】判断(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.() (4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( ) (7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )a bc 图1 图23. 如下图,直线AB 、CD 、EF 和射线OG 都经过O 点,则图中对顶角有( )对A 、 6B 、 7C 、 5D 、 8【错解】A.【错题剖析】这种题目很容易“重复”解,也很容易“遗漏”解.本题很容易把 ∠AOG 也数进去. 【正确解答】C.【应对攻略】观察图形需要仔细,要有两个防止:既要防止“重复”又要防止“遗漏”并且应按一定的顺序进行.【练习巩固】如图,BE 平分ABC ,BC DE //,图中相等的角共有( )A 、 3对B 、 4对C 、 5对D 、6对3.观察下列各图,寻找对顶角(不含平角):⑴ 如图a ,图中共有 对对顶角;C EA OB G F DE DCB AA BCD Oa b c A A B B CCD DO OEFGH图a图b图c⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有2008条直线相交于一点,则可形成 对对顶角。
5.1.2 垂线
短的是 ( C )
C
A. AC C. CD
B. BC D. 不能确定 A
D
B
阿克苏市第六中学
七年级数学组 3.过点P 向线段AB 所在直线引垂线,正确的是( C )
A
B
C
D
阿克苏市第六中学
七年级数学组
4.下列说法正确的是( D ) A.线段AB叫做点B到直线AC的距离
A D
B.线段AB的长度叫做点A到直线AC的距离
阿克苏市第六中学
七年级数学组
一、垂线的概念
1.垂线的定义:当两条直线AB 和CD所成的四个角中,如果有 一个角是直角,其他三个角也 C 都为直角,此时,这两条直线
互相垂直.其中一条直线叫做另 一条直线的垂线.
A
OD B
2.垂直用符号 “⊥”来表示,读作“垂直于”. 如“直线AB垂直于直线CD”,就记作“AB⊥CD”.
阿克苏市第六中学
七年级数学组
课本P8练习 6、如图,画AE⊥BC,CF⊥AD,垂足分别为E,F
A
D
B
C
阿克苏市第六中学
课堂小结
七年级数学组
1.垂线的定义 当两条直线相交所成的四个角中,有一个角是直角
画几条?
(3)过直线l外的一点B画l的垂线,这样的垂线能
画几条?
.B .A l
阿克苏市第六中学
如图,已知直线 l,作l的垂线.
A
O
七年级数学组
1.放 2.靠 3.画
l
0
1
2
3
4
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
问题:这样画l的垂线可以画几条?
华师大版七年级上册数学第5章 相交线与平行线含答案(实用)
华师大版七年级上册数学第5章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,直线相交于点于点,则的度数是()A. B. C. D.2、给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.3、如图,把教室中墙壁的棱看做直线的一部分,那么下列表示两条棱所在的直线的位置关系不正确的是()A.AB⊥BCB.AD∥BCC.CD∥BFD.AE∥BF4、如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个5、菱形的对角线,相交于点O,且,,则四边形是()A.梯形B.矩形C.菱形D.正方形6、如图,AB∥CD,且∠1=15°,∠2=35°+a,∠3=50°- a,∠4=30°-a,∠5=20°.则a的值为()A.20°B.25°C.40°D.35°7、体育课上,老师测量跳远成绩的依据是( )A.垂直的定义B.两点之间线段最短C.垂线段最短D.两点确定一条直线8、在下列四个选项中,∠1与∠2属于对顶角的是()A. B. C. D.9、如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.一定成立的是()A.①②B.①③④C.①②③D.①②④10、如图,下列说法中,错误的是()A.∠4与∠B是同位角B.∠B与∠C是同旁内角C.∠2与∠C是同位角D.∠1与∠3是内错角11、如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A.20 °B.40 °C.50°D.70°12、如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°13、如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°14、已知:如图,AB∥CD,BC平分∠ABD,且∠C=40°,则∠D的度数是()A.40°B.80°C.90°D.100°15、如图,直线a,b被直线c所截,,若,则等于()A. B.C.D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2,AB⊥EF,∠1=20°,那么∠2=________.17、如图,已知A(0,-4)、B(3,-4),C为第四象限内一点且∠AOC=60°,若∠CAB=10°,则∠OCA=________.18、如图,△AOB和△ACD均为正三角形,顶点B,D在双曲线y= (x>0)上,则=________.19、如图,,相交于点,,如果,那么等于________.20、如图,从点P向直线l所画的4条线段中,线段________最短,理由是________.21、如图所示,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,若∠1=20°,则∠2的度数是 ________。
(典型题)华师大版七年级上册数学第5章 相交线与平行线含答案
华师大版七年级上册数学第5章相交线与平行线含答案一、单选题(共15题,共计45分)1、一副三角板如图放置,点D在CB的延长线上,EF∥CD,∠C=∠EDF=90°,∠A=45°,∠EFD=30°,则∠DFB=()A.15°B.20°C.25°D.30°2、下列说法不正确的是()A.平面内,过一点有且只有一条直线与已知直线垂直B.两条线段不平行必相交C.对顶角相等D.任何一个实数都可以用数轴上的一个点来表示3、如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C、D,那么以下线段大小的比较必定成立的是()A.CD>ADB.AC<BCC.BC>BDD.CD<BD4、如图,直线AB和CD相交于O,OE⊥AB,那么图中∠DOE与∠COA的关系是()A.对顶角B.相等C.互余D.互补5、如图所示,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠4D.∠BAC=∠ACD6、如图,下列条件中不能判断l1∥l2的是()A. B. C. D.7、如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是( )A.20°B.25°C.30°D.50°8、下列图形中能够说明∠1>∠2的是()A. B. C. D.9、如图,a∥b,将一块三角板的直角顶点放在直线a上,∠1=42°,则∠2的度数为( )A.46°B.48°C.56°D.72°10、下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个11、下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等12、如图所示,直线a,b相交于点O,若∠1等于50°,则∠2等于()A.50°B.40°C.140°D.130°13、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④14、如图,点E在AC的延长线上,下列条件中能判断BD∥AE的是()A.∠1=∠2B.∠2=∠3C.∠A=∠DCED.∠3=∠415、如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC=86°,则∠BDE的度数为( )A.26°B.30°C.34°D.52°二、填空题(共10题,共计30分)16、有4条直线a、b、c、d以及3个交点A、B、C,在图中画出的部分可以数出________对同位角.17、一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为________.18、若∠A和∠B的两边分别平行,且∠A比∠B的两倍少30°,则∠B的度数是________.19、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为________.20、如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3=________°.21、一把直尺与含30°的直角三角板如图所示放置,,则________.22、一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD.则∠1+∠2=________.23、如图,AB∥CD,BE平分∠ABC,若∠CDE=150°,则∠C=________.24、在间一平面内,有2019条互不重合的直线,l1, l2, l3,…,l 2019,若l1⊥l2, l2∥l3, l3⊥l4, l4∥l5,以此类推,则l1和l2019的位置关系是________.25、已知:如图,∠1=∠2,∠C=∠D。
七年级初一数学数学第五章 相交线与平行线试题附解析
七年级初一数学数学第五章 相交线与平行线试题附解析一、选择题1.下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短2.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .43.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个4.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒5.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65° 6.下列语句中,假命题的是( )A .垂线段最短B .如果直线a 、b 、c 满足a ∥b ,b ∥c ,那么a ∥cC .同角的余角相等D .如果∠AOB =80°,∠BOC =20°,那么∠AOC =60°7.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒8.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个9.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 10.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-=二、填空题11.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔12.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.13.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.14.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .15.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.16.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.17.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .18.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.19.两个角的两边分别平行,一个角是50°,那么另一个角是__________.20.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.三、解答题21.如图,已知//AB CD ,50A C ∠=∠=︒,线段AD 上从左到右依次有两点E 、F (不与A 、D 重合)(1)求证://AD BC ;(2)比较1∠、2∠、3∠的大小,并说明理由;(3)若:1:4FBD CBD ∠∠=,BE 平分ABF ∠,且1BDC ∠=∠,判断BE 与AD 的位置关系,并说明理由.22.在综合与实践课上,老师让同学们以“三条平行线m ,n ,l (即始终满足m ∥n ∥l )和一副直角三角尺ABC ,DEF (∠BAC =∠EDF =90°,∠FED =60°,∠DFE =30°,∠ABC =∠ACB =45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC 的边BC 放在l 上,三角尺DEF 的顶点F 与顶点B 重合,边EF 经过AB ,顶点E 恰好落在m 上,顶点D 恰好落在n 上,边ED 与n 相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m 向下平移后使得两个三角尺的两个直角顶点A 、D 分别落在m 和l 上,顶点C 恰好落在n 上,边AC 与l 相交所成的一个角记为∠2,边DF 与m 相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N 是直线n 上一点,CN 恰好平分∠ACB 时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.23.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.24.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( )130,PFD ∠=︒218013050∴∠=︒-︒=.12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程)25.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=26.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A .立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质; B .从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C .把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D .直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质; 故选:C .【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.2.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.3.B解析:B【分析】根据平行线的性质,点到直线的距离依次判断.【详解】解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确;③直线外一点到直线的垂线段叫点到直线的距离,说法错误;④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误;正确的说法有2个,故选:B .【点睛】此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.4.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.5.B解析:B【分析】由题意过点B 作直线//l m ,利用平行线的判定定理和性质定理进行分析即可得出答案.【详解】解:如图,过点B 作直线//l m ,l m,∵直线m//n,//l n,∴//∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,l m,∵//∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.6.D解析:D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、垂线段最短是真命题,故A不符合题意;B、如果直线a、b、c满足a∥b,b∥c,那么a∥c是真命题,故B不符合题意;C、同角的余角相等是真命题,故C不符合题意;D、如果∠AOB=80°,∠BOC=20°,那么∠AOC=60°或100°,是假命题,故D符合题意.故选:D.【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P 作MN ∥AB ,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB ∥CD,PF ⊥CD 于F ,∴PF ⊥MN ,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.8.B解析:B【解析】①若a 与b 相交,b 与c 相交,则a 与c 相交或平行,故本小题错误; ②若a ∥b ,b ∥c ,则a ∥c ;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.故选:B.9.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.10.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.二、填空题11.;(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图中,当时,DE//AC ;图中,当 时,CE//AB ,图中,当 时,DE//BC .故答案为:;(答案解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.12.4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.13.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.14.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 解析:7513【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.15.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.16.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.17.【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25解析:125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE ,DF 平分∠CDE ,根据角平分线的性质,即可求得∠ABF+∠CDF 的度数,又由两只线平行,内错角相等,即可求得∠BFD 的度数.【详解】过点E 作EM ∥AB ,过点F 作FN ∥AB ,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABF=12∠ABE ,∠CDF=12∠CDE , ∴∠ABF+∠CDF=12(∠ABE+∠CDE )=125°, ∵∠DFN=∠CDF ,∠BFN=∠ABF ,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】 此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.18.平行 平行 垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行 平行 垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3).19.130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是解析:130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是130°或50°.故答案为:130°或50°.20.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:130152AB BC+=⨯=.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)见解析;(2)∠1>∠2>∠3,理由见解析;(3)BE⊥AD,理由见解析【分析】(1)证明∠C+∠ADC=180°,再根据平行线的判定证明即可;(2)通过比较∠EBC、∠FBC、∠DBC的大小,再进行等量代换即可;(3)设∠FBD=x°,则∠DBC=4x°,根据∠ABC=130°列出方程,求解即可.【详解】解:(1)证明:∵AB∥CD,∴∠A+∠ADC=180°,∵∠A=50°,∴∠ADC=130°,∵∠C=50°,∴∠C+∠ADC=180°,∴AD∥BC;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3;(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∴∠ABE=∠DBC,∵BE平分∠ABF,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE⊥AD.【点睛】此题考查平行线的性质,关键是根据平行线的判定和性质解答.22.(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC的度数,再利用平行线的性质得到∠BDN的度数,由此得到∠1的度数;(2)过B点作BG∥直线m,利用平行线的性质可得到∠3=DBG和∠LAB=∠ABG,再利用等量代换得到∠3+∠LAB=75°,利用余角性质得到∠LAB=90°-∠2,由此证明结论;(3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n∥直线l,∴∠DBC=∠BDN,又∵∠DBC=∠ABC﹣∠ABD=45°﹣30°=15°,∴∠BDN=15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B点作BG∥直线m,∵BG∥m,l∥m,∴BG∥l(平行于同一直线的两直线互相平行),∵BG∥m,∴∠3=DBG,又∵BG∥l,∴∠LAB=∠ABG,∴∠3+∠LAB=∠DBA=30°+45°=75°,又∵∠2和∠LAB互为余角,∴∠LAB=90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN平分∠BCA,∴∠BCN=∠CAN=22.5°,又∵直线n∥直线l,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.∠=∠+∠,理由见解析;23.(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.24.(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补;(2),PFC PEA P ∠=∠+∠理由见解析;(3)1.2G α∠=【分析】(1)根据平行线的性质与判断,即可解答.(2)过P 点作PN//AB ,则PN//CD ,根据平行线的性质得出∠PEA=∠NPE ,进而得到∠FPN=∠PFC ;(3)令AB 与PF 交点为O ,连接EF EF 如图3,在△GFE 中,利用三角形内角和定理进行计算,由(2)知∠PFC=∠PEA+∠P ,得到∠PEA=∠PFC −α,即可解答.【详解】解:(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补(2)PFC PEA P ∠=∠+∠理由如下:过点P 作//PN AB ,则//PN CD∴PEA NPE ∠=∠∵FPN NPE FPE ∠=∠+∠∴FPN ∠=PEA FPE ∠+∠ ∵//PN CD∴F FPN P C ∠=∠∴PFC PEA FPE ∠=∠+∠即PFC PEA P ∠=∠+∠.(3)令AB 与PF 交点为O ,连接EF 如图3,在GFE 中,180()G GFE GEF ∠=︒-∠+∠,∵12GEF PEA OEF ∠=∠+∠,12GFE PFC OFE ∠=∠+∠, ∴1122GEF GFE PEA PFC OEF OFE ∠+∠=∠+∠+∠+∠,∵由(2)知PFC PEA P ∠=∠+∠,∴C PEA PF α=∠-∠,而180180OF PF E OEF F E C O ∠+∠=-︒-∠∠=︒, ∴11()22GEF GFE PFC PFC α∠+∠=∠-+∠+11801802PFC α︒-∠=︒-, ∴11180()18018022G GEF GFE αα∠=︒-∠+∠=︒-︒+=. 故答案为:12G α∠=【点睛】 此题考查平行线的性质的运用,三角形内角和定理,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算.25.(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ,1EBP EBQ , 2132BPD EBP .②如图4中,连接EH .180A AEH AHE ,180C CEB CBE ,360AAEH AHE CEH CHE C , 360A AEC C AHC .(3)如图5中,设AC 交BG 于H .AHB A B F ,AHB CHG ∠=∠, 在五边形HCDEG 中,540CHG CD E G , 540A B F C D E G【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.26.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】 (1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;②如图4,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.故答案为:215°−12 n.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.。
七年级数学上册第5章相交线与平行线5.1相交线2垂线练习1华东师大版(2021年整理)
七年级数学上册第5章相交线与平行线5.1 相交线2 垂线同步练习1 (新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第5章相交线与平行线5.1 相交线2 垂线同步练习1 (新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第5章相交线与平行线5.1 相交线2 垂线同步练习1 (新版)华东师大版的全部内容。
5.1 2。
垂线一、选择题1.在同一平面内,经过一点能作几条直线与已知直线垂直()A.0条 B.1条C.2条 D.无数条2.如图K-47-1,OA⊥OB,若∠1=35°,则∠2的度数是()图K-47-1A.35° B.45° C.55° D.70°3.下列说法中错误的是()A.两直线相交,若有一组邻补角相等,则这两条直线垂直B.两直线相交,若有两个角相等,则这两条直线垂直C.两直线相交,若有一组对顶角互补,则这两条直线垂直D.两直线相交,若有三个角相等,则这两条直线垂直4.如图K-47-2,直线l1与l2相交于点O,OM⊥l1.若∠α=44°,则∠β等于( )图K-47-2A.56° B.46° C.45° D.44°5.如图K-47-3,已知直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF∶∠BOF=2∶3,则∠AOE的度数为( )图K-47-3A.36° B.54° C。
48° D.42°6.如图K-47-4所示,P为直线l外一点,A,B,C三点均在直线l上,并且PB⊥l,有下列说法:①PA,PB,PC三条线段中,PB最短;②线段PB的长度叫做点P到直线l的距离;③线段AB的长度是点A到PB的距离;④线段AC的长度是点A到PC的距离.图K-47-4其中正确的有()A.1个 B.2个C.3个 D.4个7.P为直线m外一点,A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离( )A.等于4 cm B.等于2 cmC.小于2 cm D.不大于2 cm二、填空题8.如图K-47-5所示,OA⊥OC,∠1=∠2,则OB与OD的位置关系是____________.图K-47-59.如图K-47-6,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方向是__________________.图K-47-610.如图K-47-7,AC⊥BC,CD⊥AB,垂足分别是C,D.(1)点C到直线AB的距离是线段________的长度;(2)点B到直线AC的距离是线段________的长度.图K-47-711.如图K-47-8,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA =4。
5.1.2 垂线
探究新知
日常生活里,图中的两条直线的关系很常见, 你能再举出其他例子吗?
一 垂线的概念
在相交线的模型中,固定木条a,转动木条b,当b的
位置变化时,a、b所成的角α也会发生变化.
b b
bb b
α )α
a
问题 如图,当∠AOC=90°时,∠BOD、∠AOD、 ∠BOC的度数是多少?为什么?
C
AO
B
问题: (1)画已知直线l的垂线能画几条?
(2)过直线l上的一点A画l的垂线,这样的垂线能
画几条?
(3)过直线l外的一点B画l的垂线,这样的垂线能
画几条?
.B
.A l
如图,已知直线 l,作l的垂线.
A
O
1.放 2.靠 3.画
l
0
1
2
3
4
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
问题:这样画l的垂线可以画几条? 无数条
A D
B
C
3.两条直线相交所成的四个角中,下列条件中能 判定两条直线垂直的是( C ) A. 有两个角相等 B.有两对角相等 C. 有三个角相等 D.有四对邻补角
4.如图, CD⊥AB, ∠C=90° ,线段AC、BC、CD中最短
的是 ( C )
A. AC
B. BC
C. CD
D. 不能确定
C
A
D
试一试: 在灌溉时,要把河中的水引到农田P处,如 何挖掘能使渠道最短?请画出图来,并说明理由.
垂线段最短 m
当堂练习
1.过点P 向线段AB 所在直线引垂线,正确的是 (C)
A
B
《5.1相交线》练习题
(D)(C)(B)(A)22211121《5.1相交线》练习题一1、下列各图中,∠1和∠2是对顶角的是( )2、已知直线AB 、CD 相交于点O ,则与∠AOC 互补的角有 ( ) A 、1个 B 、2个 C 、3个 D 、4个3、如图,三条直线两两相交,其中对顶角共有 ( ) A 、3对 B 、4对 C 、5对 D 、6对4、如图,直线AB 、CD 交于点O ,OE 、OF 是过O 点的两条射线,其中构成对顶角的是 ( )A 、∠AOF 与 ∠DOEB 、∠EOF 与∠BOEC 、∠BOC 与∠AOD D 、∠COF 与∠BOD5、下列说法错误的是 ( )A 、对顶角的平分线成一个平角B 、对顶角相等C 、相等的角是对顶角D 、对顶角的余角相等 6、如图,直线AB 与CD 相交于点O ,∠AOD+∠BOC=236度,则∠AOC 的度数为 ( )A 、72度B 、62度C 、124度D 、144度 7、如图,点A 到直线CD 的距离是指哪条线段长 ( )A 、ACB 、CDC 、AD D 、BD 8、在“同一平面内,过一点有且只有一条直线与已知直线垂直”中这一点的位置 ( )A 、在直线的上方B 、在直线的下方C 、在直线上D 、可以任意位置9、下列说法中正确的个数有 ( ) (1)直线外一点与直线上各点连接的所有线中垂线段最短。
(2)画一条直线的垂线段可以画无数条。
(3)在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直。
(4)从直线外一点到这条直线的垂线段叫做点到直线的距离。
A 、1个 B 、2个 C 、3个 D 、4个10、如图2-27,∠BAC 和∠ACD 是( )A .同位角B .同旁内角C .内错角D .以上结论都不对O F E D CBA ODCBADABC11、如图2-28,∠1与∠2不能构成同位角的图形是 ( )12、如图2-29,图中共有同旁内角 对A .2B .3C .4D .513、如图2-30,与∠1构成同位角的共有 ( )A .1个B .2个C .3个D .4个 14、如图2-31,下列判断正确的是 [ ]A .4对同位角,4对内错角,2对同旁内角B .4对同位角、4对内错角,4对同旁内角C .6对同位角,4对内错角,4对同旁内角D .6对同位角,4对内错角,2对同旁内角15、如图,直线AB 、CD 相交于点O ,若∠AOC=50度,则∠BOC= ,∠AOD= ∠BOD= 。
初中数学七年级数学第五章相交线和平行线(全章知识图文详解)
如图∠1 与∠2互补,∠3 与∠4互补 ,如果 ∠1=∠3,那么∠2与∠4相等吗?为什么?
2
1
4
3
七年级数学相交线和平行线
例3 如图,∠1与∠2互补,∠3与∠4互补,如果 ∠1=∠3,那么∠2与∠4相等吗?为什么?
2 4
1
3
解:∠2与∠4相等。
因为∠1与∠2互补;∠3与∠4互补, 所以∠2=180°-∠1;∠4=180°-∠3, 这里, 又因为∠1=∠3, 我们用到 所以∠2=∠4。 了“等量
一是两条直线相交所成的角; 二是有公共顶点; 三是两边互为延长线。 符合这三个条件时,才能确定这两个角是 对顶角,缺一个条件都不行. 对顶角是成对存在的,它们互为对顶角,如∠1 是∠2的对顶角,同时,∠2是∠1的对顶角,也常 说∠1和∠2是对顶角。
七年级数学相交线和平行线
练习:下列各图中∠1、∠2是对顶角吗? 为什么?
45° 77°
62°23′
x
七年级数学相交线和平行线
例题:若一个角的补角等于它的余角的4 倍,求这个角 的度数?
解: 设这个角是x °,则它的补角是 ( 180°-x°),
余角是(90°-x°)
根据题意得: (180°-x°)= 4 (90°-x°)
解得: x =60
答:这个角的度数是60 °。
七年级数学相交线和平行线
1 2
1 2
1
2
七年级数学相交线和平行线
典型例题
C)
2 2 1 1
1.下列图形中,∠1和∠2是对顶角的图形是(
1
2
1
2
(A)
(B)
(C)
(D)
2.如图,三条直线AB,CD,EF两两相交,你能找出图中所有的对顶角吗?
七年级数学上册 5.1 相交线 5.1.2 垂线教学课件1 (新版)华东师大版
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2022/5/72022/5/72022/5/72022/5/7
谢谢收看
2.如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则 ∠DOB的大小为( ) A.36° B.54° C.64° D.72°
【解析】选B.因为OC⊥OD,所以 ∠COD=90°,又因为∠AOB=180°, 所以∠DOB=∠AOB-∠COD- ∠COA=180°-90°-36°=54°.
【例题】 作一条直线l,在直线l上取一点A,
在l外取一点B,试分别过点A,B用三角尺作直线的垂线.
B
01 23 4 5 01 23 4 5
01 23 4 5
A
01 23 4 5
l
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
【跟踪训练】
找出下图中互相垂直的直线.
4.点P是直线l外一点,点A,B,C是直线l上的三点,且
PA=10,PB=8,PC=6,那么点P到直线l的距离为( )
A.6
B.8
C.大于6的数
D.不大于6的数
【解析】选D.根据“垂线段最短”,垂线段的长度一定小 于或等于6,即不大于6的数.
5.过一点作已知直线的垂线可以作(
A.1条
B.2条
C.3条
结论
垂直的表示 图中,直线AB与直线CD垂直,
nC
记作:AB⊥CD;
A
直线 m 与直线 n 垂直,
记作:m⊥n ;
互相垂直的两条直线的交点叫做垂足.
B
O
m
D
注意:“⊥”是“垂直”的记号,